Non-Water Control Measures for Potato Common Scab
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Report of a Working Group on Potato: First Meeting, 23-25 March 2000
European Cooperative Programme for Crop Genetic Report Resources Networks ECP GR of a Working Group on Potato First Meeting 23–25 March 2000, Wageningen, The Netherlands R. Hoekstra, L. Maggioni and E. Lipman, compilers <www.futureharvest.org> IPGRI is a Future Harvest Centre supported by the Consultative Group on International Agricultural Research (CGIAR) Report ECP GR of a working group on Potato First Meeting 23–25 March 2000, Wageningen, The Netherlands R. Hoekstra, L. Maggioni and E. Lipman, compilers The International Plant Genetic Resources Institute (IPGRI) is an autonomous international scientific organization, supported by the Consultative Group on International Agricultural Research (CGIAR). IPGRI's mandate is to advance the conservation and use of genetic diversity for the well-being of present and future generations. IPGRI's headquarters is based in Maccarese, near Rome, Italy, with offices in another 19 countries worldwide. The Institute operates through three programmes: (1) the Plant Genetic Resources Programme, (2) the CGIAR Genetic Resources Support Programme and (3) the International Network for the Improvement of Banana and Plantain (INIBAP). The international status of IPGRI is conferred under an Establishment Agreement which, by January 2001, had been signed and ratified by the Governments of Algeria, Australia, Belgium, Benin, Bolivia, Brazil, Burkina Faso, Cameroon, Chile, China, Congo, Costa Rica, Côte d’Ivoire, Cyprus, Czech Republic, Denmark, Ecuador, Egypt, Greece, Guinea, Hungary, India, Indonesia, Iran, Israel, Italy, Jordan, Kenya, Malaysia, Mauritania, Morocco, Norway, Pakistan, Panama, Peru, Poland, Portugal, Romania, Russia, Senegal, Slovakia, Sudan, Switzerland, Syria, Tunisia, Turkey, Uganda and Ukraine. In 2000 financial support for the Research Agenda of IPGRI was provided by the Governments of Armenia, Australia, Austria, Belgium, Brazil, Bulgaria, Canada, China, Croatia, Cyprus, Czech Republic, Denmark, Estonia, F.R. -
Potato - Wikipedia, the Free Encyclopedia
Potato - Wikipedia, the free encyclopedia Log in / create account Article Talk Read View source View history Our updated Terms of Use will become effective on May 25, 2012. Find out more. Main page Potato Contents From Wikipedia, the free encyclopedia Featured content Current events "Irish potato" redirects here. For the confectionery, see Irish potato candy. Random article For other uses, see Potato (disambiguation). Donate to Wikipedia The potato is a starchy, tuberous crop from the perennial Solanum tuberosum Interaction of the Solanaceae family (also known as the nightshades). The word potato may Potato Help refer to the plant itself as well as the edible tuber. In the region of the Andes, About Wikipedia there are some other closely related cultivated potato species. Potatoes were Community portal first introduced outside the Andes region four centuries ago, and have become Recent changes an integral part of much of the world's cuisine. It is the world's fourth-largest Contact Wikipedia food crop, following rice, wheat and maize.[1] Long-term storage of potatoes Toolbox requires specialised care in cold warehouses.[2] Print/export Wild potato species occur throughout the Americas, from the United States to [3] Uruguay. The potato was originally believed to have been domesticated Potato cultivars appear in a huge variety of [4] Languages independently in multiple locations, but later genetic testing of the wide variety colors, shapes, and sizes Afrikaans of cultivars and wild species proved a single origin for potatoes in the area -
Foodservice Product Guide Draft
