Electrolyte Imbalance

Total Page:16

File Type:pdf, Size:1020Kb

Electrolyte Imbalance Electrolyte Imbalance For Providers Myth: Volume depletion and electrolyte imbalance are interchangeable terms. Fact: While we often use these terms interchangeably, they are actually different conditions and require different treatment. Volume depletion is the loss of salt and water. Residents with volume depletion may show changes to the BUN and creatinine or present with new orthostatic hypotension. Treatment of volume depletion requires replacement of both sodium and water, usually with normal saline. Electrolyte imbalance is loss of water only. In true dehydration, the sodium is always elevated. Treatment of residents with electrolyte imbalance requires replacement of water deficit with oral water (mild electrolyte imbalance) or with intravenous fluids. Giving a patient with true electrolyte imbalance (hypernatremia) normal saline is likely to worsen their condition. Myth: Electrolyte imbalance can be diagnosed by physical exam. Fact: While there are some signs on physical exam that may lead you to think about electrolyte imbalance such as dry tongue or dry axilla, these are nonspecific. The diagnosis of electrolyte imbalance is a laboratory diagnosis. You need to get at least a BMP. Dehydration is diagnosed by hypernatremia (deficit of free water). Volume depletion is diagnosed by changes to the BUN and creatinine. Myth: If a patient has a G-tube, then I don’t need to place an IV to hydrate them. Fact: For residents with mild to moderate electrolyte imbalance, you may be able to hydrate them through their g-tube. However, for severe electrolyte imbalance or volume depletion, you likely still need to place an IV as the ability of the gut to absorb fluids will limit your ability to replenish fluids quickly enough for these residents. Myth: It doesn’t matter what IV fluids are used as all will help treat fluid/electrolyte disorders. Fact: The type of IV fluids chosen to treat fluid/electrolyte disorders is very important. Residents with volume depletion require treatment with isotonic fluids to replace both sodium and water and replenish the intravascular space. Residents with hypernatremia/electrolyte imbalance need treatment with free water (typical D5W) to replenish their total body water. This requires a calculation of their total body water deficits and close monitoring to ensure that sodium is not corrected faster than 10mEq/L per 24 hours. Correcting sodium more quickly than 10mEq/L in 24 hours increases the risk of permanent and potentially fatal change to the brain. Giving these patient’s 0.9% saline or even 0.45% saline will most likely worsen their water deficits and therefore worsen electrolyte imbalance. Myth: Hyponatremia is always related to volume depletion. Fact: There are multiple causes for hyponatremia. Residents may be volume depleted but they may also have a normal volume status as is seen in conditions such as SIADH (syndrome of inappropriate antidiuretic hormone). Residents may also experience volume excess in conditions such as heart failure or cirrhosis. It is essential to assess volume status in the setting of hyponatremia as treatment will differ depending on the clinical setting. As with hypernatremia, residents with moderate to severe hyponatremia must be monitored closely to avoid correcting their sodium by more than 10mEq/L per 24 hours. For more information, visit the OPTIMISTIC website to see the OPTIMISTIC electrolyte disorders clinical protocol or listen to your podcast on electrolyte disorders. Additional Resources: American Medical Directors Association. Electrolyte imbalance and Fluid Maintenance in the Long-Term Care Setting Clinical Practice Guideline. Columbia, MD: AMDA 2009. Feinsod, Fred M, et.al. Electrolyte imbalance in Frail, Older Residents in Long-Term Care Facilities. JAMDA 2004; S36-S41. Fortes, Matthew, B, et.al. Is This Elderly Patient Dehydrated? Diagnostic Accuracy of Hydration Assessment Using Physical Signs, Urine, and Saliva Markers. JAMDA 2015. 16:221-228. Levey, Andrew and Matthew James. In the Clinic: Acute Kidney Injury. Ann Intern Med 2017. ITC65-80. Mange, Kevin, et.al. Language Guiding Therapy: The Case of Dehydration Versus Volume Depletion. Ann Intern Med 1997. 127 (9):848-853. Rahman, Mahboob, et.al. Acute Kidney Injury: A guide to Diagnosis and Management. American Family Physician 2012. 86 (7): 631-639. Thomas, David R, et.al. Physician Misdiagnosis of Electrolyte imbalance in Older Adults. JAMDA 2003. 4:251-254. Thomas, D. Et.al. Understanding Clinical Electrolyte imbalance and its Treatment. JAMDA 2008; 9: 292–301. Weinberg, Andrew D. Dehyration: Evaluation and Management in Older Adults. JAMA 1995. 274 (19): 1152-1556. Version 1.3 Last updated 2/18/2020 Content is subject to copyright of the Trustees of Indiana University and may be used for educational, non-commercial, purposes only. Copyright ©2020 The Trustees of Indiana University. .
