GEOL 104 Dinosaurs: a Natural History
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Detrital Zircon Provenance and Lithofacies Associations Of
geosciences Article Detrital Zircon Provenance and Lithofacies Associations of Montmorillonitic Sands in the Maastrichtian Ripley Formation: Implications for Mississippi Embayment Paleodrainage Patterns and Paleogeography Jennifer N. Gifford 1,*, Elizabeth J. Vitale 1, Brian F. Platt 1 , David H. Malone 2 and Inoka H. Widanagamage 1 1 Department of Geology and Geological Engineering, University of Mississippi, Oxford, MS 38677, USA; [email protected] (E.J.V.); [email protected] (B.F.P.); [email protected] (I.H.W.) 2 Department of Geography, Geology, and the Environment, Illinois State University, Normal, IL 61790, USA; [email protected] * Correspondence: jngiff[email protected]; Tel.: +1-(662)-915-2079 Received: 17 January 2020; Accepted: 15 February 2020; Published: 22 February 2020 Abstract: We provide new detrital zircon evidence to support a Maastrichtian age for the establishment of the present-day Mississippi River drainage system. Fieldwork conducted in Pontotoc County,Mississippi, targeted two sites containing montmorillonitic sand in the Maastrichtian Ripley Formation. U-Pb detrital zircon (DZ) ages from these sands (n = 649) ranged from Mesoarchean (~2870 Ma) to Pennsylvanian (~305 Ma) and contained ~91% Appalachian-derived grains, including Appalachian–Ouachita, Gondwanan Terranes, and Grenville source terranes. Other minor source regions include the Mid-Continent Granite–Rhyolite Province, Yavapai–Mazatzal, Trans-Hudson/Penokean, and Superior. This indicates that sediment sourced from the Appalachian Foreland Basin (with very minor input from a northern or northwestern source) was being routed through the Mississippi Embayment (MSE) in the Maastrichtian. We recognize six lithofacies in the field areas interpreted as barrier island to shelf environments. Statistically significant differences between DZ populations and clay mineralogy from both sites indicate that two distinct fluvial systems emptied into a shared back-barrier setting, which experienced volcanic ash input. -
Unit-V Evolution of Horse
UNIT-V EVOLUTION OF HORSE Horses (Equus) are odd-toed hooped mammals belong- ing to the order Perissodactyla. Horse evolution is a straight line evolution and is a suitable example for orthogenesis. It started from Eocene period. The entire evolutionary sequence of horse history is recorded in North America. " Place of Origin The place of origin of horse is North America. From here, horses migrated to Europe and Asia. By the end of Pleis- tocene period, horses became extinct in the motherland (N. America). The horses now living in N. America are the de- scendants of migrants from other continents. Time of Origin The horse evolution started some 58 million years ago, m the beginning of Eocene period of Coenozoic era. The modem horse Equus originated in Pleistocene period about 2 million years ago. Evolutionary Trends The fossils of horses that lived in different periods, show that the body parts exhibited progressive changes towards a particular direction. These directional changes are called evo- lutionary trends. The evolutionary trends of horse evolution are summarized below: 1. Increase in size. 2. Increase in the length of limbs. 3. Increase in the length of the neck. 4. Increase in the length of preorbital region (face). 5. Increase in the length and size of III digit. 6. Increase in the size and complexity of brain. 7. Molarization of premolars. Olfactory bulb Hyracotherium Mesohippus Equus Fig.: Evolution of brain in horse. 8. Development of high crowns in premolars and molars. 9. Change of plantigrade gait to unguligrade gait. 10. Formation of diastema. 11. Disappearance of lateral digits. -
Wec01's SSSS Fossils Test 2019