Page 1 Seasonal Calendar Seasons subject to weather Code Product Description Usual Case Size Other Units of Sale Special Notes Storage Temp Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec = usually available UK = UK season available = not available Please note seasons can vary year to year FRUIT APPBRAE Apple Braeburn Box (12.5kg) kg, each C UK UK UK UK UK APPBRAM Apple Bramley Box (12.5kg) kg, each C UK UK UK UK UK UK UK UK UK UK UK UK APPCOX Apple Coxes Box (12.5kg) kg, each C UK UK UK UK UK UK UK UK APPDIS Apple Discovery Box (12.5kg) kg, each C UK UK APPDELE Apple Delbard Estive Box (12.5kg) kg, each C UK UK UK APPLEJFUJI Apple Fuji Box (12.5kg) kg, each 24hr notice C APPGD Apple Golden Delicious Box (12.5kg) kg, each C APPGS Apple Granny Smith Box (18kg / 12.5kg) kg, each C APPJAZ Apple Jazz Box (12.5kg) kg, each C UK UK UK UK UK UK APPPL Apple Pink Lady Box (12.5kg) kg, each C APPRD Apple Red Delicious Box (18kg / 12.5kg) kg, each C APPREDW Apple Red Washington Box (12.5kg) kg, each C APPRG Applw Royal Gala Box (12.5kg) kg, each C UK UK UK UK UK UK UK APPRUS Apple Russet Box (12.5kg) kg, each C UK UK UK UK UK UK UK APPCRAB Apple Crab 500g punnet 24hr notice C UK UK APPCUS Apples Custard Box (12kg) box only 24hr notice C APRI Apricots Box (5kg) kg, each C AVOH Avocado Haas Box (Count 16) each C BABYKIW Baby Kiwi 125g punnet 24hours C BANB Baby Banana Box (3kg) kg, bunches C PLANTGR Banana Green Plantain Box (15kg) kg min order 5kg C BANL Banana Leaves 2 x 500g 500g packet C BAN Banana Med/Large Box (18kg) kg, each A BUDHA Budhas -
Reactive Oxygen Species Alleviate Cell Death Induced by Thaxtomin a in Arabidopsis Thaliana Cell Cultures
plants Article Reactive Oxygen Species Alleviate Cell Death Induced by Thaxtomin A in Arabidopsis thaliana Cell Cultures Fatima Awwad 1,2, Guillaume Bertrand 3, Michel Grandbois 3 and Nathalie Beaudoin 1,* 1 Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada 2 Groupe de Recherche en Biologie Végétale, Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada 3 Institut de Pharmacologie de Sherbrooke, Département de Pharmacologie et Physiologie, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada * Correspondence: [email protected]; Tel.: +1-819-821-8000 Received: 28 June 2019; Accepted: 3 September 2019; Published: 6 September 2019 Abstract: Thaxtomin A (TA) is a cellulose biosynthesis inhibitor synthesized by the soil actinobacterium Streptomyces scabies, which is the main causal agent of potato common scab. TA is essential for the induction of scab lesions on potato tubers. When added to Arabidopsis thaliana cell cultures, TA induces an atypical programmed cell death (PCD). Although production of reactive oxygen species (ROS) often correlates with the induction of PCD, we observed a decrease in ROS levels following TA treatment. We show that this decrease in ROS accumulation in TA-treated cells is not due to the activation of antioxidant enzymes. Moreover, Arabidopsis cell cultures treated with hydrogen peroxide (H2O2) prior to TA treatment had significantly fewer dead cells than cultures treated with TA alone. This suggests that H2O2 induces biochemical or molecular changes in cell cultures that alleviate the activation of PCD by TA. Investigation of the cell wall mechanics using atomic force microscopy showed that H2O2 treatment can prevent the decrease in cell wall rigidity observed after TA exposure. -
Microbiologytoday
microbiologytoday vol34|may07 quarterly magazine of the society for general microbiology actinobacteria streptomyces – not just antibiotics good, bad, but beautiful actinobacteria corynebacteria – good guys and bad guys the mycobacteria review of uk microbial science contents vol34(2) regular features 54 News 88 Gradline 96 Reviews 82 Meetings 90 Hot off the press 99 Addresses 84 Schoolzone 93 Going public other items 59 Micro shorts 94 Members’ reports 98 Obituary articles 60 An introduction to the 74 Corynebacteria: actinobacteria the good guys and the bad David Hopwood guys Pathogenic, symbiotic and industrially important, Michael Bott this group of micro-organisms is diverse and The products of this genus range from useful amino acids fascinating. used as flavour-enhancing food additives to deadly toxins that help us to understand virulence. 