Birch River Watershed Baseline Study

Total Page:16

File Type:pdf, Size:1020Kb

Birch River Watershed Baseline Study Birch River Watershed Baseline Study Derek Clarke A hcticum Submitted to the Faculty of Graduate Studies in Partial Fuifilment of the Requirements for the Degree of Master of Natural Resources Management Natural Resources hstitute University of Manitoba Winnipeg, Manitoba R3T 2N2 December 1998 National Library BbIio#èque nationale du Canada Acquisitions and Acquisitions et Bibliographie Services senrices bibliographiques 395 WeETiStreet 395, Ne weuingtm OtrawaON KfAûN4 OttawaON K1AON4 Canada CaMda The airthor has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant à la National Lîbrary of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sell reproduire, prêter, distribuer ou copies of this thesis m microfom, vendre des copies de cette thèse sous papa or electronic formats. la forme de rnicrofiche/nlm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts fkom it Ni la thése ni des extraits substantiels may be printed or othewise de celleci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation, THE UNIVERSITY OF MANiTOBA FACULTY OF GRADUATE STUDIES ***** COPYRIGaT PERbIISSION PAGE BIRCH RIVER WATERSHED BASELINE STUDY BY DEREK CLARKE - - A Thesis/Practicum submitted to the Faculty of Gradnate Studies of The University of Manitoba in partial fulfïïiment of the requirements of the degree of bLASTER OF NATURAL RESOURCES MANAGEMENT DEREK CLARKE 01998 Permission bas been granted to the Library of The University of Manitoba to lend or seil copies of this thesis/practicum, to the National Library of Canada to microfilm this thesis and to lend or seil copies of the film, and to Dissertations Abstracts International to publish an abstract of this thesis/practicum. The author reserves other publication rights, and neither this thesisfpracticum nor extensive extracts from it may be printed or otherwise reproduced without the author's written permission. Abstract The goal of this project was to collect baseline data pertaining to the Birch-Boggy Rivers. Badine data was collected through a review of existing documents and data, a survey of the river and riparian area for point source impacts, a survey of area residents to obtain local ecological knowledge and determine their use of the river, an examination of the hyàrology of the area, an examination of the water quality of the nven, and collections of aquatic biota. Twelve substantial point source impacts were identified along the 8 1 km of river investigated. Local interest in the river was probably high as over 50% of residents responded to the survey, and residents used the river for a variety of recreational and domestic purposes. Exarniuation of the hydrologicd data detemineci that with the current data it is not possible to predict water discharge rates from the Birch River. Overall the water quality was very good, but turbidity levels greater than 5 ntu and fecal coliform bacteria counts as high as 190 fcu/ 100 ml indicate water must be carefully treated prior to drinking. Oxygen levels were also low during winter and summer, probably explaining the seasonal absence of spordish fiom the river during these periods. Collections of biota indicate fish composition remains unchanged From previous midies, and invertebrate collections provide insight to composition for fitture researchen. Overall baseline data collected for this study provides a reasonably comprehensive description of the current condition of the riverine ecosystem. The collection of baseline data has also identified areas where more research needs to be conducted. Recommendaîions are presented which will mitigate the effects of negative point source impacts, improve conditions for recreational and domestic use of the river, and suggest areas in which more researcb is needeti. Acknowledgements This project was made possible by the Birch River Renewal Association which secured hding, and, more importantly, expressed a desire for the collection of more information regarding the river in their back yards. Without the initial interest expressed by this group the project would never have been initiated. Special thanks go to the Arnes, Bilans, Wasylnuks and Youngs, who were aiways available to assist with field work, even on very short notice. Thanks to the members of my cornmittee whose comments helped guide this study. Cornmittee members for the study were: Professor Thomas Hedey, Naturai Resource Institute, University of Manitoba; Mr. Keith Kristofferson, Regional Fisheries Manager, DNR,Lac Du Bonnet; Dr. Ken Stewart, University of Manitoba Zoology; and Mr. David Young, Birch River Renewal Association Board Member. Thanks also go to Jarrett Powen of PFRA Beausejour for creating maps, Wendy Ralley and Dwight Williamson of Manitoba Environment for answenng water quality questions, and Audrey Young for editing punctuation in this document. Support in kind for the project was received from the Freshwater Institute, the Department of Natural Resources, and the University of Manitoba in the fom of equipment loans. Most of dl, th& to Heather and my farnily for their patience and understanding. Table of Contents 1.0introduction ......................................................... 1 1.1 Problem Statement .............................................. 1 12Objectives ..................................................... 7 1.3PreviousStudies ................................................ 2 1.4SîudyArea .................................................... 