Recommended publications
  • Hyponatremia and Hypernatremia MICHAEL M
    This is a corrected version of the article that appeared in print. Diagnosis and Management of Sodium Disorders: Hyponatremia and Hypernatremia MICHAEL M. BRAUN, DO, Madigan Army Medical Center, Tacoma, Washington CRAIG H. BARSTOW, MD, Womack Army Medical Center, Fort Bragg, North Carolina NATASHA J. PYZOCHA, DO, Madigan Army Medical Center, Tacoma, Washington Hyponatremia and hypernatremia are common findings in the inpatient and outpatient settings. Sodium disorders are associated with an increased risk of morbidity and mortality. Plasma osmolality plays a critical role in the patho- physiology and treatment of sodium disorders. Hyponatremia and hypernatremia are classified based on volume status (hypovolemia, euvolemia, and hypervolemia). Sodium disorders are diagnosed by findings from the history, physical examination, laboratory studies, and evaluation of volume status. Treatment is based on symptoms and underlying causes. In general, hyponatremia is treated with fluid restriction (in the setting of euvolemia), isotonic saline (in hypovolemia), and diuresis (in hypervolemia). A combination of these therapies may be needed based on the presentation. Hypertonic saline is used to treat severe symptomatic hyponatremia. Medications such as vaptans may have a role in the treatment of euvolemic and hypervolemic hyponatremia. The treatment of hypernatremia involves correcting the underlying cause and correcting the free water deficit. Am( Fam Physician. 2015;91(5):299-307. Copy- right © 2015 American Academy of Family Physicians.) More online yponatremia is a common elec- a worse prognosis in patients with liver cir- at http://www. trolyte disorder defined as a rhosis, pulmonary hypertension, myocardial aafp.org/afp. serum sodium level of less than infarction, chronic kidney disease, hip frac- CME This clinical content 135 mEq per L.1-3 A Dutch sys- tures, and pulmonary embolism.1,8-10 conforms to AAFP criteria Htematic review of 53 studies showed that the for continuing medical Etiology and Pathophysiology education (CME).
    [Show full text]
  • CARE PLAN Electrolyte and Fluid Imbalance
    CARE PLAN Electrolyte and Fluid Imbalance . Related to: Check all that apply Endocrine dysfunction Treatment/Drug side effects Urinary difficulties Nutritional deficiency Tissue trauma Renal dysfunction Post-op complications Trauma Other _____________ Status: Achieved/ Progressing/Not Date/Select Outcome Select Interventions Met (comment for negative variances) Serum electrolytes, Perform initial/routine BUN, blood gases will assessments, assess be within desired limits for neurological manifestations indicating electrolyte imbalance. Report findings to clinician (MD, PA, NP) promptly. Implement therapeutic actions (i.e., appropriate diet, administer replacement electrolytes—sodium bicarb, mag sulfate, etc., as ordered) Assess/monitor serum levels of electrolytes; report finding to MD promptly Monitor for associated complications Absence of cardiac Assess/monitor cardiac dysrhythmias rhythm Published by Cinahl Information Systems, a division of EBSCO Information Services. Copyright©2016, Cinahl Information Systems. All rights reserved. No part of this may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher. Cinahl Information Systems accepts no liability for advice or information given herein or errors/omissions in the text. It is merely intended as a general informational overview of the subject for the healthcare professional. Cinahl Information Systems, 1509 Wilson Terrace,
    [Show full text]
  • Electrolyte Imbalance in Children with Severe Acute Malnutrition at a Tertiary Care Hospital in Pakistan: a Cross-Sectional Study
    Open Access Original Article DOI: 10.7759/cureus.10541 Electrolyte Imbalance in Children With Severe Acute Malnutrition at a Tertiary Care Hospital in Pakistan: A Cross-Sectional Study Mohammad Raza 1, 2 , Sohail Kumar 3 , Muzamil Ejaz 2 , Dua Azim 3 , Saad Azizullah 2 , Azhar Hussain 4, 5 1. Pediatrics, The Indus Hospital, Karachi, PAK 2. Pediatrics, Dow Medical College, Dr. Ruth K. M. Pfau Civil Hospital, Karachi, PAK 3. Internal Medicine, Dow Medical College, Dr. Ruth K. M. Pfau Civil Hospital, Karachi, PAK 4. Healthcare Administration, Franklin University, Columbus, USA 5. Medicine, Xavier University School of Medicine, Oranjestad, ABW Corresponding author: Mohammad Raza, [email protected] Abstract Background Malnutrition is a significant public health concern and a leading contributor to the global burden of children’s diseases, affecting 50 to 150 million children under the age of five years worldwide. Globally, undernutrition accounts for approximately 33% of the deaths among under-fives. South Asia alone contributes to 50% and 38.8% of the world’s population of wasted and stunted children, respectively. In Pakistan, malnutrition is the leading cause of childhood mortality, accounting for nearly 35% of all deaths under five years of age. Severe acute malnutrition (SAM), the most severe form of malnutrition, is often associated with electrolyte imbalances. This study aimed to determine the frequency of electrolyte imbalance in children with SAM admitted at a tertiary care hospital. Methods This cross-sectional study includes 184 patients with SAM aged between 6 and 60 months, who were admitted at the inpatient Department of Pediatrics, Dr. Ruth K.