wec01’s SSSS Fossils Test 2019 Team Name: _________________KEY________________ Team Number: ___KEY___ Team Members: ____________KEY____________, ____________KEY____________ This test consists of 18 stations with a total of 200 points. Each answer is worth one point except where specified otherwise. You are only given 2 ½ minutes with the specimens at each station, however you can work on any station’s questions at any time. Scoring Station 1: ___10___ / 10 Station 10: ___12___ / 12 Station 2: ___10___ / 10 Station 11: ____9___ / 9 Station 3: ___11___ / 11 Station 12: ___11___ / 11 Station 4: ___10___ / 10 Station 13: ___10___ / 10 Station 5: ___10___ / 10 Station 14: ___10___ / 10 Station 6: ____9___ / 9 Station 15: ___12___ / 12 Station 7: ____9___ / 9 Station 16: ____9___ / 9 Station 8: ___10___ / 10 Station 17: ___10___ / 10 Station 9: ____9___ / 9 Station 18: ___29___ / 29 Total: __200___ / 200 Team Number: _KEY_ Station 1: Dinosaurs (10 pt) 1. Identify the genus of specimen A Tyrannosaurus (1 pt) 2. Identify the genus of specimen B Stegosaurus (1 pt) 3. Identify the genus of specimen C Allosaurus (1 pt) 4. Which specimen(s) (A, B, or C) are A, C (1 pt) Saurischians? 5. Which two specimens (A, B, or C) lived at B, C (1 pt) the same time? 6. Identify the genus of specimen D Velociraptor (1 pt) 7. Identify the genus of specimen E Coelophysis (1 pt) 8. Which specimen (D or E) is commonly E (1 pt) found in Ghost Ranch, New Mexico? 9. Which specimen (A, B, C, D, or E) would D (1 pt) specimen F have been found on? 10. -
Genomics and the Evolutionary History of Equids Pablo Librado, Ludovic Orlando
Genomics and the Evolutionary History of Equids Pablo Librado, Ludovic Orlando To cite this version: Pablo Librado, Ludovic Orlando. Genomics and the Evolutionary History of Equids. Annual Review of Animal Biosciences, Annual Reviews, 2021, 9 (1), 10.1146/annurev-animal-061220-023118. hal- 03030307 HAL Id: hal-03030307 https://hal.archives-ouvertes.fr/hal-03030307 Submitted on 30 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Annu. Rev. Anim. Biosci. 2021. 9:X–X https://doi.org/10.1146/annurev-animal-061220-023118 Copyright © 2021 by Annual Reviews. All rights reserved Librado Orlando www.annualreviews.org Equid Genomics and Evolution Genomics and the Evolutionary History of Equids Pablo Librado and Ludovic Orlando Laboratoire d’Anthropobiologie Moléculaire et d’Imagerie de Synthèse, CNRS UMR 5288, Université Paul Sabatier, Toulouse 31000, France; email: [email protected] Keywords equid, horse, evolution, donkey, ancient DNA, population genomics Abstract The equid family contains only one single extant genus, Equus, including seven living species grouped into horses on the one hand and zebras and asses on the other. In contrast, the equine fossil record shows that an extraordinarily richer diversity existed in the past and provides multiple examples of a highly dynamic evolution punctuated by several waves of explosive radiations and extinctions, cross-continental migrations, and local adaptations. -
A Fossiliferous Spherule-Rich Bed at the Cretaceous–Paleogene (K–Pg) Boundary in 1 Mississippi, USA: Implications for the K
1 A fossiliferous spherule-rich bed at the Cretaceous–Paleogene (K–Pg) boundary in 2 Mississippi, USA: implications for the K–Pg mass extinction event in the Mississippi 3 Embayment and Eastern Gulf Coastal Plain 4 James D. Witts1, Neil H. Landman1, Matthew P. Garb2, Caitlin Boas2, Ekaterina Larina3, 5 Remy Rovelli4, Lucy E. Edwards5, Robert M. Sherrell6,7, and J. Kirk Cochran8 6 1Division of Paleontology (Invertebrates), American Museum of Natural History, New York, 7 NY 10024, USA 8 2Department of Earth and Environmental Sciences, Brooklyn College, Brooklyn, NY 11210, 9 USA 10 3University of Southern California, Department of Earth Sciences, Los Angeles, CA 90018, 11 USA 12 4Department of Earth and Planetary Sciences, The University of New Mexico, Albuquerque, 13 NM 87131, USA 14 5U.S. Geological Survey, Mail Stop 926A, Reston, VA 20192, USA 15 6Department of Marine and Coastal Sciences, Rutgers University, Piscataway, NJ 08901, 16 USA 17 7 Department of Earth and Planetary Sciences, Rutgers University, Piscataway, NJ 08901, 18 USA 19 8School of Marine and Atmospheric Science, Stony Brook University, Stony Brook, NY 11794, 20 USA 21 [The final, fully formatted version of this article is available online at Cretaceous Research: 22 https://doi.org/10.1016/j.cretres.2018.06.002 ] 23 Abstract 24 We describe an outcrop of the Cretaceous–Paleogene (K–Pg) boundary exposed due 25 to construction near New Albany, Union County, Mississippi. It consists of the Owl Creek 26 Formation and overlying Clayton Formation. The Owl Creek Formation is rich in the 27 ammonites Discoscaphites iris and Eubaculites carinatus, which, along with 28 biostratigraphically important dinoflagellate cysts and calcareous nannofossils, indicate 29 deposition occurred within the last 1 million years, most likely last 500 kyrs, of the 30 Cretaceous. -
