Future Space Missions and Human Enhancement: Medical and Ethical Challenges

Total Page:16

File Type:pdf, Size:1020Kb

Future Space Missions and Human Enhancement: Medical and Ethical Challenges Futures 133 (2021) 102819 Contents lists available at ScienceDirect Futures journal homepage: www.elsevier.com/locate/futures Future space missions and human enhancement: Medical and ethical challenges Konrad Szocik a,n,*, Mark Shelhamer b, Martin Braddock c, Francis A. Cucinotta d, e f g ´ h i Chris Impey , Pete Worden , Ted Peters , Milan M. Cirkovi´c , Kelly C. Smith , Koji Tachibana j, Michael J. Reiss k, Ziba Norman k, Arvin M. Gouw l, Gonzalo Mun´evar m a Interdisciplinary Center for Bioethics, Yale University, New Haven, CT, United States b Johns Hopkins University School of Medicine, Baltimore, United States c Sherwood Observatory, Mansfield and Sutton Astronomical Society, Nottinghamshire, United Kingdom d University of Nevada Las Vegas, Las Vegas NV, United States e University of Arizona, United States f Breakthrough Prize Foundation, Washington, United States g Graduate Theological Union, Berkeley, United States h Astronomical Observatory Belgrade, Belgrade, Serbia i Clemson University, Clemson, United States j Chiba University, Chiba, Japan k University College London Institute of Education, London, United Kingdom l University of Edinburgh, School of Divinity, United Kingdom m Lawrence Technological University, Southfield, United States n Department of Social Sciences, University of Information Technology and Management in Rzeszow, Rzeszow,´ Poland ARTICLE INFO ABSTRACT Keywords: Future human space missions to Mars and beyond may be realized for different research, eco­ Space missions nomic, political or survival reasons. Since space remains a hazardous environment for humans, Space settlement space exploration and exploitation requires the development and deployment of effective coun­ Human enhancement termeasures. In this paper, we discuss prospects for human enhancement by gene editing, syn­ Gene editing thetic biology, or implants, for the purposes of future space missions. We argue that there are CRISPR Synthetic biology good reasons to consider such options, and that ethical arguments can be made in favor of human Bioethics enhancement to enable long-term space exploration. * Corresponding author. E-mail addresses: [email protected] (K. Szocik), [email protected] (M. Shelhamer), [email protected] (M. Braddock), [email protected] (F.A. Cucinotta), [email protected] (C. Impey), [email protected] (P. Worden), ´ [email protected] (T. Peters), [email protected] (M.M. Cirkovi´c), [email protected] (K.C. Smith), [email protected] (K. Tachibana), [email protected] (M.J. Reiss), [email protected] (Z. Norman), [email protected] (A.M. Gouw), [email protected] (G. Mun´evar). https://doi.org/10.1016/j.futures.2021.102819 Received 10 March 2021; Received in revised form 15 July 2021; Accepted 28 July 2021 Available online 31 July 2021 0016-3287/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). K. Szocik et al. Futures 133 (2021) 102819 1. Introduction 1.1. Advantages of human enhancements in space There is a high likelihood that human space missions to the Moon, Mars and possibly beyond will become a reality within the next century. Humans have good reasons to go to space, which include economic incentives, research programs, and opportunities for building and establishing permanent space settlements. While some critics may argue against the concept of human space missions in general and the idea of a space refuge in particular, many authors agree that in the long term colonizing new environments in space either within or beyond our solar system may support the long-term future of humanity (Mason, 2021). In this paper, we discuss the application of human enhancement and its potential role for enabling a future human presence in space. The idea of human enhancement to better permit living and working in space is simple: because the space environment is hazardous and humans are not adapted by evolution to live there, it makes sense to artificiallyincrease human adaption to space by biomedical means. However, the precise nature of enhancement, which may be more or less invasive, reversible or irreversible, and heritable or non-heritable, requires very careful thought and might well be driven by scientific and ethical considerations on Earth. Genetic engineering, particularly germ-line gene editing, is one of the most controversial forms of bioenhancement, at least on Earth. However, there are good reasons to assume that in the context of space, there is a stronger rationale for human enhancement than in the terrestrial context, in which case the ethical analysis should also differ. Our paper has several important ramifications for space science and technology on the one hand, and bioethics and futures studies on the other. Most analyses of living off-Earth focus on the required technologies or practical considerations; social and cultural implications have received