    [Show full text]
  • Hyperchloremia – Why and How
    Document downloaded from http://www.elsevier.es, day 23/05/2017. This copy is for personal use. Any transmission of this document by any media or format is strictly prohibited. n e f r o l o g i a 2 0 1 6;3 6(4):347–353 Revista de la Sociedad Española de Nefrología www.revistanefrologia.com Brief review Hyperchloremia – Why and how Glenn T. Nagami Nephrology Section, Department of Medicine, VA Greater Los Angeles Healthcare System and David Geffen School of Medicine at UCLA, United States a r t i c l e i n f o a b s t r a c t Article history: Hyperchloremia is a common electrolyte disorder that is associated with a diverse group of Received 5 April 2016 clinical conditions. The kidney plays an important role in the regulation of chloride concen- Accepted 11 April 2016 tration through a variety of transporters that are present along the nephron. Nevertheless, Available online 3 June 2016 hyperchloremia can occur when water losses exceed sodium and chloride losses, when the capacity to handle excessive chloride is overwhelmed, or when the serum bicarbonate is low Keywords: with a concomitant rise in chloride as occurs with a normal anion gap metabolic acidosis Hyperchloremia or respiratory alkalosis. The varied nature of the underlying causes of the hyperchloremia Electrolyte disorder will, to a large extent, determine how to treat this electrolyte disturbance. Serum bicarbonate Published by Elsevier Espana,˜ S.L.U. on behalf of Sociedad Espanola˜ de Nefrologıa.´ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
    [Show full text]
  • An Infant with Chronic Hypernatremia
    European Journal of Endocrinology (2006) 155 S141–S144 ISSN 0804-4643 An infant with chronic hypernatremia M L Marcovecchio Department of Paediatrics, University of Chieti, Via dei Vestini 5, 66100 Chieti, Italy (Correspondence should be addressed to M L Marcovecchio; Email: [email protected]) Abstract A 4-month-old boy was presented with failure to thrive, refusal to feed, delayed motor development, truncal hypotonia, and head lag. His plasma osmolality and sodium were significantly high, while his urine osmolality was inappropriately low and did not increase after desmopressin administration. Despite his hyperosmolality, he presented with a lack of thirst and became clearly polyuric and polydipsic only at the age of 2 years. Initial treatment with indomethacin was ineffective, while the combination of hydrochlorothiazide and amiloride was effective and well tolerated. European Journal of Endocrinology 155 S141–S144 Introduction (61 ml/kg) respectively. Other investigations including thyroid and adrenal function were normal. He was Chronic hypernatremia in young patients is generally refusing oral fluids despite being hypernatremic. the result of alterations in the mechanisms controlling A cranial magnetic resonance imaging scan excluded fluid balance (1). Excessive water loss, as in diabetes structural abnormalities in the hypophysis, hypo- insipidus, or an inadequate fluid intake, as in adipsic thalamus and surrounding area. There was no response hypernatremia, may be the underlying cause. The to 0.3 mg 1-desamino-8-D-arginine-vasopressin (DDAVP) differential diagnosis between these conditions is given intravenously (osmolality pre- 374 mosmol/kg; important in order to choose the appropriate treatment. post- 371 mosmol/kg). This suggested a tubular defect However, pitfalls in the diagnosis are often related to an causing nephrogenic diabetes insipidus (NDI).