4 1SScopeofWork ................................................. 7 2.0 Review of Related Litemture ............................................ 9 2.1 Assessing the Biotic htegrity of Strearns ........................... -9 2.7 Published Impacts to Birch River Fish Populations ................... 10 2.2.1 TransCanada Pipeline Crossing ........................... 10 2.2.2 Riparian Emsion ....................................... 11 2.2.3 Stream Blockage ....................................... 12 2.3RockWeirs .................................................. 13 7.4RiparianBufferStrip ........................................... 14 2.5Agriculture ................................................... 15 2.5.1 Agriculhd Chernicals .................................. 16 2.5.7 Livestock ............................................. 18 2.6 Residential Waste Management .................................. 19 2.7 Recreationally Important Fish .................................... 19 2.7.1 Wdleye - Ststeovitreum ............................ 19 2.7.3 Northern Pike - Esox fuciuY .............................. 22 2.7.3 Rock Bass - Amblopl ites mpestris ......................... 23 2.8 Rovincially Significant Species .................................-23 2.8.1 Northern Brook Lamprey - Ichthyomyzon fossor .............. 24 2.8.2 Homeyhead Chub - Nocomis biguttatu ..................... 25 2.8.3 Rosyface Shiner - Notropis r-ubeIlus ....................... -25 2.9 Forage Species ................................................ 26 2.9.1 Central Mudminnow - Wrahi ........................ -26 2.9.2 Common Shiner - Notropis Cornutus ....................... 27 2.9.3 White Sucker - Catostomtrs commersoni .................... 27 2.9.4 Shorthead Redhorse - Moxostoma macrolepzdotum ...........-28 2.9.5 JobyDarter - Ethostoma nignrm ........................ -28 2.9.6 Blackside Darter - Percina mculata .......................29 3.0 Upland Cover and Riparian Impacts .................................... -30 3.1LandUse .................................................... 30 3.2RiparianSurvey .............................................. 33 6.2.1 6 Water Temperature ................................... 108 6.2.17Toxicity ............................................ 108 6.3Summary ................................................... 109 7.0Biota ............................................................. 111 7.1 Results of Fish Collections ..................................... 111 7.1.1 Results of Boggy River Fish Collections ................... 115 7.1.2 Results of Birch River Fish Collections . .. ................. 115 7.1.3 Results of Whitemouth River Fish Collections .............. 120 7.2 Stomach Content Analysis ...................................... 120 7.3AgeandMaturity ............................................. 123 7.4 Fish Collection Methods and Effort ............................... 124 7.4.1 Boggy River Fish Collection Effort ...................... 129 7.4.2 Birch River Fish Collection Effort ........................ 131 7.4.3 Whitemouth River Fish Collection Effort .................. 133 7.5 Results of Invertebrate Collections ...... .. ....................... 134 7.6 Invertebrate Collection Methods ................................. 134 7.7 Previous Collections .......................................... 138 7.8Stocking .................................................... 140 7.9 Discussion .................................................. 145 8.0 Summary and Conclusions ......................................... 150 8.1Summary ................................................... 150 8.1.1 Summary Conclusion .................................. 151 8.2StudyArea .................................................. 151 8.2.1 Study Area Conclusion ................................. 152 8.3 Water
Recommended publications
  • Carmine Shiner (Notropis Percobromus) in Canada
    COSEWIC Assessment and Update Status Report on the Carmine Shiner Notropis percobromus in Canada THREATENED 2006 COSEWIC COSEPAC COMMITTEE ON THE STATUS OF COMITÉ SUR LA SITUATION ENDANGERED WILDLIFE DES ESPÈCES EN PÉRIL IN CANADA AU CANADA COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC 2006. COSEWIC assessment and update status report on the carmine shiner Notropis percobromus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 29 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Previous reports COSEWIC 2001. COSEWIC assessment and status report on the carmine shiner Notropis percobromus and rosyface shiner Notropis rubellus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. v + 17 pp. Houston, J. 1994. COSEWIC status report on the rosyface shiner Notropis rubellus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-17 pp. Production note: COSEWIC would like to acknowledge D.B. Stewart for writing the update status report on the carmine shiner Notropis percobromus in Canada, prepared under contract with Environment Canada, overseen and edited by Robert Campbell, Co-chair, COSEWIC Freshwater Fishes Species Specialist Subcommittee. In 1994 and again in 2001, COSEWIC assessed minnows belonging to the rosyface shiner species complex, including those in Manitoba, as rosyface shiner (Notropis rubellus). For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: (819) 997-4991 / (819) 953-3215 Fax: (819) 994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Évaluation et Rapport de situation du COSEPAC sur la tête carminée (Notropis percobromus) au Canada – Mise à jour.