Skeleton of the Oligocene (30 Million-Year-Old) Horse, Mesohippus, Is a Featured Exhibit at the New North Dakota Cowboy Hall of Fame in Medora
Skeleton of the Oligocene (30 million-year-old) horse, Mesohippus, is a featured exhibit at the new North Dakota Cowboy Hall of Fame in Medora By John W. Hoganson Developers of the recently opened North Dakota Cowboy Hall of Fame contacted me about having a fossil exhibit in the new Hall in Medora. Of course, what would be more appropriate than an exhibit interpreting the evolution of the horse? Most people are under the false impression that horses did not inhabit North America until they were introduced by the Spaniards during the early days of conquest. But horses are indigenous to North America. Fossil remains of the earliest horse, referred to as Hyracotherium (or sometimes Eohippus), have been recovered from early Eocene (about 50 million years old) rocks in North America. In fact, they were some of the most abundant mammals that lived during that time. The fossil record of horses in North Dakota extends back to the Oligocene, about 30 million years ago, when the diminutive horse, Mesohippus roamed western North Dakota. Mesohippus was tiny, about the size of a sheep. The adults were only about 20 inches tall at the shoulder. They also had three toes on each foot compared to the modern horse Equus that has one. Mesohippus was also probably more of a browsing herbivore compared to the modern grazing horse. We have found many Mesohippus fossils in North Dakota but no complete skeletons. Consequently, the Mesohippus skeleton on exhibit at the Cowboy Hall of Fame is an exact cast replica. We have also found the remains of 50,000-year-old horses in North Dakota indicating that horses lived here during the last Ice Age. -
Functional Morphology of the Vertebral Column in Remingtonocetus (Mammalia, Cetacea) and the Evolution of Aquatic Locomotion in Early Archaeocetes
Functional Morphology of the Vertebral Column in Remingtonocetus (Mammalia, Cetacea) and the Evolution of Aquatic Locomotion in Early Archaeocetes by Ryan Matthew Bebej A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Ecology and Evolutionary Biology) in The University of Michigan 2011 Doctoral Committee: Professor Philip D. Gingerich, Co-Chair Professor Philip Myers, Co-Chair Professor Daniel C. Fisher Professor Paul W. Webb © Ryan Matthew Bebej 2011 To my wonderful wife Melissa, for her infinite love and support ii Acknowledgments First, I would like to thank each of my committee members. I will be forever grateful to my primary mentor, Philip D. Gingerich, for providing me the opportunity of a lifetime, studying the very organisms that sparked my interest in evolution and paleontology in the first place. His encouragement, patience, instruction, and advice have been instrumental in my development as a scholar, and his dedication to his craft has instilled in me the importance of doing careful and solid research. I am extremely grateful to Philip Myers, who graciously consented to be my co-advisor and co-chair early in my career and guided me through some of the most stressful aspects of life as a Ph.D. student (e.g., preliminary examinations). I also thank Paul W. Webb, for his novel thoughts about living in and moving through water, and Daniel C. Fisher, for his insights into functional morphology, 3D modeling, and mammalian paleobiology. My research was almost entirely predicated on cetacean fossils collected through a collaboration of the University of Michigan and the Geological Survey of Pakistan before my arrival in Ann Arbor. -
Transition of Eocene Whales from Land to Sea: Evidence from Bone Microstructure