less consideration. The emergent field of “space ethics” (or “astrobioethics” or “astroethics” or “environmental ethics in space”; cf. Chon-Torres, 2018; Owe, 2019; Wanjet, 2020; Peters, 2002, 2013, 2019a, 2021) is developing rapidly, following the progress made in the last two decades in astrobiology and space science, and also in molecular biology and biotechnology. In our paper we do not consider arguments for or against various types of space missions, including the concept of space refuge, nor do we analyse the superiority of humans over robots in space, or vice versa. We focus on the medical and biological risks that humans may encounter in space, current and future protective measures, and related ethical and bioethical issues. Some of the proposals and concepts considered can be seen in terms of a thought experiment today, and a plausible development for the future of our species in space. 1.2. Should we use human enhancements for Mars settlements? Humankind has always sought to extend itself. For much of our history, such developments came about through migration, trade, and improved methods of communication. Over the course of time, such enhancements have increasingly relied on technology – such as boats to carry us across the sea and the development of writing to make communication records more permanent. Usually, that kind of enhancement is not considered to have ethical implications, but in the past century, enhancements have increasingly become possible through the intersection of medicine and technology (e.g., many of us increasingly rely on spectacles, hearing aids, pace- makers, dialysis, and insulin injections). But even these technological enhancements were not necessarily ethically controversial until humanity had the capacity to change our own genetic material. Thus far, genetic manipulation has been used solely for therapeutic reasons (e.g., the treatment of certain immune disorders, a type of heart disease and a type of blindness), but gene therapy paves the way for a whole new level of genetic modification which may include enhancement. To date, much of the literature on genetic enhancement focuses on non-therapeutic applications for attractiveness, intelligence, sporting prowess and the like (Agar, 2014; Savulescu, ter Meulen, & Kahane, 2011; Savulescu & Bostrom, 2011). The public has been ambivalent about the use of genetic engineering in general, although support is slowly increasing (CGS Staff, 2018). Advocates of the technology were not helped by the fact that its initial uses seemed to suggest few immediate benefitsof real importance for humans (Reiss and Straughan, 1996) – for example, one early proposal was to enable Christmas trees to glow. A relevant distinction can be made between somatic and germ-line genetic engineering. Somatic cells make up most of our body (muscles, skin, nerves, bone, etc.) and are responsible for everything except producing our gamete, while germ-line cells are directly responsible for producing our eggs and sperm. At present, most countries with the available technology do not allow germ-line gene editing, though somatic gene editing is becoming increasingly widespread, whether for research or therapeutic purposes (Mason, 2021). If genetic engineering is to be used for Mars astronauts, it may be that germ-line genetic engineering will be needed. Any long-term colony will need to exist for multiple generations, which means any single generation’s genetic manipulation would have to be repeated on site. This is a theoretical assumption, but one that needs to be made for any concept of a self-sustaining extraterrestrial colony that must be able to reproduce under conditions of altered gravity and increased exposure to cosmic radiation. It is not possible at this time to be certain which human genes we might want to alter but we already know enough to have pinpointed genes for such valuable features as radiation resistance, extra-strong bones, toleration of lower oxygen levels, enhanced memory and reduced inci- dence of a range of diseases and medical conditions including atherosclerosis and various cancers (Church, 2019; Pontin, 2018). It may be argued that a new generation of ‘Martians’ receive preventive medicine rather than enhancement, since the purpose is to enable survival in this harsh environment. If this argument is accepted, it weakens ethical objections to the use of genetic engineering to facilitate human missions to Mars. However, such a strong justification– arguably the strongest possible justification,since the survival of our species
Recommended publications
  • Topics for Students' Presentations Problems in Long Distance (Human) Space Travel New Propulsion Tech