    [Show full text]
  • Indiana Species April 2007
    Fishes of Indiana April 2007 The Wildlife Diversity Section (WDS) is responsible for the conservation and management of over 750 species of nongame and endangered wildlife. The list of Indiana's species was compiled by WDS biologists based on accepted taxonomic standards. The list will be periodically reviewed and updated. References used for scientific names are included at the bottom of this list. ORDER FAMILY GENUS SPECIES COMMON NAME STATUS* CLASS CEPHALASPIDOMORPHI Petromyzontiformes Petromyzontidae Ichthyomyzon bdellium Ohio lamprey lampreys Ichthyomyzon castaneus chestnut lamprey Ichthyomyzon fossor northern brook lamprey SE Ichthyomyzon unicuspis silver lamprey Lampetra aepyptera least brook lamprey Lampetra appendix American brook lamprey Petromyzon marinus sea lamprey X CLASS ACTINOPTERYGII Acipenseriformes Acipenseridae Acipenser fulvescens lake sturgeon SE sturgeons Scaphirhynchus platorynchus shovelnose sturgeon Polyodontidae Polyodon spathula paddlefish paddlefishes Lepisosteiformes Lepisosteidae Lepisosteus oculatus spotted gar gars Lepisosteus osseus longnose gar Lepisosteus platostomus shortnose gar Amiiformes Amiidae Amia calva bowfin bowfins Hiodonotiformes Hiodontidae Hiodon alosoides goldeye mooneyes Hiodon tergisus mooneye Anguilliformes Anguillidae Anguilla rostrata American eel freshwater eels Clupeiformes Clupeidae Alosa chrysochloris skipjack herring herrings Alosa pseudoharengus alewife X Dorosoma cepedianum gizzard shad Dorosoma petenense threadfin shad Cypriniformes Cyprinidae Campostoma anomalum central stoneroller
    [Show full text]
  • Understanding the Coexistence of Sperm-Dependent Asexual Species
    Understanding the coexistence of sperm-dependent asexual species and their sexual hosts: the role of biogeography, mate choice, and relative fitness in the Phoxinus eos-neogaeus (Pisces: Cyprinidae) system by Jonathan Alan Mee B.Sc.F., The University of British Columbia, 2002 M.Sc., The University of Toronto, 2005 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate Studies (Zoology) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) December 2011 © Jonathan Alan Mee, 2011 !"#$%&'$( In sperm-dependent asexual reproduction, sperm is not required for its genetic contribution, but it is required for stimulating zygote development. In my dissertation, I address several questions related to the coexistence of sperm-dependent asexuals and the sexually-reproducing species on which they depend. I have focused my research on a sperm-dependent asexual fish, Phoxinus eos-neogaeus, that originated via hybridization between P. eos and P. neogaeus. Using a mathematical model of mate choice among sexuals and sperm-dependent asexuals, I showed that stable coexistence can occur when there is variation among males in the strength of preference for mating with sexual females and when males with stronger preference pay a higher cost of preference. My model also predicts that coexistence is facilitated when the asexuals suffer a fitness disadvantage relative to the sexuals. Subsequent empirical work, in which I compared the repeat swimming performance, fecundity, and growth rate of asexual and sexual Phoxinus, provided results that are consistent with this prediction: the asexuals are, at best, as fit as the sexuals. I sampled Phoxinus populations from across the species’ North American distribution and the pattern of mitochondrial DNA variation across these populations suggests that all P.