RESEARCH ARTICLE Transition of Eocene Whales from Land to Sea: Evidence from Bone Microstructure Alexandra Houssaye1,2*, Paul Tafforeau3, Christian de Muizon4, Philip D. Gingerich5 1 UMR 7179 CNRS/Muséum National d’Histoire Naturelle, Département Ecologie et Gestion de la Biodiversité, Paris, France, 2 Steinmann Institut für Geologie, Paläontologie und Mineralogie, Universität Bonn, Bonn, Germany, 3 European Synchrotron Radiation Facility, Grenoble, France, 4 Sorbonne Universités, CR2P—CNRS, MNHN, UPMC-Paris 6, Département Histoire de la Terre, Muséum National d’Histoire Naturelle, Paris, France, 5 Department of Earth and Environmental Sciences and Museum of Paleontology, University of Michigan, Ann Arbor, Michigan, United States of America a11111 * [email protected] Abstract Cetacea are secondarily aquatic amniotes that underwent their land-to-sea transition during OPEN ACCESS the Eocene. Primitive forms, called archaeocetes, include five families with distinct degrees Citation: Houssaye A, Tafforeau P, de Muizon C, of adaptation to an aquatic life, swimming mode and abilities that remain difficult to estimate. Gingerich PD (2015) Transition of Eocene Whales The lifestyle of early cetaceans is investigated by analysis of microanatomical features in from Land to Sea: Evidence from Bone postcranial elements of archaeocetes. We document the internal structure of long bones, Microstructure. PLoS ONE 10(2): e0118409. ribs and vertebrae in fifteen specimens belonging to the three more derived archaeocete doi:10.1371/journal.pone.0118409 families — Remingtonocetidae, Protocetidae, and Basilosauridae — using microtomogra- Academic Editor: Brian Lee Beatty, New York phy and virtual thin-sectioning. This enables us to discuss the osseous specializations ob- Institute of Technology College of Osteopathic Medicine, UNITED STATES served in these taxa and to comment on their possible swimming behavior. -
New Upper Cretaceous Amphineura (Mollusca)
New Upper Cretaceous Amphineura (Mollusca) GEOLOGICAL SURVEY PROFESSIONAL PAPER 593-G New Upper Cretaceous Amphineura (Mollusca) By ALLYN G. SMITH, NORMAN F. SOHL, and ELLIS L. YOCHELSON CONTRIBUTIONS TO PALEONTOLOGY GEOLOGICAL SURVEY PROFESSIONAL PAPER 593-G Description of chitons from the Gulf Coastal Plain and Puerto Rico UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON 1968 UNITED STATES DEPARTMENT OF THE INTERIOR STEWART L. UDALL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price 30 cents (paper cover) CONTENTS Page Abstract___________________________________________________________________ Gl Introduction_______________________________________________________________ 1 Geologic occurrence_ __ __ __ _ _ _ __ _ _ _ __ _ _ __ _ __ _ _ _ __ __ __ __ __ __ __ _ _ _ _ __ _ __ _ __ __ __ 1 Coastal Plain province____ _ _ _ __ _ __ __ __ _ _ _ _ _ __ _ _ _ __ _ _ _ _ _ __ __ __ _ _ _ _ _ _ __ __ _ _ 1 Caribbean province_____________________________________________________ 2 Previous reports of Cretaceous Amphineura (Polyplacophora) _ _ _ _ _ __ __ __ _ _ _ __ __ __ 3 Systematic paleontology_____________________________________________________ 3 References cited____ __ _ _ _ _ _ _ _ _ _ _ _ __ _ _ _ __ __ __ __ _ _ _ __ _ _ __ _ _ _ __ __ _ _ _ _ _ __ __ _ __ __ 7 Index_____________________________________________________________________ 8 ILLUSTRATIONS [Plate follows index] Page PLATE 1. Chiton (Chiton} and Aulachochiton. -
Progress and Competition in Macroevolution
Biol . Rev . (1987). 62. pp. 305-338 Printed in Great Britain PROGRESS AND COMPETITION IN MACROEVOLUTION BY MICHAEL J . BENTON Department of Geology. The Queen’s University of Belfast. Belfast. BT7 INN. Northern Ireland (Received I 3 August 1985. accepted 23 February 1987) CONTENTS I . Introduction ........ I1. Improvements in competitive ability through time ........ (I) Evolutionary progress ............ (2) Increase in morphological complexity ......... (3) The expansion of life ............. (4) Evolutionary trends ............. (5) Increased effectiveness of adaptation .......... I11 . Competition in microevolution ........... (I) Competition and natural selection .......... (2) The evolutionary effects of interspecific competition ....... (3) The effects of interspecific competition on community structure .... IV . Competition in macroevolution ........... (I) Extinction and competition ........... (2) The Red Queen .............. (3) The community paradigm ............ (4) Evolutionary rates and competitive ability ......... V . Competition and major ecological replacements ........ (I) Key adaptations and replacements ........... (2) Patterns of ecological replacement ........... (3) The evidence for double-wedge patterns (differential survival) in the fossil record . (4) The evidence that differential survival was caused by competition .... (5) Alternatives to competition ........... VI . The problems of invoking large-scale competition ........ VII . Summary ................ VIII . Acknowledgements .............. IX. References -