    06/03/2019 Life in the Universe 2019 - Student talks - Google Docs Topics for students’ presentations ● Problems in long distance (human) space travel ○ New propulsion technologies Paul Richter ○ Social aspects? ○ life in zero‑gravity ○ communication ● Prospects for long‑term human missions within the Solar systems: ○ Elon Musk's plan to send humans to Mars F. Stabel ○ What would be the point of a lunar base? ● Testing extra‑terrestrial habitats on Earth ○ NEEMO, Mars500, Desert RATS experiments ● Future (and proposed) space missions and/or observational facilities to look for life‑/bio‑ signatures: Artem Mosienko ○ On Europa ○ on Exo‑planets ● Solar‑system bodies as potentially life‑bearing systems: B. Prinoth ○ Europa ○ Titan ○ Enceladus ○ Mars ● Experiments to search for Life on Mars: ○ Past and present (Viking missions to now) ○ Martian meteorites (ALH‑64?) 20 years on, include possibly media response at the time to idea of evidence for extraterrestrial life ○ Future in situ experiments on Mars ● SETI projects : ○ Breakthrough Initiatives ○ SETI@Home ○ What are the fundamental assumptions behind SETI experiments, and what do they imply (i.e., similar to Drake Eq.) Sven Kiefer ● Observational signatures of advanced civilizations Leon Raabe ● Remote detection of Life on Earth (How far away can we detect Human signals, e.g. TV) Yves Sibony ● Summary of what is known about the exosolar asteroid ( 'Oumuamua ) Andrea Weibel https://docs.google.com/document/d/1qZdVVX3bP5kyfftaQazeXs3l7sP3TQDq9mL9uGLHrjE/edit# 1/4 06/03/2019 Life in the Universe 2019 - Student talks - Google Docs ● How good is the evidence for an asymmetry of left‑ and right‑ handed organic molecules in nature and where could such an asymmetry come from? O.
    [Show full text]
  • Nasa and the Search for Technosignatures
    NASA AND THE SEARCH FOR TECHNOSIGNATURES A Report from the NASA Technosignatures Workshop NOVEMBER 28, 2018 NASA TECHNOSIGNATURES WORKSHOP REPORT CONTENTS 1 INTRODUCTION .................................................................................................................................................................... 1 What are Technosignatures? .................................................................................................................................... 2 What Are Good Technosignatures to Look For? ....................................................................................................... 2 Maturity of the Field ................................................................................................................................................... 5 Breadth of the Field ................................................................................................................................................... 5 Limitations of This Document .................................................................................................................................... 6 Authors of This Document ......................................................................................................................................... 6 2 EXISTING UPPER LIMITS ON TECHNOSIGNATURES ....................................................................................................... 9 Limits and the Limitations of Limits ...........................................................................................................................
    [Show full text]
  • DIRECT FUSION DRIVE for Interstellar Exploration S.A
    Journal of the British Interplanetary Society VOLUME 72 NO.2 FEBRUARY 2019 General interstellar issue DIRECT FUSION DRIVE for Interstellar Exploration S.A. Cohen et al. INTERMEDIATE BEAMERS FOR STARSHOT: Probes to the Sun’s Inner Gravity Focus James Benford & Gregory Matloff REALITY, THE BREAKTHROUGH INITIATIVES and Prospects for Colonization of Space Edd Wheeler A GRAVITATIONAL WAVE TRANSMITTER A.A. Jackson and Gregory Benford CORRESPONDENCE www.bis-space.com ISSN 0007-084X PUBLICATION DATE: 29 APRIL 2019 Submitting papers International Advisory Board to JBIS JBIS welcomes the submission of technical Rachel Armstrong, Newcastle University, UK papers for publication dealing with technical Peter Bainum, Howard University, USA reviews, research, technology and engineering in astronautics and related fields. Stephen Baxter, Science & Science Fiction Writer, UK James Benford, Microwave Sciences, California, USA Text should be: James Biggs, The University of Strathclyde, UK ■ As concise as the content allows – typically 5,000 to 6,000 words. Shorter papers (Technical Notes) Anu Bowman, Foundation for Enterprise Development, California, USA will also be considered; longer papers will only Gerald Cleaver, Baylor University, USA be considered in exceptional circumstances – for Charles Cockell, University of Edinburgh, UK example, in the case of a major subject review. Ian A. Crawford, Birkbeck College London, UK ■ Source references should be inserted in the text in square brackets – [1] – and then listed at the Adam Crowl, Icarus Interstellar, Australia end of the paper. Eric W. Davis, Institute for Advanced Studies at Austin, USA ■ Illustration references should be cited in Kathryn Denning, York University, Toronto, Canada numerical order in the text; those not cited in the Martyn Fogg, Probability Research Group, UK text risk omission.
