Understanding the Coexistence of Sperm-Dependent Asexual Species

Total Page:16

File Type:pdf, Size:1020Kb

Understanding the Coexistence of Sperm-Dependent Asexual Species Understanding the coexistence of sperm-dependent asexual species and their sexual hosts: the role of biogeography, mate choice, and relative fitness in the Phoxinus eos-neogaeus (Pisces: Cyprinidae) system by Jonathan Alan Mee B.Sc.F., The University of British Columbia, 2002 M.Sc., The University of Toronto, 2005 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The Faculty of Graduate Studies (Zoology) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) December 2011 © Jonathan Alan Mee, 2011 !"#$%&'$( In sperm-dependent asexual reproduction, sperm is not required for its genetic contribution, but it is required for stimulating zygote development. In my dissertation, I address several questions related to the coexistence of sperm-dependent asexuals and the sexually-reproducing species on which they depend. I have focused my research on a sperm-dependent asexual fish, Phoxinus eos-neogaeus, that originated via hybridization between P. eos and P. neogaeus. Using a mathematical model of mate choice among sexuals and sperm-dependent asexuals, I showed that stable coexistence can occur when there is variation among males in the strength of preference for mating with sexual females and when males with stronger preference pay a higher cost of preference. My model also predicts that coexistence is facilitated when the asexuals suffer a fitness disadvantage relative to the sexuals. Subsequent empirical work, in which I compared the repeat swimming performance, fecundity, and growth rate of asexual and sexual Phoxinus, provided results that are consistent with this prediction: the asexuals are, at best, as fit as the sexuals. I sampled Phoxinus populations from across the species’ North American distribution and the pattern of mitochondrial DNA variation across these populations suggests that all P. eos-neogaeus have originated from hybridization events that took place in a Mississippi River glacial refugium. Also, cytoplasmic hybrids (which are P. eos with P. neogaeus mitochondrial DNA) appear to have replaced ‘pure’ P. eos in all northern populations, which may reduce the disparity in fitness between P. eos-neogaeus and their sperm donors if P. neogaeus mitochondria are adapted to northern environments. The pattern of nuclear DNA variation across P. eos-neogaeus populations suggests that those using P. eos sperm are genetically distinct from those using P. neogaeus sperm. These genetically distinct populations match their host species in size, suggesting that sperm-dependent asexuals may be adapted to be proficient at soliciting sperm from particular sexual species. Persistence of sperm-dependent asexuals depends on stable coexistence with sexual species. My work highlights the importance of the relative fitness of asexual and sexual species, and of male mate choice in maintaining this stable coexistence. ii )%*+&'*( A version of chapter 2 has been published: Mee, J.A., and Otto, S.P. (2010) Variation in the strength of male mate choice allows long-term coexistence of sperm-dependent asexuals and their sexual hosts. Evolution 64(10): 2808–2819. I did the majority of the model development and analysis, and wrote the original draft of the manuscript. Otto, S.P., contributed substantially to the model development and analysis, and she contributed revisions to the manuscript. A version of chapter 5 has been published: Mee, J.A., Brauner, C.J., and Taylor, E.B. (2011) Repeat swimming performance and its implications for inferring the relative fitness of asexual hybrid dace (Pisces: Phoxinus) and their sexually reproducing parental species. Physiological and Biochemical Zoology 84(3): 306-315. I performed all the experimental and laboratory work, I analyzed all the data, and I wrote the original draft of the manuscript. Brauner, C.J., and Taylor, E.B., contributed advice on the experimental methodology, and they contributed revisions to the manuscript. The UBC Animal Care Committee approved all research activities involving the use of animals (Animal Care Certificate Number 08-0645). The Canadian Department of Fisheries and Oceans approved the transfer of live fish to research facilities at the University of British Columbia [Introduction and Transfer Application Numbers 10838 (2006), 10889 & 11147 (2007), 11503 (2008), 12054 (2010)]. iii ,&"-*(.+(/.0$*0$#( !"#$%&'$ 1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111122! )%*+&'* 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111222! ,&"-*(.+(/.0$*0$#1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111123! 42#$(.+(,&"-*#11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111132! 42#$(.+(5267%*#1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111322! !'80.9-*:6*;*0$#111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111112<! =*:2'&$2.0 1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 <222! >1(?0$%.:7'$2.01111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111>! >1>1(@$7:A(@A#$*;B(!"