64 Streptomyces: not just antibiotics 78 The mycobacteria Rosemary Loria, Madhumita Joshi & Matt Hutchings Simon Moll These successful pathogens, causing diseases An alternative insight into the pathogenic ability of these such as tuberculosis and leprosy, are still a usually life-saving organisms. major threat to global health. 68 Good, bad, but 100 Comment: beautiful: the weird and Review of UK microbial wonderful actinobacteria science Paul Hoskisson Charles Dorman Morphologically complex, challenging and Microbiology plays a pivotal role in the scientific and rewarding; we have barely scratched the surface economic life of the UK. Greater interaction between when it comes to the Jekyll and -
Tracking the Subtle Mutations Thriving Host Sensing by the Plant Pathogen Streptomyces Scabies
bioRxiv preprint doi: https://doi.org/10.1101/097998; this version posted January 3, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Tracking the Subtle Mutations Thriving Host Sensing by the Plant Pathogen Streptomyces scabies Samuel Jourdana, Isolde M. Francisb, Benoit Deflandrea, Rosemary Loriac, and Sébastien Rigalia,* InBioS – Centre for Protein Engineering, University of Liège, Institut de Chimie,Liège, Belgiuma; Department of Biology, California State University, Bakersfield, California, USAb; Department of Plant Pathology, University of Florida, Gainesville, Florida, USAc Address correspondence to: Sébastien Rigali, [email protected]. Abstract The acquisition of genetic material conferring the arsenal necessary for host virulence is a prerequisite on the path to become a plant pathogen. More subtle mutations are also required for perception of cues witnessing the presence of the target host and optimal conditions for colonization. The decision to activate the pathogenic lifestyle is not ‘taken lightly’ and involves efficient systems monitoring environmental conditions. But how can a pathogen timely trigger the expression of virulence genes if the main signal inducing its pathogenic behavior originates from cellulose, the most abundant polysaccharide on earth? This situation is encountered by Streptomyces scabies responsible for common scab disease on tuber and root crops. We here propose a series of hypotheses of how S. scabies could optimally distinguish whether cello- oligosaccharides originate from decomposing lignocellulose (nutrient sources) or, instead, emanate from living and expanding plant tissue (virulence signals), and accordingly adapt its physiological response. -
Bacterial and Fungal Diseases of Potato and Their Management
BACTERIAL AND FUNGAL DISEASES OF POTATO AND THEIR MANAGEMENT Jessica Rupp, Extension Plant Pathology Specialist, Department of Plant Sciences and Plant Pathology Barry Jacobsen, Associate Director and Head, Montana Ag Experiment Stations, Department of Research Centers EB 0225 new January 2017 BACTERIAL DISEASES THE SEED POTATO INDUSTRY IN MONTANA Blackleg 1 Seed potatoes are an important crop in Montana and Aeiral Stem Rot 1 are a crucial quality seed source for potato production Soft Rot 2 across the United States. The cooperation of commercial producers and home gardeners to control diseases of great Ring Rot 2 concern, such as late blight, is essential. Brown Rot 5 Dickeya Blackleg 5 Montana is one of the top five seed-potato producing states. According to the Montana Department of Common Scab 6 Agriculture, the state’s seed potatoes are prized because FUNGAL DISEASES growing areas are somewhat isolated from airborne spores of diseases such as late blight. To protect this industry, Alternaria Brown Spot 6 Montana only allows potatoes that originate in Montana to Early Blight 7 be grown as certified seed, and requires all seed potatoes Late Blight 8 to be inspected at their shipping point. Businesses can Powdery Mildew 9 sell garden seed potatoes from outside Montana, but need to be inspected at the point of shipping and have an Glossary 9 accompanying health certificate. © 2017 The U.S. Department of Agriculture (USDA), Montana State University and Montana State University Extension prohibit discrimination in all of their programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and marital and family status. -