    [Show full text]
  • LPIB Issue 164 (April 2021)
    THE CHICXULUB IMPACT CRATER: Producing a Cradle of Life in the Midst of a Global Calamity Featured Story | From the Desk of Lori Glaze | Meeting Highlights | News from Space | Spotlight on Education In Memoriam | Milestones | New and Noteworthy | Calendar LUNAR AND PLANETARY INFORMATION BULLETIN April 2021 Issue 164 FEATURED STORY THE CHICXULUB IMPACT CRATER: Producing a Cradle of Life in the Midst of a Global Calamity DAVID A. KRING, LUNAR AND PLANETARY INSTITUTE Expedition 364 mission patch Introduction when the International Ocean Discov- an area that had been a stable sediment ery Program (IODP) and International catchment for over 100 million years? Strategically located scientific drilling Continental Scientific Drilling Program Clues began to emerge when the core can be used to tap the Earth for evi- (ICDP) initiated a new campaign with was analyzed. Logging revealed chem- dence of evolutionary upheavals that the call sign Expedition 364. Drilling ical and petrological variations on the transformed the planet. A good example from a marine platform a few meters granitic theme, plus felsite and dolerite is the Yucatán-6 borehole in Mexico above the sea surface, the new borehole intrusions, in a granitoid rock sequence that recovered rock samples from 1.2 reached a depth of 1335 meters be- that represented continental crust that and 1.3 kilometers beneath Earth’s neath the sea floor (mbsf). The borehole had been assembled through a series of surface. I used those samples 30 years penetrated seafloor sediments that bury tectonic events over more than a billion ago to show that a buried, geophysical- the crater, finally reaching impactites at years.
    [Show full text]
  • 1. National Affairs 2. Economy and Finance 3. Science and Technology 4. Environment and Ecology 5. International Affairs, Bilate
    TABLE OF CONTENTS 1. National Affairs 2. Economy and Finance 3. Science and Technology 4. Environment and Ecology 5. International Affairs, Bilateral Issues and Geopolitics 6. Miscellaneous Quick Revision For Prelims 2018 - Current Affairs From Jun to Nov 2017 Page 1 NATIONAL AFFAIRS ➢ Reliance Jio Infocomm Launches Asia-Africa-Europe (AAE-1) Submarine Cable System • A submarine cable system consists of telecom and internet cables on the seabed between land- based stations. These carry telecommunication and data signals across stretches of oceans. • AAE-1, the longest 100 Gbps (gigabits per second) technology-based submarine system, will stretch over 25,000 km from Marseille, France, to Hong Kong, with 21 cable landings across Asia and Europe. ➢ Government Launches Index To Rank 116 Cities On Quality Of Life • The first ‘City Liveability Index’, will cover cities with population above one million, including the capital cities, a total of 116 cities to be covered. • The cities will be assessed on a comprehensive set of 79 parameters, including availability of roads, education, healthcare, mobility, employment opportunities, emergency response, grievance redressal, pollution, availability of open and green spaces, cultural and entertainment opportunities. • The ranking will be released in 2018. ➢ West Bengal Govt's Kanyashree Scheme Bags UN Award The United Nations has awarded the West Bengal government the first place for Public Service for its “Kanyashree” scheme. The “Kanyashree Prakalpa” is a targeted conditional cash transfer scheme aimed at retaining girls in schools and other educational institutions. It also aims towards skill development and prevent child marriage. Over 4 million adolescent girls have already enrolled in the scheme and about $ 500 million handed over to the beneficiaries through their bank account.