    [Show full text]
  • Silver Shiner (Notropis Photogenis) (Natureserve 2008)
    COSEWIC Assessment and Status Report on the Silver Shiner Notropis photogenis in Canada THREATENED 2011 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2011. COSEWIC assessment and status report on the Silver Shiner Notropis photogenis in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xi + 45 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Previous report(s): Parker, B. and McKJee, P. 1983. COSEWIC status report on the Silver Shiner Notropis photogenis in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-13 pp. Baldwin, M.E. 1987. COSEWIC updated status report on the Silver Shiner Notropis photogenis in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-23 pp. Production note: COSEWIC acknowledges Erling Holm for writing the provisional status report on the Silver Shiner, Notropis photogenis, prepared under contract with Environment Canada. The contractor’s involvement with the writing of the status report ended with the acceptance of the provisional report. Any modifications to the status report during the subsequent preparation of the 6-month interim and 2-month interim status reports were overseen by Dr. Eric Taylor, COSEWIC Freshwater Fishes Specialist Subcommittee Co-chair, and Scott Reid, SSC member. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur le méné miroir (Notropis photogenis) au Canada.
    [Show full text]
  • Fish Species of Vermont
    Fishes of Vermont Vermont Natural Heritage Inventory Vermont Fish & Wildlife Department 22 March 2017 The following is a list of fish species known to regularly occur in Vermont. Historic species (not documented in Vermont in the last 25 years) are included if there is a reasonable expectation of their return. Extinct or extirpated species are not included. The list is organized taxonomically to genus, then alphabetically within genus. Species not native to Vermont are indicated with an asterisk (*). State Global State Federal Scientific Name Common Name Rank Rank Status Status SGCN Ichthyomyzon fossor Northern Brook Lamprey S1 G4 E SGCN Ichthyomyzon unicuspis Silver Lamprey S2? G5 SC SGCN Lethenteron appendix American Brook Lamprey S1 G4 T SGCN Synonym: Lampetra appendix Petromyzon marinus Sea Lamprey S4S5 G5 SGCN Acipenser fulvescens Lake Sturgeon S1 G3G4 E SGCN Lepisosteus osseus Longnose Gar S4 G5 Amia calva Bowfin S4 G5 Hiodon tergisus Mooneye SU G5 SGCN Anguilla rostrata American Eel S2 G4 SC SGCN Alosa aestivalis Blueback Herring SU G3G4 SC SGCN * Alosa pseudoharengus Alewife SNA G5 Alosa sapidissima American Shad S4 G5 SGCN * Dorosoma cepedianum Gizzard Shad SNA G5 * Carassius auratus Goldfish SNA G5 Chrosomus eos Northern Redbelly Dace S4 G5 Chrosomus neogaeus Finescale Dace S3? G5 Couesius plumbeus Lake Chub S4 G5 Cyprinella spiloptera Spotfin Shiner S3S4 G5 * Cyprinus carpio Common Carp SNA G5 Exoglossum maxillingua Cutlip Minnow S3 G5 Hybognathus hankinsoni Brassy Minnow S1 G5 SC Hybognathus regius Eastern Silvery Minnow S3S4
    [Show full text]
  • Distribution Changes of Small Fishes in Streams of Missouri from The
    Distribution Changes of Small Fishes in Streams of Missouri from the 1940s to the 1990s by MATTHEW R. WINSTON Missouri Department of Conservation, Columbia, MO 65201 February 2003 CONTENTS Page Abstract……………………………………………………………………………….. 8 Introduction…………………………………………………………………………… 10 Methods……………………………………………………………………………….. 17 The Data Used………………………………………………………………… 17 General Patterns in Species Change…………………………………………... 23 Conservation Status of Species……………………………………………….. 26 Results………………………………………………………………………………… 34 General Patterns in Species Change………………………………………….. 30 Conservation Status of Species……………………………………………….. 46 Discussion…………………………………………………………………………….. 63 General Patterns in Species Change………………………………………….. 53 Conservation Status of Species………………………………………………. 63 Acknowledgments……………………………………………………………………. 