Hyponatremia and Hypernatremia MICHAEL M

Total Page:16

File Type:pdf, Size:1020Kb

Hyponatremia and Hypernatremia MICHAEL M This is a corrected version of the article that appeared in print. Diagnosis and Management of Sodium Disorders: Hyponatremia and Hypernatremia MICHAEL M. BRAUN, DO, Madigan Army Medical Center, Tacoma, Washington CRAIG H. BARSTOW, MD, Womack Army Medical Center, Fort Bragg, North Carolina NATASHA J. PYZOCHA, DO, Madigan Army Medical Center, Tacoma, Washington Hyponatremia and hypernatremia are common findings in the inpatient and outpatient settings. Sodium disorders are associated with an increased risk of morbidity and mortality. Plasma osmolality plays a critical role in the patho- physiology and treatment of sodium disorders. Hyponatremia and hypernatremia are classified based on volume status (hypovolemia, euvolemia, and hypervolemia). Sodium disorders are diagnosed by findings from the history, physical examination, laboratory studies, and evaluation of volume status. Treatment is based on symptoms and underlying causes. In general, hyponatremia is treated with fluid restriction (in the setting of euvolemia), isotonic saline (in hypovolemia), and diuresis (in hypervolemia). A combination of these therapies may be needed based on the presentation. Hypertonic saline is used to treat severe symptomatic hyponatremia. Medications such as vaptans may have a role in the treatment of euvolemic and hypervolemic hyponatremia. The treatment of hypernatremia involves correcting the underlying cause and correcting the free water deficit. Am( Fam Physician. 2015;91(5):299-307. Copy- right © 2015 American Academy of Family Physicians.) More online yponatremia is a common elec- a worse prognosis in patients with liver cir- at http://www. trolyte disorder defined as a rhosis, pulmonary hypertension, myocardial aafp.org/afp. serum sodium level of less than infarction, chronic kidney disease, hip frac- CME This clinical content 135 mEq per L.1-3 A Dutch sys- tures, and pulmonary embolism.1,8-10 conforms to AAFP criteria Htematic review of 53 studies showed that the for continuing medical Etiology and Pathophysiology education (CME). See prevalence of mild hyponatremia was 22.2% CME Quiz Questions on in geriatric hospital wards, 6.0% in nongeri- The most common classification system for page 284. atric wards, and 17.2% in the intensive care hyponatremia is based on volume status: 2 Author disclosure: No rel- unit. The prevalence of severe hyponatremia hypovolemic (decreased total body water with evant▲ financial affiliations. (serum sodium level less than 125 mEq per L) greater decrease in sodium level), euvolemic Patient information: A handout on this topic, was 4.5%, 0.8%, and 10.3%, respectively. It is (increased total body water with normal written by the authors estimated that hyponatremia occurs in 4% to sodium level), and hypervolemic (increased of this article, is avail- 7% of the ambulatory population, with rates total body water compared with sodium).11 able at http://www.aafp. of 18.8% in nursing homes.2-4 Plasma osmolality has a role in the patho- org/afp/2014/0000/ p000-s1.html. Access to Hyponatremia is associated with increased physiology of hyponatremia. Osmolality the handout is free and morbidity and mortality.1-6 In patients with refers to the total concentration of solutes in unrestricted. heart failure who undergo cardiac surgery, water. Effective osmolality is the osmotic gra- Scan the QR code below hyponatremia increases rates of postoperative dient created by solutes that do not cross the with your mobile device complications, length of hospital stay, and cell membrane. Effective osmolality deter- for easy access to the mortality.5,6 Mild hyponatremia in the ambu- mines the osmotic pressure and the flow of patient information hand- 11 out on the AFP mobile site. latory setting is associated with increased water. Plasma osmolality is maintained by mortality (hazard ratio = 1.94) compared strict regulation of the arginine vasopressin with normal sodium levels.3 Patients who (also called antidiuretic hormone [ADH]) sys- develop hyponatremia during hospitalization tem and thirst. If plasma osmolality increases, have increased mortality rates compared with ADH is secreted and water is retained by the those who have hyponatremia on admission.7,8 kidneys, thus decreasing serum osmolality. It is unclear