    [Show full text]
  • Breakthrough Initiatives
    THE MAZE OF SPACE TO COME BREAKTHROUGH INITIATIVES JAMIE DREW, BREAKTHROUGH PRIZE FOUNDATION - [email protected] - Kerastari 20170529 FOUNDERS: Sergey Brin - Priscilla Chan – Jack Ma – Julia Milner – Yuri Milner - Anne Wojcicki - Cathy Zhang – Mark Zuckerberg. NOMINATIONS. LABYRINTH? SPACE EXPLORATION? 19571004 7 19610412 196907208 1610… 9 PHILANTHROPY & SPACE EXPLORATION. 2008 GDP Ratio Project Year Cost Equivalent Value University of North Carolina Observatory 1831 $6,4301 $89,000,000 Williams College Observatory 1836 $6,1002 $60,000,000 West Point Academy Observatory 1842 $5,0003 $45,000,000 U.S. Naval Observatory 1842 $25,0004 $225,000,000 Cincinnati Observatory 1843 $16,0005 $149,000,000 Harvard College Observatory 1843 $25,0006 $233,000,000 -Edward Phillips Endowment 1848 $100,0007 $601,000,000 Georgetown Observatory 1844 $18,0008 $154,000,000 Detroit Observatory 1852 $17,0009 $81,000,000 Shattuck Observatory 1852 $11,00010 $52,000,000 Hamilton College Observatory 1852 $15,00011 $71,000,000 Dudley Observatory 1852 $119,00012 $566,000,000 Dearborn Observatory 1865 $25,00013 $37,000,000 Transit of Venus Expedition 1872 $177,00014 $310,000,000 Lick Observatory 1876 $700,00015 $1,220,000,000 Warner Observatory 1880 $100,00016 $139,000,000 Transit of Venus Expedition 1882 $85,00017 $101,000,000 McCormick Observatory 1881 $135,00018 $168,000,000 Yerkes Observatory 1892 $500,00019 $441,000,000 Mt. Wilson Observatory 1910 $945,00020 $408,000,000 Mt. Palomar Observatory 1928 $6,550,00021 $972,000,000 McDonald Observatory 1939 $840,00022
    [Show full text]
  • Searches for Life and Intelligence Beyond Earth
    Technologies of Perception: Searches for Life and Intelligence Beyond Earth by Claire Isabel Webb Bachelor of Arts, cum laude Vassar College, 2010 Submitted to the Program in Science, Technology and Society in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in History, Anthropology, and Science, Technology and Society at the Massachusetts Institute of Technology September 2020 © 2020 Claire Isabel Webb. All Rights Reserved. The author hereby grants to MIT permission to reproduce and distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature of Author: _____________________________________________________________ History, Anthropology, and Science, Technology and Society August 24, 2020 Certified by: ___________________________________________________________________ David Kaiser Germeshausen Professor of the History of Science (STS) Professor of Physics Thesis Supervisor Certified by: ___________________________________________________________________ Stefan Helmreich Elting E. Morison Professor of Anthropology Thesis Committee Member Certified by: ___________________________________________________________________ Sally Haslanger Ford Professor of Philosophy and Women’s and Gender Studies Thesis Committee Member Accepted by: ___________________________________________________________________ Graham Jones Associate Professor of Anthropology Director of Graduate Studies, History, Anthropology, and STS Accepted by: ___________________________________________________________________
    [Show full text]
  • Planet Searching from Ground and Space
    Planet Searching from Ground and Space Olivier Guyon Japanese Astrobiology Center, National Institutes for Natural Sciences (NINS) Subaru Telescope, National Astronomical Observatory of Japan (NINS) University of Arizona Breakthrough Watch committee chair June 8, 2017 Perspectives on O/IR Astronomy in the Mid-2020s Outline 1. Current status of exoplanet research 2. Finding the nearest habitable planets 3. Characterizing exoplanets 4. Breakthrough Watch and Starshot initiatives 5. Subaru Telescope instrumentation, Japan/US collaboration toward TMT 6. Recommendations 1. Current Status of Exoplanet Research 1. Current Status of Exoplanet Research 3,500 confirmed planets (as of June 2017) Most identified by Jupiter two techniques: Radial Velocity with Earth ground-based telescopes Transit (most with NASA Kepler mission) Strong observational bias towards short period and high mass (lower right corner) 1. Current Status of Exoplanet Research Key statistical findings Hot Jupiters, P < 10 day, M > 0.1 Jupiter Planetary systems are common occurrence rate ~1% 23 systems with > 5 planets Most frequent around F, G stars (no analog in our solar system) credits: NASA/CXC/M. Weiss 7-planet Trappist-1 system, credit: NASA-JPL Earth-size rocky planets are ~10% of Sun-like stars and ~50% abundant of M-type stars have potentially habitable planets credits: NASA Ames/SETI Institute/JPL-Caltech Dressing & Charbonneau 2013 1. Current Status of Exoplanet Research Spectacular discoveries around M stars Trappist-1 system 7 planets ~3 in hab zone likely rocky 40 ly away Proxima Cen b planet Possibly habitable Closest star to our solar system Faint red M-type star 1. Current Status of Exoplanet Research Spectroscopic characterization limited to Giant young planets or close-in planets For most planets, only Mass, radius and orbit are constrained HR 8799 d planet (direct imaging) Currie, Burrows et al.
    [Show full text]
  • Is Anybody out There? Julia Bandura, Michael Chong, Ross Edwards
    Is Anybody Out There? Julia Bandura, Michael Chong, Ross Edwards ISCI 3A12 - LUE March 23rd, 2017 -graphic of scientists believe that with our rapid technological advancement, there may be ways to “We stand on a great communicate with them. This article will explore attempts to transmit threshold in the human messages to potential intelligent life forms, history of space attempts to search for incoming alien signals, and analyze explanations for the silence that we have exploration” (Sara Seager, 2014) insofar encountered. However, before considering any form of communication, whether receiving or radiation levels (since high UV radiation can be transmitting, we must first consider where to look. damaging to replication molecules like DNA), and Where is Life in the Universe? liquid water. Water is especially important: all known life on Earth requires liquid water to Logically, a scientist that hopes to communicate survive. As such, within a solar system, the with extraterrestrial beings must assume that: 1) traditional ‘habitable zone’ is defined as the extraterrestrial intelligent life exists in the universe, imaginary disc around the host star where water 2) it exists in high enough abundance that radio will remain in liquid form. A significant number of communication is possible, 3) a transmitted radio exoplanets have been discovered within this zone signal from Earth will be picked up by a receiver, around their host star, but only a fraction of them and 4) the message will be translated successfully. are considered ‘Earth-like’, meaning that their Each assumption comes with challenges that make surface conditions and sizes are similar to Earth’s the process of creating a radio message appropriate (Rekola, 2009).
    [Show full text]
  • Topics for Students' Presentations Problems in Long Distance (Human) Space Travel New Propulsion Technologies So
    Topics for students’ presentations ● Problems in long distance (human) space travel ○ New propulsion technologies ○ Social aspects? ○ life in zero-gravity ○ communication ● Prospects for long-term human missions within the Solar systems: ○ Elon Musk's plan to send humans to Mars ○ What would be the point of a lunar base? ● Testing extra-terrestrial habitats on Earth ○ NEEMO, Mars500, Desert RATS experiments ● Future (and proposed) space missions and/or observational facilities to look for life-/bio- signatures: ○ On Europa ○ on Exo-planets ● Solar-system bodies as potentially life-bearing systems: ○ Europa ○ Titan ○ Enceladus ○ Mars ● Experiments to search for Life on Mars: ○ Past and present (Viking missions to now) ○ Martian meteorites (ALH-64?) 20 years on, include possibly media response at the time to idea of evidence for extraterrestrial life ○ Future in situ experiments on Mars ● SETI projects : ○ Breakthrough Initiatives ○ SETI@Home ○ What are the fundamental assumptions behind SETI experiments, and what do they imply (i.e., similar to Drake Eq.) ● Observational signatures of advanced civilizations ● Remote detection of Life on Earth (How far away can we detect Human signals, e.g. TV) ● Summary of what is known about the exosolar asteroid ('Oumuamua) ​ ​ ● How good is the evidence for an asymmetry of left- and right- handed organic molecules in nature and where could such an asymmetry come from? ● General physical/planetary processes in the context of life: ○ Terrestrial impacts as a driver of evolutionary change in terrestrial Life vs. other causes of mass extinctions. ○ How dynamically stable are planetary systems - our own and in general? what are the implications (c.f. Drake Eq.