66 Literature Cited……………………………………………………………………….. 66 Appendix……………………………………………………………………………… 72 FIGURES 1. Distribution of samples by principal investigator…………………………. 20 2. Areas of greatest average decline…………………………………………. 33 3. Areas of greatest average expansion………………………………………. 34 4. The relationship between number of basins and ……………………….. 39 5. The distribution of for each reproductive group………………………... 40 2 6. The distribution of for each family……………………………………… 41 7. The distribution of for each trophic group……………...………………. 42 8. The distribution of for each faunal region………………………………. 43 9. The distribution of for each stream type………………………………… 44 10. The distribution of for each range edge…………………………………. 45 11. Modified
    [Show full text]
  • Pennsylvania Fishes IDENTIFICATION GUIDE
    Pennsylvania Fishes IDENTIFICATION GUIDE WATERSHEDS SPECIES STATUS E O G P S D Editor’s Note: During 2018, Carps and Minnows (Family Cyprinidae) Pennsylvania Angler & Boater Central Stoneroller (Campostoma anomalum) N N N N N N magazine will feature select Goldfish (Carassius auratus) I I I I I common fishes of Pennsylvania Northern Redbelly Dace (Chrosomus eos) EN N N in each issue, providing scientific Southern Redbelly Dace (Chrosomus erythrogaster) TH N N names and the status of fishes in Mountain Redbelly Dace (Chrosomus oreas) I Redside Dace (Clinostomus elongatus) N N N X or introduced into Pennsylvania’s Rosyside Dace (Clinostomus funduloides) N N N major watersheds. Grass Carp (Ctenopharyngodon idella) I I I I I I The table to the left denotes any Satinfin Shiner (Cyprinella analostana) N N N known occurrence. Spotfin Shiner (Cyprinella spiloptera) N N N N N Steelcolor Shiner (Cyprinella whipplei) N Common Carp (Cyprinus carpio) I I I I I Streamline Chub (Erimystax dissimilis) N Gravel Chub (Erimystax x-punctatus) EN N Species Status Tonguetied Minnow (Exoglossum laurae) N N Cutlip Minnow (Exoglossum maxillingua) N N N EN = Endangered Brassy Minnow (Hybognathus hankinsoni) X TH = Threatened Eastern Silvery Minnow (Hybognathus regius) N N N Bigeye Chub (Hybopsis amblops) N N C = Candidate Bigmouth Shiner (Hybopsis dorsalis) TH N EX = Believed extirpated Ide (Leuciscus idus) I I Striped Shiner (Luxilus chrysocephalus) N N DL = Delisted (removed from the Common Shiner (Luxilus cornutus) N N N N N N endangered, threatened or candidate
    [Show full text]
  • Volume 2E - Revised Baseline Ecological Risk Assessment Hudson River Pcbs Reassessment
    PHASE 2 REPORT FURTHER SITE CHARACTERIZATION AND ANALYSIS VOLUME 2E - REVISED BASELINE ECOLOGICAL RISK ASSESSMENT HUDSON RIVER PCBS REASSESSMENT NOVEMBER 2000 For U.S. Environmental Protection Agency Region 2 and U.S. Army Corps of Engineers Kansas City District Book 2 of 2 Tables, Figures and Plates TAMS Consultants, Inc. Menzie-Cura & Associates, Inc. PHASE 2 REPORT FURTHER SITE CHARACTERIZATION AND ANALYSIS VOLUME 2E- REVISED BASELINE ECOLOGICAL RISK ASSESSMENT HUDSON RIVER PCBs REASSESSMENT RI/FS CONTENTS Volume 2E (Book 1 of 2) Page TABLE OF CONTENTS ........................................................ i LIST OF TABLES ........................................................... xiii LIST OF FIGURES ......................................................... xxv LIST OF PLATES .......................................................... xxvi EXECUTIVE SUMMARY ...................................................ES-1 1.0 INTRODUCTION .......................................................1 1.1 Purpose of Report .................................................1 1.2 Site History ......................................................2 1.2.1 Summary of PCB Sources to the Upper and Lower Hudson River ......4 1.2.2 Summary of Phase 2 Geochemical Analyses .......................5 1.2.3 Extent of Contamination in the Upper Hudson River ................5 1.2.3.1 PCBs in Sediment .....................................5 1.2.3.2 PCBs in the Water Column ..............................6 1.2.3.3 PCBs in Fish .........................................7