if hyponatremia is a marker for If plasma osmolality decreases, ADH also poor prognostic outcomes or merely a reflec- decreases, resulting in diuresis of free water tion of disease severity. Its presence suggests and a return to homeostasis.12,13 MarchDownloaded 1, 2015 from ◆ theVolume American 91, FamilyNumber Physician 5 website at www.aafp.org/afp.www.aafp.org/afp Copyright © 2015 American Academy of FamilyAmerican Physicians. Family For the Physician private, noncom 299- mercial use of one individual user of the website. All other rights reserved. Contact [email protected] for copyright questions and/or permission requests. SORT: KEY RECOMMENDATIONS FOR PRACTICE Evidence Clinical recommendation rating References Comments In patients with severe symptomatic hyponatremia, the rate of sodium C 13, 14 Consensus guidelines based on correction should be 6 to 12 mEq per L in the first 24 hours and 18 mEq systematic reviews per L or less in 48 hours. A bolus of 100 to 150 mL of hypertonic 3% saline can be given to correct C 13, 14 Consensus guidelines based on severe hyponatremia. small studies Vaptans appear to be safe for the treatment of severe hypervolemic and C 14 Consensus guidelines based on euvolemic hyponatremia but should not be used routinely. observational studies Chronic hypernatremia should be corrected at a rate of 0.5 mEq per L per C 33 Expert opinion hour, with a maximum change of 8 to 10 mEq per L in a 24-hour period. A = consistent, good-quality patient-oriented evidence; B = inconsistent or limited-quality patient-oriented evidence; C = consensus, disease-oriented evidence, usual practice, expert opinion, or case series. For information about the SORT evidence rating system, go to http://www.aafp.org/afpsort. Diagnostic Approach to Hyponatremia hyperproteinemia, mannitol use, or laboratory errors. Symptoms of hyponatremia depend on its severity and on Osmolality remains unchanged, and patients are usually the rate of sodium decline. Gradual decreases in sodium euvolemic.12,13 A corrected sodium calculation is needed usually result in minimal symptoms, whereas rapid in the setting of hyperglycemia (eTable A). decreases can result in severe symptoms. Polydipsia, muscle cramps, headaches, falls, confusion, altered men- Hypovolemic Hyponatremia tal status, obtundation, coma, and status epilepticus may There are numerous causes of hypovolemic hyponatre- indicate the need for acute intervention. Most patients mia (Table 1).11-13 Patients typically have signs and symp- with hyponatremia are asymptomatic, and hyponatremia toms associated with volume depletion (e.g., vomiting, is noted incidentally. Volume status should be assessed to diarrhea, tachycardia, elevated blood urea nitrogen– help determine the underlying cause11,13 (Figure 111-16). to-creatinine ratio). Urinary sodium levels are typically The diagnostic workup should include a history and less than 20 mEq per L unless the kidney is the site of physical examination with specific attention to cardiac, sodium loss. Fractional excretion of sodium is often inac- cancer, pulmonary, surgical, endocrine, gastrointestinal, curately elevated in patients receiving diuretics because of neurologic, and renal histories (Table 1).11-13 Diuretics, diuretic-induced natriuresis; fractional excretion of urea carbamazepine (Tegretol), and selective serotonin reup- can be utilized in these patients instead. Fractional excre- take inhibitors can cause hypovolemia; therefore, medi- tion of urea less than 35% is more sensitive and specific cations should be reviewed. Alcohol and illicit drug use for diagnosing prerenal azotemia in this setting.18 Treat- (especially beer and 3,4-methylenedioxymethamphet- ment generally consists of volume repletion with isotonic amine [“Ecstasy”]) can cause hyponatremia.11-13 Athletes (0.9%) saline, occasional use of salt tablets, and treat- should be asked about training regimens because high ment of the underlying condition.13,14 Monitoring of urine endurance activities can lead to hyponatremia. output is recommended because output of more than 100 Laboratory tests include a complete metabolic panel and mL per hour can be a warning sign of overcorrection.14 urinary sodium and creatinine levels.11,13 Serum osmolal- ity and fractional excretion of sodium should be calcu- Euvolemic Hyponatremia lated (eTable A). Measurement of thyroid-stimulating