#$%&'()*#(+&*#,-*'(. 1111111111111111111111111111111111111111111111111111111111111111111111111 C! >1D1(E*#*&%'F(G7*#$2.0#1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 H! D1(I&%2&$2.0(20($F*(#$%*06$F(.+(;&-*(;&$*('F.2'*(&--.9#(-.06J$*%;('.*<2#$*0'*(.+( #K*%;J:*K*0:*0$(&#*<7&-#(&0:($F*2%(#*<7&-(F.#$# 1111111111111111111111111111111111111111111111111111111L! D1>1(@7;;&%A 1111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 L! D1D1(?0$%.:7'$2.0111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 L! D1C1(M.:*-(=*3*-.K;*0$ 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 >N! D1O1(M.:*-(E*#7-$#(&0:(!0&-A#2#11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 >C! D1H1(=2#'7##2.01111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 >L! C1(,F*('A"%2:(203&#2.0B(92:*#K%*&:(%*K-&'*;*0$(.+(!"#$%&'()*#((P)2#'*#B(/AK%202:&*Q( "A('A$.K-&#;2'(FA"%2:#11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111DR! C1>1(@7;;&%A 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 DR! C1D1(?0$%.:7'$2.01111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 CN! C1C1(M&$*%2&-#(&0:(M*$F.:#11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 CD! C1O1(E*#7-$# 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 CC! C1H1(=2#'7##2.01111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 CO! O1(S.#$J#2T*J;&$'F206(20(&(#K*%;J:*K*0:*0$(&#*<7&-(+2#F(#K*'2*# 111111111111111111111111111111CR! O1>1(@7;;&%A 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 CR! O1D1(?0$%.:7'$2.01111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 CR! O1C1(M&$*%2&-#(&0:(M*$F.:#11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 OD! O1O1(E*#7-$# 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 OH! O1H1(=2#'7##2.01111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 OU! H1(E*K*&$(#92;;206(K*%+.%;&0'*(&0:(2$#(2;K-2'&$2.0#(+.%(20+*%%206($F*(%*-&$23*(+2$0*##( .+(&#*<7&-(FA"%2:(:&'*(P)2#'*#B(!"#$%&'(Q(&0:($F*2%(#*<7&--A(%*K%.:7'206(K&%*0$&-( #K*'2*#11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111VH! H1>1(@7;;&%A 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 VH! H1D1(?0$%.:7'$2.01111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 VV! H1C1(M&$*%2&-#(&0:(M*$F.:#11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 VU! H1O1(E*#7-$# 111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 L>! iv H1H1(=2#'7##2.01111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 LC! V1(5*'70:2$A(&0:(6%.9$F(.+(0.%$F*%0(%*:"*--A(:&'*(P!"#$%&'()*#(QW(+20*#'&-*(:&'*( P!"#$%&'()&*#,-*'(QW(&0:($F*2%(702#*<7&-(FA"%2:#111111111111111111111111111111111111111111111111111111U>! V1>1(@7;;&%A 11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 U>! V1D1(?0$%.:7'$2.01111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111 U>! V1C1(M&$*%2&-#(&0:(M*$F.:#11111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
Recommended publications
  • The Evolution of the Placenta Drives a Shift in Sexual Selection in Livebearing Fish
    LETTER doi:10.1038/nature13451 The evolution of the placenta drives a shift in sexual selection in livebearing fish B. J. A. Pollux1,2, R. W. Meredith1,3, M. S. Springer1, T. Garland1 & D. N. Reznick1 The evolution of the placenta from a non-placental ancestor causes a species produce large, ‘costly’ (that is, fully provisioned) eggs5,6, gaining shift of maternal investment from pre- to post-fertilization, creating most reproductive benefits by carefully selecting suitable mates based a venue for parent–offspring conflicts during pregnancy1–4. Theory on phenotype or behaviour2. These females, however, run the risk of mat- predicts that the rise of these conflicts should drive a shift from a ing with genetically inferior (for example, closely related or dishonestly reliance on pre-copulatory female mate choice to polyandry in conjunc- signalling) males, because genetically incompatible males are generally tion with post-zygotic mechanisms of sexual selection2. This hypoth- not discernable at the phenotypic level10. Placental females may reduce esis has not yet been empirically tested. Here we apply comparative these risks by producing tiny, inexpensive eggs and creating large mixed- methods to test a key prediction of this hypothesis, which is that the paternity litters by mating with multiple males. They may then rely on evolution of placentation is associated with reduced pre-copulatory the expression of the paternal genomes to induce differential patterns of female mate choice. We exploit a unique quality of the livebearing fish post-zygotic maternal investment among the embryos and, in extreme family Poeciliidae: placentas have repeatedly evolved or been lost, cases, divert resources from genetically defective (incompatible) to viable creating diversity among closely related lineages in the presence or embryos1–4,6,11.