    [Show full text]
  • Status of Northern Redbelly Dace (Chrosomus Eos) in Montana
    Status of Northern Redbelly Dace (Chrosomus eos) in Montana © Joseph Tomelleri Allison L. Stringer U.S. Forest Service Bozeman, MT [email protected] Niall G. Clancy Montana Fish, Wildlife & Parks Kalispell, MT [email protected] March 2020 DESCRIPTION The Northern Redbelly Dace (Chrosomus eos, syn. Phoxinus eos) is a small-bodied minnow (family Leuciscidae, syn. Cyprinidae) native to the United States and Canada. Individuals have very small scales, an incomplete lateral line, 7–8 dorsal fin rays, and a moderately forked caudal fin (Brown 1971). Northern Redbelly Dace have a small, s-shaped mouth that does not reach below the front of the eye. Coloration is olive/brown on top with two dark stripes running laterally down its sides, from snout to tail. The lower sides and bellies are typically yellow or silver but, during spawning season, turn bright red on adult males. Brown (1971) reported that no individual larger than 2.3 inches had been reported in Montana; however, multiple surveys have since reported Northern Redbelly Dace approximately 4 inches long (FishMT 2020). Northern Redbelly Dace often co-occur with Northern Redbelly X Finescale Dace hybrids (Chrosomus eos × C. neogaeus), but most biologists cannot reliably distinguish between the two in the field. In the lab, one may definitively identify them using pharyngeal tooth counts, intestinal complexity, genetic testing, or a combination of the three (New 1962). Northern Redbelly Dace occur more widely and in higher numbers than their hybrids, and most hybrid dace are probably misidentified as Northern Redbelly Dace in the field. This uncertainty in identification has caused some confusion about their statuses and co- occurrence in the past (Stringer 2018).
    [Show full text]
  • Environmental Sensitivity of Mitochondrial Gene Expression in Fish
    ENVIRONMENTAL SENSITIVITY OF MITOCHONDRIAL GENE EXPRESSION IN FISH by Katharina Bremer A thesis submitted to the Department of Biology In conformity with the requirements for the degree of Doctor of Philosophy Queen’s University Kingston, Ontario, Canada (October, 2013) Copyright ©Katharina Bremer, 2013 Abstract Maintaining energy organismal homeostasis under changing physiological and environmental conditions is vital, and requires constant adjustments of the energy metabolism. Central to meeting energy demands is the regulation of mitochondrial oxidative capacity. When demands increase, animals can increase mitochondrial content/enzymes, known as mitochondrial biogenesis. Central to mammalian mitochondrial biogenesis is the transcriptional master regulator PPARγ (peroxisome proliferator-activated receptor γ) coactivator-1α (PGC-1α), and the network of DNA-binding proteins it coactivates (e.g. nuclear respiratory factor 1 and 2 [NRF-1, NRF-2], estrogen-related receptor α [ERRα], thyroid receptor α [TRα-1], retinoid X receptor α [RXRα]). However, the mechanisms by which mitochondrial content in lower vertebrates such as fish is controlled are less studied. In my study I investigate underlying mechanisms of the phenomenon that many fish species alter mitochondrial enzyme activities, such as cytochrome c oxidase (COX) in response to low temperatures. In particular, I investigated (i) if the phenomenon of mitochondrial biogenesis during cold-acclimation is related to fish phylogeny, (ii) what role PGC-1α and other transcription factors play in mitochondrial biogenesis in fish, and (iii) if mRNA decay rates are important in the transcriptional control of a multimeric protein like COX. This study shows that mitochondrial biogenesis does not follow a phylogenetic pattern: while distantly related species displayed the same response to low temperatures, closely related species showed opposite responses.