    [Show full text]
  • Electrolyte Imb-Hypercalcemia
    HYPERCALCEMIA (Last updated 01/10/2020; Last reviewed 03/11/2017; Reviewers: Rudy Tedja, DO, Bibek Karki, MBBS) PRESENTING COMPLAINT: Weakness, fatigue, constipation, depression FINDINGS A Check airway B ↓/N RR C ↑/N BP, ↓HR D Variable altered (V,P,U,D)* E Profound muscle weakness, bone pain LPC ↑Ca, ↑/↓/N PTH, ↑/↓/N P UPC Renal stone *V (verbal), P (pain), U (unconsciousness), D (delirious) UPC (point of care ultrasound) LPC (point of care labs) OTHER HISTORY Signs and symptoms Neurological: Lethargy, confusion, stupor, coma Cardiac: Shortened QT interval, supraventricular, ventricular arrhythmias, bradycardia Renal: Polyuria, nephrolithiasis, nephrogenic diabetes insipidus, renal insufficiency, renal tubular acidosis MSK: Bone pain GI: Nausea/vomiting, abdominal pain, pancreatitis Predisposing Conditions: Elderly are predisposed to neuropsychiatric symptoms and known history of malignancy DIFFERENTIAL DIAGNOSIS Other causes of drug induced or metabolic encephalopathy/coma, delirium, intracranial pathology OTHER INVESTIGATIONS Lab: Creatinine Severity: Mild: Calcium < 12 mg/dL; moderate: Calcium 12-14 mg/dL; severe: Calcium >14 mg/dL Monitoring: Calcium level every 8 hours THERAPEUTIC INTERVENTIONS Initial therapy 1 o Stop any offending agents, such as thiazides, lithium, exogenous calcium, vitamin A supplementation, vitamin D supplementation o Intravascular volume repletion with isotonic saline at initial rate of 200-300 ml/hr . Depending on renal function and history of CHF . Titrate rate of normal saline to goal urine
    [Show full text]
  • Electrolyte and Acid-Base Disorders Triggered by Aminoglycoside Or Colistin Therapy: a Systematic Review
    antibiotics Review Electrolyte and Acid-Base Disorders Triggered by Aminoglycoside or Colistin Therapy: A Systematic Review Martin Scoglio 1,* , Gabriel Bronz 1, Pietro O. Rinoldi 1,2, Pietro B. Faré 3,Céline Betti 1,2, Mario G. Bianchetti 1, Giacomo D. Simonetti 1,2, Viola Gennaro 1, Samuele Renzi 4, Sebastiano A. G. Lava 5 and Gregorio P. Milani 2,6,7 1 Faculty of Biomedicine, Università della Svizzera Italiana, 6900 Lugano, Switzerland; [email protected] (G.B.); [email protected] (P.O.R.); [email protected] (C.B.); [email protected] (M.G.B.); [email protected] (G.D.S.); [email protected] (V.G.) 2 Department of Pediatrics, Pediatric Institute of Southern Switzerland, Ospedale San Giovanni, Ente Ospedaliero Cantonale, 6500 Bellinzona, Switzerland; [email protected] 3 Department of Internal Medicine, Ospedale La Carità, Ente Ospedaliero Cantonale, 6600 Locarno, Switzerland; [email protected] 4 Division of Hematology and Oncology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada; [email protected] 5 Pediatric Cardiology Unit, Department of Pediatrics, Centre Hospitalier Universitaire Vaudois, and University of Lausanne, 1011 Lausanne, Switzerland; [email protected] 6 Pediatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy 7 Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy * Correspondence: [email protected] Citation: Scoglio, M.; Bronz, G.; Abstract: Aminoglycoside or colistin therapy may alter the renal tubular function without decreasing Rinoldi, P.O.; Faré, P.B.; Betti, C.; the glomerular filtration rate. This association has never been extensively investigated.