Euvolemic hyponatremia is most commonly caused by hormone, urinary uric acid, adrenocorticotropic hor- SIADH, but can also be caused by hypothyroidism and mone, plasma cortisol, and brain natriuretic peptide may glucocorticoid deficiency. Euvolemia is diagnosed by be considered in select patients to rule out other causes.13 findings from the history and physical examination, low The diagnosis of reset osmostat (a variation of syndrome serum uric acid levels, a normal blood urea nitrogen– of inappropriate antidiuretic hormone secretion [SIADH] to-creatinine ratio, and spot urinary sodium greater than in which ADH secretion occurs despite low plasma osmo- 20 mEq per L. Diuretic therapy can artificially elevate lality) may be aided using fractional excretion of urate urinary sodium, whereas a low-salt diet can artificially (uric acid) in nonedematous patients who have hypona- lower urinary sodium,
Recommended publications
  • Hyperchloremia – Why and How
    Document downloaded from http://www.elsevier.es, day 23/05/2017. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. n e f r o l o g i a 2 0 1 6;3 6(4):347–353 Revista de la Sociedad Española de Nefrología www.revistanefrologia.com Brief review Hyperchloremia – Why and how Glenn T. Nagami Nephrology Section, Department of Medicine, VA Greater Los Angeles Healthcare System and David Geffen School of Medicine at UCLA, United States a r t i c l e i n f o a b s t r a c t Article history: Hyperchloremia is a common electrolyte disorder that is associated with a diverse group of Received 5 April 2016 clinical conditions. The kidney plays an important role in the regulation of chloride concen- Accepted 11 April 2016 tration through a variety of transporters that are present along the nephron. Nevertheless, Available online 3 June 2016 hyperchloremia can occur when water losses exceed sodium and chloride losses, when the capacity to handle excessive chloride is overwhelmed, or when the serum bicarbonate is low Keywords: with a concomitant rise in chloride as occurs with a normal anion gap metabolic acidosis Hyperchloremia or respiratory alkalosis. The varied nature of the underlying causes of the hyperchloremia Electrolyte disorder will, to a large extent, determine how to treat this electrolyte disturbance. Serum bicarbonate Published by Elsevier Espana,˜ S.L.U. on behalf of Sociedad Espanola˜ de Nefrologıa.´ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
    [Show full text]
  • An Infant with Chronic Hypernatremia
    European Journal of Endocrinology (2006) 155 S141–S144 ISSN 0804-4643 An infant with chronic hypernatremia M L Marcovecchio Department of Paediatrics, University of Chieti, Via dei Vestini 5, 66100 Chieti, Italy (Correspondence should be addressed to M L Marcovecchio; Email: [email protected]) Abstract A 4-month-old boy was presented with failure to thrive, refusal to feed, delayed motor development, truncal hypotonia, and head lag. His plasma osmolality and sodium were significantly high, while his urine osmolality was inappropriately low and did not increase after desmopressin administration. Despite his hyperosmolality, he presented with a lack of thirst and became clearly polyuric and polydipsic only at the age of 2 years. Initial treatment with indomethacin was ineffective, while the combination of hydrochlorothiazide and amiloride was effective and well tolerated. European Journal of Endocrinology 155 S141–S144 Introduction (61 ml/kg) respectively. Other investigations including thyroid and adrenal function were normal. He was Chronic hypernatremia in young patients is generally refusing oral fluids despite being hypernatremic. the result of alterations in the mechanisms controlling A cranial magnetic resonance imaging scan excluded fluid balance (1). Excessive water loss, as in diabetes structural abnormalities in the hypophysis, hypo- insipidus, or an inadequate fluid intake, as in adipsic thalamus and surrounding area. There was no response hypernatremia, may be the underlying cause. The to 0.3 mg 1-desamino-8-D-arginine-vasopressin (DDAVP) differential diagnosis between these conditions is given intravenously (osmolality pre- 374 mosmol/kg; important in order to choose the appropriate treatment. post- 371 mosmol/kg). This suggested a tubular defect However, pitfalls in the diagnosis are often related to an causing nephrogenic diabetes insipidus (NDI).