Upper Cretaceous (Maestrichtian) Mollusca from the Haustator Bilira Assemblage Zone in the East Gulf Coastal Plain
UNITED STATES DEPARTMENT OF INTERIOR GEOLOGICAL SURVEY Upper Cretaceous (Maestrichtian) Mollusca from the Haustator bilira Assemblage Zone in the East Gulf Coastal Plain Norman F. So hi 1 and Carl F. Koch2 Open File Feport 83-451 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial Standards and stratigraphic nomenclature. Pages are numbered one to four and seven to 239. 1. Washington D.C. 2. Old Dominion University Norfolk, Va, 1983 CONTENTS Page Introduction 1 Explanation 1 Explanation of Annotation 4 References 9 Molluscan Faunal Lists 11 ILLUSTRATIONS Figure 1 Map showing location of collections 2 Relationships of stratigraphic units within the Haustator bilira Assemblage Zone, East Gulf Coastal Plain TABLE Table 1 U.S. Geological Survey numbers of collections for each location Upper Cretaceous (Maestrichtian) Mollusca from the Haustator bilira Assemblage Zone in the East Gulf Coastal Plain INTRODUCTION The following report contains lists of the molluscan fauna from 189 collections made at 161 localities or different levels at a locality in the rocks of the Haustator bilira Assemblage Zone as exposed in western Georgia, Alabama, Mississippi, and Tennessee (Figure 1). This compilation forms the data base for a series of studies published, in press or in preparation (Buzas, £t_ al. , 1982; Koch and Sohl, in press). The Haustator bilira Assemblage Zone was proposed by Sohl (1977) and traced through Late Cretaceous rocks of the Atlantic and Gulf Coastal Plains from New Jersey to Texas (Owens, et_jil_., 1977; Sohl and Smith, 1980). The base of the zone occurs above the base of the foraminiferid Globotruncana gansseri subzone of Pessagno (1967) and includes all subsequent younger Cretaceous deposits on the Coastal Plains (Figure 2). -
Bruce J. Macfadden*
MacFadden, B.J., 2006, Early Pliocene (latest Hemphillian) horses from the Yepómera Local 33 Fauna, Chihuahua, Mexico, in Carranza-Castañeda, Óscar, and Lindsay, E.H., eds., Advances in late Tertiary vertebrate paleontology in Mexico and the Great American Biotic Interchange: Universidad Nacional Autónoma de México, Instituto de Geología and Centro de Geociencias, Publicación Especial 4, p. 33–43. EARLY PLIOCENE (LATEST HEMPHILLIAN) HORSES FROM THE YEPÓMERA LOCAL FAUNA, CHIHUAHUA, MEXICO Bruce J. MacFadden* ABSTRACT The latest Hemphillian (Hh4) is characterized by a distinctive equid assemblage, four spe- cies of which are widespread in North America. One of the largest collections of Hh4 equids is from Yepómera, located in Chihuahua, Mexico. Although Yepómera is actually a series of sub-localities, the equids are morphologically similar from each of these and therefore can be considered as a local faunal assemblage of four sympatric species. The distinctive dental patterns, size of the cheek teeth, and (in most cases) metapodial dimensions, make these horses readily distinguishable in the field. Yepómera equids include the monodactyl Astrohippus stockii and Dinohippus mexicanus, and tridactyl Neohipparion eurystyle and Nannippus aztecus. Yepómera is the type locality for the species A. stockii and D. mexica- nus, both described by Lance in 1950. Neohipparion eurystyle and the genus Neohipparion and A. stockii and the genus Astrohippus become extinct at the end of Hh4. Nannippus aztecus is a sister taxon of later Nannippus and D. mexicanus is the sister taxon of Equus, the equid genera that survived in North America during the Plio-Pleistocene. With hypsodonty indices between 2.6 and 3.7, all of the Yepómera horse species have high-crowned teeth, traditionally interpreted as a grazing adaptation.