    [Show full text]
  • Environmental Properties of Chemicals Volume 2
    1 t ENVIRONMENTAL 1 PROTECTION Esa Nikunen . Riitta Leinonen Birgit Kemiläinen • Arto Kultamaa Environmental properties of chemicals Volume 2 1 O O O O O O O O OO O OOOOOO Ol OIOOO FINNISH ENVIRONMENT INSTITUTE • EDITA Esa Nikunen e Riitta Leinonen Birgit Kemiläinen • Arto Kultamaa Environmental properties of chemicals Volume 2 HELSINKI 1000 OlO 00000001 00000000000000000 Th/s is a second revfsed version of Environmental Properties of Chemica/s, published by VAPK-Pub/ishing and Ministry of Environment, Environmental Protection Department as Research Report 91, 1990. The pubiication is also available as a CD ROM version: EnviChem 2.0, a PC database runniny under Windows operating systems. ISBN 951-7-2967-2 (publisher) ISBN 952-7 1-0670-0 (co-publisher) ISSN 1238-8602 Layout: Pikseri Julkaisupalvelut Cover illustration: Jussi Hirvi Edita Ltd. Helsinki 2000 Environmental properties of chemicals Volume 2 _____ _____________________________________________________ Contents . VOLUME ONE 1 Contents of the report 2 Environmental properties of chemicals 3 Abbreviations and explanations 7 3.1 Ways of exposure 7 3.2 Exposed species 7 3.3 Fffects________________________________ 7 3.4 Length of exposure 7 3.5 Odour thresholds 8 3.6 Toxicity endpoints 9 3.7 Other abbreviations 9 4 Listofexposedspecies 10 4.1 Mammais 10 4.2 Plants 13 4.3 Birds 14 4.4 Insects 17 4.5 Fishes 1$ 4.6 Mollusca 22 4.7 Crustaceans 23 4.8 Algae 24 4.9 Others 25 5 References 27 Index 1 List of chemicals in alphabetical order - 169 Index II List of chemicals in CAS-number order
    [Show full text]
  • Uncorrected Proofs for Review Only C5478.Indb 28 1/24/11 2:08:33 PM M
    Chapter 3 Variation and evolution of reproductive strategies Marcelo N. Pires, Amanda Banet, Bart J. A. Pollux, and David N. Reznick 3.1 Introduction sociation between these two traits suggests that one of the two traits might be more likely to evolve when the other he family poeciliidae (Rosen & Bailey 1963) trait is already present (the latter facilitating the evolu- consists of a well-defi ned, monophyletic group of tion of the former). However, the existence of a notable Tnearly 220 species with a fascinating heterogene- exception in the literature (the lecithotrophic, superfetat- ity in life-history traits. Reznick and Miles (1989a) made ing Poeciliopsis monacha, the only known exception at the one of the fi rst systematic attempts to gather information time) showed that superfetation and matrotrophy were not from a widely scattered literature on poeciliid life histo- strictly linked, indicating that these two traits can evolve ries. They focused on two important female reproductive independently of each other. traits: (1) the ability to carry multiple broods at different Reznick and Miles (1989a) also proposed a framework developmental stages (superfetation; Turner 1937, 1940b, for future research that was aimed at evaluating possible 1940c), which tends to cause females to produce fewer off- causes and mechanisms for the evolution of superfetation spring per brood and to produce broods more frequently, and matrotrophy by (1) gathering detailed life-history de- and (2) the provisioning of eggs and developing embryos scriptions of a greater number of poeciliid species, either by the mother, which may occur prior to (lecithotrophy) or through common garden studies or from fi eld-collected after (matrotrophy) fertilization.