    [Show full text]
  • Electrolyte and Acid-Base Disorders Triggered by Aminoglycoside Or Colistin Therapy: a Systematic Review
    antibiotics Review Electrolyte and Acid-Base Disorders Triggered by Aminoglycoside or Colistin Therapy: A Systematic Review Martin Scoglio 1,* , Gabriel Bronz 1, Pietro O. Rinoldi 1,2, Pietro B. Faré 3,Céline Betti 1,2, Mario G. Bianchetti 1, Giacomo D. Simonetti 1,2, Viola Gennaro 1, Samuele Renzi 4, Sebastiano A. G. Lava 5 and Gregorio P. Milani 2,6,7 1 Faculty of Biomedicine, Università della Svizzera Italiana, 6900 Lugano, Switzerland; [email protected] (G.B.); [email protected] (P.O.R.); [email protected] (C.B.); [email protected] (M.G.B.); [email protected] (G.D.S.); [email protected] (V.G.) 2 Department of Pediatrics, Pediatric Institute of Southern Switzerland, Ospedale San Giovanni, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland; [email protected] 3 Department of Internal Medicine, Ospedale La Carità, Ente Ospedaliero Cantonale, 6600 Locarno, Switzerland; [email protected] 4 Division of Hematology and Oncology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; [email protected] 5 Pediatric Cardiology Unit, Department of Pediatrics, Centre Hospitalier Universitaire Vaudois, and University of Lausanne, 1011 Lausanne, Switzerland; [email protected] 6 Pediatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy 7 Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy * Correspondence: [email protected] Citation: Scoglio, M.; Bronz, G.; Abstract: Aminoglycoside or colistin therapy may alter the renal tubular function without decreasing Rinoldi, P.O.; Faré, P.B.; Betti, C.; the glomerular filtration rate. This association has never been extensively investigated.
    [Show full text]
  • Is There a Relationship Between COVID-19 and Hyponatremia?
    medicina Review Is There a Relationship between COVID-19 and Hyponatremia? Gina Gheorghe 1,2,†, Madalina Ilie 1,2, Simona Bungau 3,† , Anca Mihaela Pantea Stoian 4 , Nicolae Bacalbasa 5 and Camelia Cristina Diaconu 6,7,* 1 Department of Gastroenterology, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania; [email protected] (G.G.); [email protected] (M.I.) 2 Department of Gastroenterology, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania 3 Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, 410028 Oradea, Romania; [email protected] 4 Department of Diabetes, Nutrition and Metabolic Diseases, “Carol Davila” University of Medicine and Pharmacy, 020475 Bucharest, Romania; [email protected] 5 Department of Visceral Surgery, Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania; [email protected] 6 Department of Internal Medicine, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania 7 Department of Internal Medicine, Clinical Emergency Hospital of Bucharest, 105402 Bucharest, Romania * Correspondence: [email protected]; Tel.: +40-0726-377-300 † This author has equal contribution to the paper as the first author. Abstract: Nowadays, humanity faces one of the most serious health crises, the severe acute respi- ratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. The severity of coronavirus disease 2019 (COVID-19) pandemic is related to the high rate of interhuman transmission of the virus, variability of clinical presentation, and the absence of specific therapeutic methods. COVID-19 can manifest with non-specific symptoms and signs, especially among the elderly. In some cases, the clinical manifestations of hyponatremia may be the first to appear.
    [Show full text]
  • A Case of Hypocalciuric Hypercalcemia Accompanying Cystic Fibrosis
    J Clin Res Pediatr Endocrinol 2015;7(Suppl 2):77-92 A Case of Hypocalciuric Hypercalcemia Accompanying Cystic Fibrosis Yaşar Şen, Sevil Arı Yuca, Fuat Buğrul Blood and urine tests were done in order to find the etiology of hypercalcemia (PTH: 65.5 pg/mL, 25-hydroxy vitamin Selçuk University Faculty of Medicine, Department of Pediatric D: 43.5 ng/mL, urine Ca/Cr ratio 0.19, urine Ca clearance Endorcinology, Konya, Turkey 0.004). In the CaSR gene mutation study, A986S and R990G polymorphisms were heterozygous. 1 month after hydration Introduction: Familial hypocalciuric hypercalcemia (FHH) and clinical state being back to normal, Ca levels were is an autosomal dominant disorder which occurs by an in normal range. In stressful situations, he experienced inactivating gene mutation in the calcium (Ca)-sensing hypernatremia and hypercalcemia together. receptor gene (CaSR). Prevalence is estimated at 1: 78000. Discussion: Polymorphisms may change protein function Ca regulates parathormone (PTH) secretion via CaSR on and capacity of one to repair its damaged DNA. Genetic parathyroid cells. Low levels of Ca increases PTH secretion. polymorphisms help us to define personal sensitivities to CaSR mutation that causes loss of function, leads to total some diseases. The most common CaSR polymorphisms or partial insensitivity of parathyroid cells to Ca’s inhibitory are A986S, R990G, Q1011E and A826T. Our patient effect. For this reason, in order to suppress Ca’s PTH had A986S and R990G mutations. Heterozygous CaSR secretory effect, the setpoint is raised. A higher blood Ca gene mutations generally cause mild disorders in clinic. level is needed to suppress the PTH secretion.