    [Show full text]
  • Redside Dace (Clinostomus Elongatus) in the Greater Toronto Area Over Time
    COSEWIC Assessment and Update Status Report on the redside dace Clinostomus elongatus in Canada ENDANGERED 2007 COSEWIC COSEPAC COMMITTEE ON THE STATUS OF COMITÉ SUR LA SITUATION ENDANGERED WILDLIFE DES ESPÈCES EN PÉRIL IN CANADA AU CANADA COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC 2007. COSEWIC assessment and update status report on the redside dace Clinostomus elongatus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vii + 59 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Previous report: Parker, B., Mckee, P. and Campbell, R.R. 1987. COSEWIC status report on the redside dace Clinostomus elongatus in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-20 pp. Production note: COSEWIC would like to acknowledge Erling Holm and Alan Dextrase for writing the update status report on the redside dace Clinostomus elongates in Canada, prepared under contract with Environment Canada, overseen and edited by Dr. Robert Campbell, Co-chair, COSEWIC Freshwater Fishes Species Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur le méné long (Clinostomus elongatus) au Canada – Mise à jour. Cover illustration: Redside dace — Drawing by Anker Odum, from Scott and Crossman (1998) by permission. ©Her Majesty the Queen in Right of Canada 2007 Catalogue No.
    [Show full text]
  • Fishes May Compete for Food Resources; Exotic Mussels May Impact Soft Substrate and Vegetation Growth
    2 0 1 5 – 2 0 2 5 Species of Greatest Conservation Need Species Accounts Appendix 1.4E-Fish Fish Species of Greatest Conservation Need Maps: Physiographic Provinces and HUC Watersheds Species Accounts (Click species name below or bookmark to navigate to species account) FISH Ohio Lamprey Tonguetied Minnow Tadpole Madtom Northern Brook Lamprey Cutlip Minnow Margined Madtom Mountain Brook Lamprey Bigmouth Shiner Brindled Madtom Least Brook Lamprey Redfin Shiner Northern Madtom Shortnose Sturgeon Allegheny Pearl Dace Cisco Lake Sturgeon Hornyhead Chub Brook Trout Atlantic Sturgeon Comely Shiner Central Mudminnow Paddlefish Bridle Shiner Eastern Mudminnow Spotted Gar River Shiner Burbot Bowfin Ghost Shiner Allegheny Burbot American Eel Ironcolor Shiner Brook Stickleback Blueback Herring Blackchin Shiner Threespine Stickleback Hickory Shad Swallowtail Shiner Checkered Sculpin Alewife Longnose Sucker Banded Sunfish American Shad Bigmouth Buffalo Warmouth Northern Redbelly Dace Spotted Sucker Longear Sunfish Southern Redbelly Dace White Catfish Eastern Sand Darter Redside Dace Black Bullhead Iowa Darter Streamline Chub Blue Catfish Spotted Darter Gravel Chub Mountain Madtom Tessellated Darter FISH, CONTINUED Tippecanoe Darter Chesapeake Logperch Shield Darter Variegate Darter Longhead Darter The following Physiographic Province and HUC Watershed maps are presented here for reference with conservation actions identified in the species accounts. Species account authors identified appropriate Physiographic Provinces or HUC Watershed (Level 4, 6, 8, 10, or statewide) for specific conservation actions to address identified threats. HUC watersheds used in this document were developed from the Watershed Boundary Dataset, a joint project of the U.S. Dept. of Agriculture-Natural Resources Conservation Service, the U.S. Geological Survey, and the Environmental Protection Agency.
    [Show full text]