    [Show full text]
  • Endangered Species
    FEATURE: ENDANGERED SPECIES Conservation Status of Imperiled North American Freshwater and Diadromous Fishes ABSTRACT: This is the third compilation of imperiled (i.e., endangered, threatened, vulnerable) plus extinct freshwater and diadromous fishes of North America prepared by the American Fisheries Society’s Endangered Species Committee. Since the last revision in 1989, imperilment of inland fishes has increased substantially. This list includes 700 extant taxa representing 133 genera and 36 families, a 92% increase over the 364 listed in 1989. The increase reflects the addition of distinct populations, previously non-imperiled fishes, and recently described or discovered taxa. Approximately 39% of described fish species of the continent are imperiled. There are 230 vulnerable, 190 threatened, and 280 endangered extant taxa, and 61 taxa presumed extinct or extirpated from nature. Of those that were imperiled in 1989, most (89%) are the same or worse in conservation status; only 6% have improved in status, and 5% were delisted for various reasons. Habitat degradation and nonindigenous species are the main threats to at-risk fishes, many of which are restricted to small ranges. Documenting the diversity and status of rare fishes is a critical step in identifying and implementing appropriate actions necessary for their protection and management. Howard L. Jelks, Frank McCormick, Stephen J. Walsh, Joseph S. Nelson, Noel M. Burkhead, Steven P. Platania, Salvador Contreras-Balderas, Brady A. Porter, Edmundo Díaz-Pardo, Claude B. Renaud, Dean A. Hendrickson, Juan Jacobo Schmitter-Soto, John Lyons, Eric B. Taylor, and Nicholas E. Mandrak, Melvin L. Warren, Jr. Jelks, Walsh, and Burkhead are research McCormick is a biologist with the biologists with the U.S.
    [Show full text]
  • Gila Topminnow Revised Recovery Plan December 1998
    GILA TOPMINNOW, Poeciliopsis occidentalis occidentalis, REVISED RECOVERY PLAN (Original Approval: March 15, 1984) Prepared by David A. Weedman Arizona Game and Fish Department Phoenix, Arizona for Region 2 U.S. Fish and Wildlife Service Albuquerque, New Mexico December 1998 Approved: Regional Director, U.S. Fish and Wildlife Service Date: Gila Topminnow Revised Recovery Plan December 1998 DISCLAIMER Recovery plans delineate reasonable actions required to recover and protect the species. The U.S. Fish and Wildlife Service (Service) prepares the plans, sometimes with the assistance of recovery teams, contractors, State and Federal Agencies, and others. Objectives are attained and any necessary funds made available subject to budgetary and other constraints affecting the parties involved, as well as the need to address other priorities. Time and costs provided for individual tasks are estimates only, and not to be taken as actual or budgeted expenditures. Recovery plans do not necessarily represent the views nor official positions or approval of any persons or agencies involved in the plan formulation, other than the Service. They represent the official position of the Service only after they have been signed by the Regional Director or Director as approved. Approved recovery plans are subject to modification as dictated by new findings, changes in species status, and the completion of recovery tasks. ii Gila Topminnow Revised Recovery Plan December 1998 ACKNOWLEDGMENTS Original preparation of the revised Gila topminnow Recovery Plan (1994) was done by Francisco J. Abarca 1, Brian E. Bagley, Dean A. Hendrickson 1 and Jeffrey R. Simms 1. That document was modified to this current version and the work conducted by those individuals is greatly appreciated and now acknowledged.