    [Show full text]
  • Serum Sodium Concentration [Na+] Less Than 135 Meq/L. INCIDENCE
    HYPONATREMIA DEFINITION: Serum sodium concentration [Na+] less than 135 mEq/L. INCIDENCE IN CRITICAL ILLNESS: 30%. (The most common electrolyte abnormality encountered in clinical medicine.) ETIOLOGY: Hypo-osmolar hyponatremia: Serum osmolality is low (< 280 mOsm/kg H2O). Hypovolemic: Total body water deficit + greater degree of total body sodium deficit. o Renal losses (urine [Na+] > 20 mmol/L): Diuretic excess; mineralocorticoid deficiency; cerebral salt wasting; bicarbonaturia (renal tubular acidosis and metabolic alkalosis); ketonuria; osmotic diuresis. o Extrarenal losses (urine [Na+] < 20 mmol/L): Vomiting; diarrhea; “third spacing” (burns, pancreatitis, trauma). Euvolemic: Total body water excess + normal total body sodium. o The most common subcategory of hyponatremia. o Includes dilutional hyponatremia. Excess of water relative to sodium; serum chloride concentration is usually normal. o Includes SIADH: Diagnosis of exclusion. Inclusion criteria are plasma osmolality < 270 mOsm/kg + H2O; urine osmolality > 100 mOsm/kg H2O; euvolemia; urine [Na ] elevated; adrenal, thyroid, pituitary, renal insufficiency absent; diuretic use absent. o Urine [Na+] is typically > 20 mmol/L. o Glucocorticoid deficiency; hypothyroidism; stress; medications (vasopressin analogs, drugs that enhance vasopressin release, drugs that potentiate renal action of vasopressin, haloperidol, amitriptyline, other psychotropic medications). Hypervolemic: Total body water excess >>> total body sodium excess. o Urine [Na+] > 20 mmol/L: Renal failure. o Urine
    [Show full text]
  • The Prognostic Effects of Hyponatremia and Hyperchloremia on Postoperative NSCLC Patients
    Current Problems in Cancer 43 (2019) 402–410 Contents lists available at ScienceDirect Current Problems in Cancer journal homepage: www.elsevier.com/locate/cpcancer The prognostic effects of hyponatremia and hyperchloremia on postoperative NSCLC patients Wei Li a,b,1, Xiaowei Chen a,1, Liguang Wang a,c, Yu Wang a, ∗ Cuicui Huang a, Guanghui Wang a,d, Jiajun Du a,d, a Institute of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, PR China b Department of Thoracic Surgery, Shandong Juxian People’s Hospital, Rizhao, PR China c Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, PR China d Department of Thoracic Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, PR China a b s t r a c t Electrolytic disorders are common in lung cancer patients. But the association between serum electrolytes levels and survival in patients undergoing lung cancer resections for non–small-cell lung cancer (NSCLC) has been poorly inves- tigated. A retrospective study was conducted on consecutive postoperative NSCLC patients. Pearson’s test was used to determine the association between serum sodium and chlorine levels and clinical characteristics, and cox regression and Kaplan-Meier model were applied to analyze risk factors on overall survival. We found that hyponatremia was an independent prognostic factor associated with poor prognosis in NSCLC patients undergoing complete resection (log-rank test, P = 0.004). In addition, we found that hyperchloremia predicted a poor clinical outcome in patients with non-anion-gap (log-rank test, P = 0.011), whereas it predicted a favorable clinical outcome in patients with high- anion-gap (log-rank test, P = 0.002).