    [Show full text]
  • A Case of Hypocalciuric Hypercalcemia Accompanying Cystic Fibrosis
    J Clin Res Pediatr Endocrinol 2015;7(Suppl 2):77-92 A Case of Hypocalciuric Hypercalcemia Accompanying Cystic Fibrosis Yaşar Şen, Sevil Arı Yuca, Fuat Buğrul Blood and urine tests were done in order to find the etiology of hypercalcemia (PTH: 65.5 pg/mL, 25-hydroxy vitamin Selçuk University Faculty of Medicine, Department of Pediatric D: 43.5 ng/mL, urine Ca/Cr ratio 0.19, urine Ca clearance Endorcinology, Konya, Turkey 0.004). In the CaSR gene mutation study, A986S and R990G polymorphisms were heterozygous. 1 month after hydration Introduction: Familial hypocalciuric hypercalcemia (FHH) and clinical state being back to normal, Ca levels were is an autosomal dominant disorder which occurs by an in normal range. In stressful situations, he experienced inactivating gene mutation in the calcium (Ca)-sensing hypernatremia and hypercalcemia together. receptor gene (CaSR). Prevalence is estimated at 1: 78000. Discussion: Polymorphisms may change protein function Ca regulates parathormone (PTH) secretion via CaSR on and capacity of one to repair its damaged DNA. Genetic parathyroid cells. Low levels of Ca increases PTH secretion. polymorphisms help us to define personal sensitivities to CaSR mutation that causes loss of function, leads to total some diseases. The most common CaSR polymorphisms or partial insensitivity of parathyroid cells to Ca’s inhibitory are A986S, R990G, Q1011E and A826T. Our patient effect. For this reason, in order to suppress Ca’s PTH had A986S and R990G mutations. Heterozygous CaSR secretory effect, the setpoint is raised. A higher blood Ca gene mutations generally cause mild disorders in clinic. level is needed to suppress the PTH secretion.
    [Show full text]
  • Hypernatremia at Admission Predicts Poor Survival
    Seo et al. BMC Palliative Care (2020) 19:94 https://doi.org/10.1186/s12904-020-00607-z RESEARCH ARTICLE Open Access Hypernatremia at admission predicts poor survival in patients with terminal cancer: a retrospective cohort study Min-Seok Seo1,2, In Cheol Hwang3*† , Jaehun Jung4*†, Hwanhee Lee3, Jae Hee Choi3 and Jae-Yong Shim2 Abstract Background: Although palliative care providers, patients, and their families rely heavily on accurate prognostication, the prognostic value of electrolyte imbalance has received little attention. Methods: As a retrospective review, we screened inpatients with terminal cancer admitted between January 2017 and May 2019 to a single hospice-palliative care unit. Clinical characteristics and laboratory results were obtained from medical records for multivariable Cox regression analysis of independent prognostic factors. Results: Of the 487 patients who qualified, 15 (3%) were hypernatremic upon admission. The median survival time was 26 days. Parameters associated with shortened survival included male sex, advanced age (> 70 years), lung cancer, poor performance status, elevated inflammatory markers, azotemia, impaired liver function, and hypernatremia. In a multivariable Cox proportional hazards model, male sex (hazard ratio [HR] = 1.53, 95% confidence interval [CI]: 1.15–2.04), poor performance status (HR = 1.45, 95% CI: 1.09–1.94), leukocytosis (HR = 1.98, 95% CI: 1.47–2.66), hypoalbuminemia (HR = 2.06, 95% CI: 1.49–2.73), and hypernatremia (HR = 1.55, 95% CI: 1.18– 2.03) emerged as significant predictors of poor prognosis. Conclusion: Hypernatremia may be a useful gauge of prognosis in patients with terminal cancer. Further large- scale prospective studies are needed to corroborate this finding.
    [Show full text]
  • Childhood Sustained Hypercalcemia: a Diagnostic Challenge
    ORI GI NAL AR TIC LE DO I: 10.4274/jcrpe.4247 J Clin Res Pediatr Endocrinol 2017;9(4):315-322 Childhood Sustained Hypercalcemia: A Diagnostic Challenge Nisa Eda Çullas İlarslan1, Zeynep Şıklar2, Merih Berberoğlu2 1Ankara University Faculty of Medicine, Department of Pediatrics, Ankara, Turkey 2Ankara University Faculty of Medicine, Department of Pediatric Endocrinology, Ankara, Turkey What is already known on this topic? Hypercalcemia is a rare finding in children which may be due to a wide variety of factors and possibly left undiagnosed in mild elevations, while carrying the potential to lead to serious complications if proper intervention is not achieved. What this study adds? Suspicion of hypercalcemia and measurement of serum calcium level in children with clinical findings not attributable to any other clinical condition is essential. In case of hypercalcemia, young infants are more vulnerable to development of nephrolithiasis and should be evaluated as soon as possible. Abstract Objective: This study aimed to call attention to hypercalcemia, a rare finding in children which carries the potential of leading to serious complications without proper intervention. Methods: Diagnosis, treatment, and clinical course of children with sustained hypercalcemia admitted between the years 2006-2016 were reviewed. Group 1 [parathyroid hormone (PTH)-dependent] consisted of patients with high/unsuppressed PTH levels and group 2 (PTH-independent) included cases with normal/suppressed PTH levels. Results: Twenty patients (11 male, 9 female) with a median age of 6.25 (0.03-17.88) years were evaluated. Symptoms were mostly related with the gastrointestinal system, while six patients (30%) were asymptomatic. Physical examination findings were diverse, non-specific, and normal in four patients (20%).