    [Show full text]
  • Resistance and Resilience of Murray-Darling Basin Fishes to Drought Disturbance
    Resistance and Resilience of Murray- Darling Basin Fishes to Drought Disturbance Dale McNeil1, Susan Gehrig1 and Clayton Sharpe2 SARDI Publication No. F2009/000406-1 SARDI Research Report Series No. 602 SARDI Aquatic Sciences PO Box 120 Henley Beach SA 5022 April 2013 Final Report to the Murray-Darling Basin Authority - Native Fish Strategy Project MD/1086 “Ecosystem Resilience and the Role of Refugia for Native Fish Communities & Populations” McNeil et. al. 2013 Drought and Native Fish Resilience Resistance and Resilience of Murray- Darling Basin Fishes to Drought Disturbance Final Report to the Murray-Darling Basin Authority - Native Fish Strategy Project MD/1086 “Ecosystem Resilience and the Role of Refugia for Native Fish Communities & Populations” Dale McNeil1, Susan Gehrig1 and Clayton Sharpe2 SARDI Publication No. F2009/000406-1 SARDI Research Report Series No. 602 April 2013 Page | ii McNeil et. al. 2013 Drought and Native Fish Resilience This Publication may be cited as: McNeil, D. G., Gehrig, S. L. and Sharpe, C. P. (2013). Resistance and Resilience of Murray-Darling Basin Fishes to Drought Disturbance. Final Report to the Murray-Darling Basin Authority - Native Fish Strategy Project MD/1086 ―Ecosystem Resilience and the Role of Refugia for Native Fish Communities & Populations‖. South Australian Research and Development Institute (Aquatic Sciences), Adelaide. SARDI Publication No. F2009/000406-1. SARDI Research Report Series No. 602. 143pp. Front Cover Images – Lake Brewster in the Lower Lachlan River catchment, Murray-Darling Basin during extended period of zero inflows, 2007. Murray cod (Maccullochella peelii peelii), olive perchlet (Ambassis agassizii) and golden perch (Macquaria ambigua) from the, lower Lachlan River near Lake Brewster, 2007 (all images - Dale McNeil).
    [Show full text]
  • Poeciliidae: Poeciliopsis)
    Copyright 0 1991 by the Genetics Society of America Molecular Evidence for Multiple Origins of Hybridogenetic Fish Clones (Poeciliidae: Poeciliopsis) Joseph M. Quattro,* John C. Aviset and Robert C. Vrijenhoek* *Center for Theoretical and Applied Genetics, Cook College, Rutgers University, New Brunswick, New Jersey 08903-0231, and ‘Department $Genetics, University of Georgia, Athens, Georgia 30602 Manuscript received September 6, 1990 Accepted for publication October 1 1, 1990 ABSTRACT Hybrid matings between the sexual species Poeciliopsis monacha and Poeciliopsis lucida produced a series of diploid all-female lineages of P. monacha-lucida that inhabit the Rio Fuerte of northwestern Mexico. Restriction site analyses of mitochondrial DNA (mtDNA) clearly revealed that P. monacha was the maternal ancestor of these hybrids. The high level of mtDNA diversity in P. monacha was mirrored by similarly high levels in P. monacha-lucida; thus hybridizations giving rise to unisexual lineages have occurred many times. However, mtDNA variability among P. monacha-lucida lineages revealed a geographical component. Apparently the opportunity for the establishment of unisexual lineages varies amongtributaries of the Rio Fuerte. We hypothesize thata dynamic complex of sexual and clonal fishes appear to participate in a feedback process that maintains genetic diversity in both the sexual and asexual components. ENETIC studies have revealed that clonally re- versity among the hemiclonal monacha genomes of P. G producing, all-female “species” of vertebrates monacha-lucida fromthe Rio Fuerte (VRIJENHOEK, are the products of hybridization between congeneric ANGUSand SCHULTZ1977). For brevity, we refer to sexual species (SCHULTZ 1969;SITES et al. 1990; VRI- distinct hemiclones defined by electrophoresis as “E- JENHOEK et al.
    [Show full text]
  • US Fish & Wildlife Service Revised
    U.S. Fish & Wildlife Service Revised RECOVERY PLAN for the Pallid Sturgeon (Scaphirhynchus albus) Original Plan Approved: November 1993 Prepared by: Pallid Sturgeon Recovery Coordinator U.S. Fish and Wildlife Service Montana Fish and Wildlife Conservation Office Billings, Montana For Mountain-Prairie Region U.S. Fish and Wildlife Service Denver, CO January 2014 DISCLAIMER Recovery plans delineate reasonable actions that are believed necessary to recover and/or protect listed species. Plans are prepared by the U.S. Fish and Wildlife Service, sometimes with the assistance of recovery teams, contractors, State agencies, and others. Plans are reviewed by the public and subject to additional peer review before they are adopted by the U.S. Fish and Wildlife Service. Objectives will only be attained and funds expended contingent upon appropriations, priorities, and other budgetary constraints. Recovery plans do not obligate other parties to undertake specific tasks. Recovery plans do not necessarily represent the views nor the official positions or approval of any individuals or agencies involved in the plan formulation, other than the U.S. Fish and Wildlife Service. They represent the official position of the U.S. Fish and Wildlife Service only after they have been signed by the Regional Director or Director as approved. Approved recovery plans are subject to modification as dictated by new findings, changes in species’ status, and the completion of recovery tasks. Copies of all documents reviewed in development of the plan are available in the administrative record, located at the U.S. Fish and Wildlife Service’s Montana Fish and Wildlife Conservation Office, Billings, Montana.