    [Show full text]
  • Hypercalcemia and Hyponatremia
    Hypercalcemia and Hyponatremia Santosh Reddy MD FACP Assistant Professor Scott & White/Texas A&M Etiology of Hypercalcemia Hypercalcemia results when the entry of calcium into the circulation exceeds the excretion of calcium into the urine or deposition in bone. Sources of calcium are most commonly the bone or the gastrointestinal tract Etiology Hypercalcemia is a relatively common clinical problem. Elevation in the physiologically important ionized (or free) calcium concentration. However, 40 to 45 percent of the calcium in serum is bound to protein, principally albumin; , increased protein binding causes elevation in the serum total calcium. Increased bone resorption Primary and secondary hyperparathyroidism Malignancy Hyperthyroidism Other - Paget's disease, estrogens or antiestrogens in metastatic breast cancer, hypervitaminosis A, retinoic acid Increased intestinal calcium absorption Increased calcium intake Renal failure (often with vitamin D supplementation) Milk-alkali syndrome Hypervitaminosis D Enhanced intake of vitamin D or metabolites Chronic granulomatous diseases (eg, sarcoidosis) Malignant lymphoma Acromegaly Pseudocalcemia Hyperalbuminemia 1) severe dehydration 2) multiple myeloma who have a calcium- binding paraprotein. This phenomenon is called pseudohypercalcemia (or factitious hypercalcemia) Other causes Familial hypocalciuric hypercalcemia Chronic lithium intake Thiazide diuretics Pheochromocytoma Adrenal insufficiency Rhabdomyolysis and acute renal failure Theophylline toxicity Immobilization
    [Show full text]
  • Non-Accidental Salt Poisoning
    448 ArchivesofDiseasein Childhood 1993; 68: 448-452 Non-accidental salt poisoning Roy Meadow Arch Dis Child: first published as 10.1136/adc.68.4.448 on 1 April 1993. Downloaded from Abstract Table I Presentation of12 childrenfrom 10families The clinical features of 12 children who Sex (M/F) 6/6 incurred non-accidental salt poisoning are Age (months) of first confirmed hypernatraemia reported. The children usually presented to 11 children I 5-9 (median 2 - 5) 1 child 41 hospital in the first six months of life with Duration (months) of recurrent unexplained hypernatraemia and associated hypernatraemia 1-45 (median 3) illness. Most ofthe children suffered repetitive poisoning before detection. The perpetrator was believed to be the mother for 10 children, the mother confessed to the poisoning and the father for one, and either parent for one. explained how she had done it.) Four children had serum sodium concentra- tions above 200 mmol/l. Seven children had incurred other fabricated illness, drug inges- PRESENTATION tion, physical abuse, or failure to thrive/ The main features are outlined in table 1. neglect. Two children died; the other 10 Usually the child was presented to hospital remained healthy in alternative care. Features within the first three months of life because of are described that should lead to earlier repetitive illness. Vomiting was the predominant detection of salt poisoning; the importance of feature, often associated with diarrhoea and checking urine sodium excretion, whenever failure to thrive. At times there was drowsiness hypernatraemia occurs, is stressed. which, on occasion, could amount to coma. Four (Arch Dis Child 1993; 68: 448-452) children had markedly abnormal neurological signs including rigidity, hyper-reflexia, and seizures at the time of hypernatraemia.
    [Show full text]
  • 051800 Hypernatremia
    PRIMARY CARE Review Articles Primary Care clinical interventions or accidental sodium loading (Table 1 and Fig. 1E). Because sustained hypernatremia can occur only when thirst or access to water is impaired, the groups HYPERNATREMIA at highest risk are patients with altered mental status, intubated patients, infants, and elderly persons.12 Hy- HORACIO J. ADROGUÉ, M.D., pernatremia in infants usually results from diarrhea, AND NICOLAOS E. MADIAS, M.D. whereas in elderly persons it is usually associated with infirmity or febrile illness.6,13,14 Thirst impairment also occurs in elderly patients.15,16 Frail nursing home residents and hospitalized patients are prone to hy- HE serum sodium concentration and thus se- pernatremia because they depend on others for their rum osmolality are closely controlled by wa- water requirements.7 ter homeostasis, which is mediated by thirst, T 1 CLINICAL MANIFESTATIONS arginine vasopressin, and the kidneys. A disruption in the water balance is manifested as an abnormality Signs and symptoms of hypernatremia largely re- in the serum sodium concentration — hypernatre- flect central nervous system dysfunction and are prom- mia or hyponatremia.2,3 Hypernatremia, defined as a inent when the increase in the serum sodium con- rise in the serum sodium concentration to a value ex- centration is large or occurs rapidly (i.e., over a period ceeding 145 mmol per liter, is a common electrolyte of hours).1,6 Most outpatients with hypernatremia disorder. Because sodium is a functionally imperme- are either very young or very old.17 Common symp- able solute, it contributes to tonicity and induces the toms in infants include hyperpnea, muscle weakness, movement of water across cell membranes.4 There- restlessness, a characteristic high-pitched cry, insom- fore, hypernatremia invariably denotes hypertonic hy- nia, lethargy, and even coma.5,13 Convulsions are typ- perosmolality and always causes cellular dehydration, ically absent except in cases of inadvertent sodium at least transiently (Fig.