    [Show full text]
  • Non-Accidental Salt Poisoning
    448 ArchivesofDiseasein Childhood 1993; 68: 448-452 Non-accidental salt poisoning Roy Meadow Arch Dis Child: first published as 10.1136/adc.68.4.448 on 1 April 1993. Downloaded from Abstract Table I Presentation of12 childrenfrom 10families The clinical features of 12 children who Sex (M/F) 6/6 incurred non-accidental salt poisoning are Age (months) of first confirmed hypernatraemia reported. The children usually presented to 11 children I 5-9 (median 2 - 5) 1 child 41 hospital in the first six months of life with Duration (months) of recurrent unexplained hypernatraemia and associated hypernatraemia 1-45 (median 3) illness. Most ofthe children suffered repetitive poisoning before detection. The perpetrator was believed to be the mother for 10 children, the mother confessed to the poisoning and the father for one, and either parent for one. explained how she had done it.) Four children had serum sodium concentra- tions above 200 mmol/l. Seven children had incurred other fabricated illness, drug inges- PRESENTATION tion, physical abuse, or failure to thrive/ The main features are outlined in table 1. neglect. Two children died; the other 10 Usually the child was presented to hospital remained healthy in alternative care. Features within the first three months of life because of are described that should lead to earlier repetitive illness. Vomiting was the predominant detection of salt poisoning; the importance of feature, often associated with diarrhoea and checking urine sodium excretion, whenever failure to thrive. At times there was drowsiness hypernatraemia occurs, is stressed. which, on occasion, could amount to coma. Four (Arch Dis Child 1993; 68: 448-452) children had markedly abnormal neurological signs including rigidity, hyper-reflexia, and seizures at the time of hypernatraemia.
    [Show full text]
  • 051800 Hypernatremia
    PRIMARY CARE Review Articles Primary Care clinical interventions or accidental sodium loading (Table 1 and Fig. 1E). Because sustained hypernatremia can occur only when thirst or access to water is impaired, the groups HYPERNATREMIA at highest risk are patients with altered mental status, intubated patients, infants, and elderly persons.12 Hy- HORACIO J. ADROGUÉ, M.D., pernatremia in infants usually results from diarrhea, AND NICOLAOS E. MADIAS, M.D. whereas in elderly persons it is usually associated with infirmity or febrile illness.6,13,14 Thirst impairment also occurs in elderly patients.15,16 Frail nursing home residents and hospitalized patients are prone to hy- HE serum sodium concentration and thus se- pernatremia because they depend on others for their rum osmolality are closely controlled by wa- water requirements.7 ter homeostasis, which is mediated by thirst, T 1 CLINICAL MANIFESTATIONS arginine vasopressin, and the kidneys. A disruption in the water balance is manifested as an abnormality Signs and symptoms of hypernatremia largely re- in the serum sodium concentration — hypernatre- flect central nervous system dysfunction and are prom- mia or hyponatremia.2,3 Hypernatremia, defined as a inent when the increase in the serum sodium con- rise in the serum sodium concentration to a value ex- centration is large or occurs rapidly (i.e., over a period ceeding 145 mmol per liter, is a common electrolyte of hours).1,6 Most outpatients with hypernatremia disorder. Because sodium is a functionally imperme- are either very young or very old.17 Common symp- able solute, it contributes to tonicity and induces the toms in infants include hyperpnea, muscle weakness, movement of water across cell membranes.4 There- restlessness, a characteristic high-pitched cry, insom- fore, hypernatremia invariably denotes hypertonic hy- nia, lethargy, and even coma.5,13 Convulsions are typ- perosmolality and always causes cellular dehydration, ically absent except in cases of inadvertent sodium at least transiently (Fig.
    [Show full text]