    [Show full text]
  • Fish Species of Vermont
    Fishes of Vermont Vermont Natural Heritage Inventory Vermont Fish & Wildlife Department 22 March 2017 The following is a list of fish species known to regularly occur in Vermont. Historic species (not documented in Vermont in the last 25 years) are included if there is a reasonable expectation of their return. Extinct or extirpated species are not included. The list is organized taxonomically to genus, then alphabetically within genus. Species not native to Vermont are indicated with an asterisk (*). State Global State Federal Scientific Name Common Name Rank Rank Status Status SGCN Ichthyomyzon fossor Northern Brook Lamprey S1 G4 E SGCN Ichthyomyzon unicuspis Silver Lamprey S2? G5 SC SGCN Lethenteron appendix American Brook Lamprey S1 G4 T SGCN Synonym: Lampetra appendix Petromyzon marinus Sea Lamprey S4S5 G5 SGCN Acipenser fulvescens Lake Sturgeon S1 G3G4 E SGCN Lepisosteus osseus Longnose Gar S4 G5 Amia calva Bowfin S4 G5 Hiodon tergisus Mooneye SU G5 SGCN Anguilla rostrata American Eel S2 G4 SC SGCN Alosa aestivalis Blueback Herring SU G3G4 SC SGCN * Alosa pseudoharengus Alewife SNA G5 Alosa sapidissima American Shad S4 G5 SGCN * Dorosoma cepedianum Gizzard Shad SNA G5 * Carassius auratus Goldfish SNA G5 Chrosomus eos Northern Redbelly Dace S4 G5 Chrosomus neogaeus Finescale Dace S3? G5 Couesius plumbeus Lake Chub S4 G5 Cyprinella spiloptera Spotfin Shiner S3S4 G5 * Cyprinus carpio Common Carp SNA G5 Exoglossum maxillingua Cutlip Minnow S3 G5 Hybognathus hankinsoni Brassy Minnow S1 G5 SC Hybognathus regius Eastern Silvery Minnow S3S4
    [Show full text]
  • Pennsylvania Fishes IDENTIFICATION GUIDE
    Pennsylvania Fishes IDENTIFICATION GUIDE WATERSHEDS SPECIES STATUS E O G P S D Editor’s Note: During 2018, Carps and Minnows (Family Cyprinidae) Pennsylvania Angler & Boater Central Stoneroller (Campostoma anomalum) N N N N N N magazine will feature select Goldfish (Carassius auratus) I I I I I common fishes of Pennsylvania Northern Redbelly Dace (Chrosomus eos) EN N N in each issue, providing scientific Southern Redbelly Dace (Chrosomus erythrogaster) TH N N names and the status of fishes in Mountain Redbelly Dace (Chrosomus oreas) I Redside Dace (Clinostomus elongatus) N N N X or introduced into Pennsylvania’s Rosyside Dace (Clinostomus funduloides) N N N major watersheds. Grass Carp (Ctenopharyngodon idella) I I I I I I The table to the left denotes any Satinfin Shiner (Cyprinella analostana) N N N known occurrence. Spotfin Shiner (Cyprinella spiloptera) N N N N N Steelcolor Shiner (Cyprinella whipplei) N Common Carp (Cyprinus carpio) I I I I I Streamline Chub (Erimystax dissimilis) N Gravel Chub (Erimystax x-punctatus) EN N Species Status Tonguetied Minnow (Exoglossum laurae) N N Cutlip Minnow (Exoglossum maxillingua) N N N EN = Endangered Brassy Minnow (Hybognathus hankinsoni) X TH = Threatened Eastern Silvery Minnow (Hybognathus regius) N N N Bigeye Chub (Hybopsis amblops) N N C = Candidate Bigmouth Shiner (Hybopsis dorsalis) TH N EX = Believed extirpated Ide (Leuciscus idus) I I Striped Shiner (Luxilus chrysocephalus) N N DL = Delisted (removed from the Common Shiner (Luxilus cornutus) N N N N N N endangered, threatened or candidate
    [Show full text]
  • Volume 2E - Revised Baseline Ecological Risk Assessment Hudson River Pcbs Reassessment