    [Show full text]
  • Neurologic Complications of Electrolyte Disturbances and Acid–Base Balance
    Handbook of Clinical Neurology, Vol. 119 (3rd series) Neurologic Aspects of Systemic Disease Part I Jose Biller and Jose M. Ferro, Editors © 2014 Elsevier B.V. All rights reserved Chapter 23 Neurologic complications of electrolyte disturbances and acid–base balance ALBERTO J. ESPAY* James J. and Joan A. Gardner Center for Parkinson’s Disease and Movement Disorders, Department of Neurology, UC Neuroscience Institute, University of Cincinnati, Cincinnati, OH, USA INTRODUCTION hyperglycemia or mannitol intake, when plasma osmolal- ity is high (hypertonic) due to the presence of either of The complex interplay between respiratory and renal these osmotically active substances (Weisberg, 1989; function is at the center of the electrolytic and acid-based Lippi and Aloe, 2010). True or hypotonic hyponatremia environment in which the central and peripheral nervous is always due to a relative excess of water compared to systems function. Neurological manifestations are sodium, and can occur in the setting of hypovolemia, accompaniments of all electrolytic and acid–base distur- euvolemia, and hypervolemia (Table 23.2), invariably bances once certain thresholds are reached (Riggs, reflecting an abnormal relationship between water and 2002). This chapter reviews the major changes resulting sodium, whereby the former is retained at a rate faster alterations in the plasma concentration of sodium, from than the latter (Milionis et al., 2002). Homeostatic mech- potassium, calcium, magnesium, and phosphorus as well anisms protecting against changes in volume and sodium as from acidemia and alkalemia (Table 23.1). concentration include sympathetic activity, the renin– angiotensin–aldosterone system, which cause resorption HYPONATREMIA of sodium by the kidneys, and the hypothalamic arginine vasopressin, also known as antidiuretic hormone (ADH), History and terminology which prompts resorption of water (Eiskjaer et al., 1991).
    [Show full text]
  • Disorders of Sodium and Water Balance
    Disorders of Sodium and Water Balance Theresa R. Harring, MD*, Nathan S. Deal, MD, Dick C. Kuo, MD* KEYWORDS Dysnatremia Water balance Hyponatremia Hypernatremia Fluids for resuscitation KEY POINTS Correct hypovolemia before correcting sodium imbalance by giving patients boluses of isotonic intravenous fluids; reassess serum sodium after volume status normalized. Serum and urine electrolytes and osmolalities in patients with dysnatremias in conjunction with clinical volume assessment are especially helpful to guide management. If an unstable patient is hyponatremic, give 2 mL/kg of 3% normal saline (NS) up to 100 mL over 10 minutes; this may be repeated once if the patient continues to be unstable. If unstable hypernatremic patient, give NS with goal to decrease serum sodium by 8 to 15 mEq/L over 8 hours. Correct stable dysnatremias no faster than 8 mEq/L to 12 mEq/L over the first 24 hours. INTRODUCTION Irregularities of sodium and water balance most often occur simultaneously and are some of the most common electrolyte abnormalities encountered by emergency med- icine physicians. Approximately 10% of all patients admitted from the emergency department suffer from hyponatremia and 2% suffer from hypernatremia.1 Because of the close nature of sodium and water balance, and the relatively rigid limits placed on the central nervous system by the skull, it is not surprising that most symptoms related to disorders of sodium and water imbalance are neurologic and can, therefore, be devastating. Several important concepts are crucial to the understanding of these disorders, the least of which include body fluid compartments, regulation of osmo- lality, and the need for rapid identification and appropriate management.
    [Show full text]