    [Show full text]
  • Ebook Download Proxima Centauri Ebook Free Download
    PROXIMA CENTAURI PDF, EPUB, EBOOK Farel Dalrymple | 160 pages | 29 Jan 2019 | Image Comics | 9781534310292 | English | Fullerton, United States Proxima Centauri PDF Book Proxima Centauri by admin July 6, August 30, Terrestrial sources will also have to be ruled out, along with orbiting satellites, as Seth Shostak, senior scientist with the SETI institute, explained in a recent post :. It is possible there are other planets, slightly further from the star, that have yet to be discovered by astronomers, but they are likely too far away for liquid water to form. To illustrate what this means from our perspective: the Voyager 1 spacecraft is currently travelling away from Earth at a speed of The Planetary Science Journal Tag: Science. It was discovered by the Scottish astronomer Robert Innes in Except… in August astronomers announced they had confirmed the presence of a planet orbiting the diminutive star , and moreover it's very roughly the same mass as Earth , orbiting Proxima in its habitable zone. It's very hard to measure, because the shift is very small, and Proxima is very faint. Extended Data Table 1 Complete set of model parameters Full size table. To view the star, one needs a telescope with an aperture of at least 3. Kopparapu, R. According to Star Trek: Star Charts pp. When the star approaches the Earth in that little circle the wavelength of its light gets a little bit shorter we call that blushift , and when it heads away in the other half of its circle the wavelength gets longer redshift ; this is similar to the Doppler shift in sound.
    [Show full text]
  • General Interstellar Issue
    Journal of the British Interplanetary Society VOLUME 73 NO.7 JULY 2020 General Interstellar Issue PROTOCOLS FOR ENCOUNTER WITH EXTRATERRESTRIALS: lessons from the Covid-19 Pandemic John W. Traphagan & Ken Wisian WATER AND AIR CONSUMPTION ABOARD INTERSTELLAR ARKS Frédéric Marin & Camille Beluffi HABITABILITY OF M DWARFS: a problem for the traditional SETI Milan M. Cirkovic & Branislav Vukotic ON A SPECTRAL PATTERN OF THE VON NEUMANN PROBES Z. Osmanov REWORKING THE SETI PARADOX: METI’s Place on the Continuum of Astrobiological Signaling Thomas Cortellesi DYNAMIC VACUUM MODEL and Casimir Cavity Experiments Harold White, Paul Bailey, James Lawrence, Jeff George & Jerry Vera www.bis-space.com ISSN 0007-084X PUBLICATION DATE: 31 JULY 2020 Submitting papers International Advisory Board to JBIS JBIS welcomes the submission of technical Rachel Armstrong, Newcastle University, UK papers for publication dealing with technical Peter Bainum, Howard University, USA reviews, research, technology and engineering in astronautics and related fields. Stephen Baxter, Science & Science Fiction Writer, UK James Benford, Microwave Sciences, California, USA Text should be: James Biggs, The University of Strathclyde, UK ■ As concise as the content allows – typically 5,000 to 6,000 words. Shorter papers (Technical Notes) Anu Bowman, Foundation for Enterprise Development, California, USA will also be considered; longer papers will only Gerald Cleaver, Baylor University, USA be considered in exceptional circumstances – for Charles Cockell, University of Edinburgh, UK example, in the case of a major subject review. Ian A. Crawford, Birkbeck College London, UK ■ Source references should be inserted in the text in square brackets – [1] – and then listed at the Adam Crowl, Icarus Interstellar, Australia end of the paper.
    [Show full text]