    PHASE 2 REPORT FURTHER SITE CHARACTERIZATION AND ANALYSIS VOLUME 2E - REVISED BASELINE ECOLOGICAL RISK ASSESSMENT HUDSON RIVER PCBS REASSESSMENT NOVEMBER 2000 For U.S. Environmental Protection Agency Region 2 and U.S. Army Corps of Engineers Kansas City District Book 2 of 2 Tables, Figures and Plates TAMS Consultants, Inc. Menzie-Cura & Associates, Inc. PHASE 2 REPORT FURTHER SITE CHARACTERIZATION AND ANALYSIS VOLUME 2E- REVISED BASELINE ECOLOGICAL RISK ASSESSMENT HUDSON RIVER PCBs REASSESSMENT RI/FS CONTENTS Volume 2E (Book 1 of 2) Page TABLE OF CONTENTS ........................................................ i LIST OF TABLES ........................................................... xiii LIST OF FIGURES ......................................................... xxv LIST OF PLATES .......................................................... xxvi EXECUTIVE SUMMARY ...................................................ES-1 1.0 INTRODUCTION .......................................................1 1.1 Purpose of Report .................................................1 1.2 Site History ......................................................2 1.2.1 Summary of PCB Sources to the Upper and Lower Hudson River ......4 1.2.2 Summary of Phase 2 Geochemical Analyses .......................5 1.2.3 Extent of Contamination in the Upper Hudson River ................5 1.2.3.1 PCBs in Sediment .....................................5 1.2.3.2 PCBs in the Water Column ..............................6 1.2.3.3 PCBs in Fish .........................................7
    [Show full text]
  • THREATENED and ENDANGERED SPECIES of NEW MEXICO 2008 Biennial Review and Recommendations
    THREATENED AND ENDANGERED SPECIES OF NEW MEXICO 2008 BIENNIAL REVIEW DRAFT First Public Comment Period March 11, 2008 New Mexico Department of Game and Fish Conservation Services Division DRAFT 2008 Biennial Review of T & E Species of NM, 3/11/08 THREATENED AND ENDANGERED SPECIES OF NEW MEXICO 2008 Biennial Review and Recommendations Authority: Wildlife Conservation Act (17-2-37 through 17-2-46 NMSA 1978) EXECUTIVE SUMMARY: A total of 118 species and subspecies are on the 2008 list of threatened and endangered New Mexico wildlife. The list includes 2 crustaceans, 25 mollusks, 23 fishes, 6 amphibians, 15 reptiles, 32 birds and 15 mammals (Tables 1, 2). An additional 7 species of mammals has been listed as restricted to facilitate control of traffic in federally protected species. A species is endangered if it is in jeopardy of extinction or extirpation from the state; a species is threatened if it is likely to become endangered within the foreseeable future throughout all or a significant portion of its range in New Mexico. Species or subspecies of mammals, birds, reptiles, amphibians, fishes, mollusks, and crustaceans native to New Mexico may be listed as threatened or endangered under the Wildlife Conservation Act (WCA). During the Biennial Review, species may be upgraded from threatened to endangered, or downgraded from endangered to threatened, based upon data, views, and information regarding the biological and ecological status of the species. Investigations for new listings or removals from the list (delistings) can be undertaken at any time, but require additional procedures from those for the Biennial Review. The 2006 Biennial Review contained a recommendation for maintaining the status for 119 species and subspecies listed as threatened, endangered, or restricted under the WCA, and uplisting four species (Arizona grasshopper sparrow, Pecos bluntnose shiner, spikedace, and meadow jumping mouse ) from threatened to endangered and downlisting two species (shortneck snaggletooth and piping plover) from endangered to threatened.
    [Show full text]