Characterization of Streptomyces Species Causing Common Scab Disease in Newfoundland Agriculture Research Initiative Project
Dawn Bignell Memorial University [email protected] Characterization of Streptomyces species causing common scab disease in Newfoundland Agriculture Research Initiative Project #ARI-1314-005 FINAL REPORT Submitted by Dr. Dawn R. D. Bignell March 31, 2014 Page 1 of 34 Dawn Bignell Memorial University [email protected] Executive Summary Potato common scab is an important disease in Newfoundland and Labrador and is characterized by the presence of unsightly lesions on the potato tuber surface. Such lesions reduce the quality and market value of both fresh market and seed potatoes and lead to significant economic losses to potato growers. Currently, there are no control strategies available to farmers that can consistently and effectively manage scab disease. Common scab is caused by different Streptomyces bacteria that are naturally present in the soil. Most of these organisms are known to produce a plant toxin called thaxtomin A, which contributes to disease development. Among the new scab control strategies that are currently being proposed are those aimed at reducing or eliminating the production of thaxtomin A by these bacteria in soils. However, such strategies require a thorough knowledge of the types of pathogenic Streptomyces bacteria that are prevalent in the soil and whether such pathogens have the ability to produce this toxic metabolite. Currently, no such information exists for the scab-causing pathogens that are present in the soils of Newfoundland. This project entitled “Characterization of Streptomyces species causing common scab disease in Newfoundland” is the first study that provides information on the types of pathogenic Streptomyces species that are present in the province and the virulence factors that are used by these microbes to induce the scab disease symptoms. -
Population Dynamics of Streptomyces Scabies and Other Actinomycetes As Related to Common Scab of Potato
1985. A model relating the probability of foliar disease incidence dispersion. Phytopathology 76:446-450. to the population frequencies of bacterial plant pathogens. 41. Snedecor, G. W., and Cochran, W. G. 1980. Statistical Methods. Phytopathology 75:505-509. 7th ed. The Iowa State University Press, Ames, IA. 507 pp. 39. Schaad, N. W. 1988. Laboratory Guide for Identification of Plant 42. Thal, W. M., and Campbell, C. L. 1986. Spatial pattern analysis Pathogenic Bacteria. 2nd ed. American Phytopathological Society, of disease severity data for alfalfa leaf spot caused primarily by St. Paul, MN. 164 pp. Leptosphaerulinabriosiana. Phytopathology 76:190-194. 40. Schuh, W., Frederiksen, R. A., and Jeger, M. J. 1986. Analysis of 43. Upton, G. J. G., and Fingleton, B. 1985. Spatial Data Analysis by spatial patterns in sorghum downy mildew with Morisita's index of Example. John Wiley & Sons, New York. 410 pp. Ecology and Epidemiology Population Dynamics of Streptomyces scabies and Other Actinomycetes as Related to Common Scab of Potato A. P. Keinath and R. Loria Department of Plant Pathology, Cornell University, Ithaca, NY 14853-5908. Present address of first author: Biocontrol of Plant Diseases Laboratory, Plant Science Institute, Beltsville Agricultural Research Center-West, Beltsville, MD 20705. We gratefully acknowledge statistical advice from M. P. Meredith, Biometrics Unit, Cornell University, and technical assistance from Ellen Wells and Joanne Wilde. Accepted for publication 8 February 1989 (submitted for electronic processing). ABSTRACT Keinath, A. P., and Loria, R. 1989. Population dynamics of Streptomyces scabies and other actinomycetes as related to common scab of potato. Phytopathology 79:681-687. Effects of two potato cultivars on population dynamics of Streptomyces on tuber surfaces generally increased during each growing season, but scabies, causal agent of common potato scab, and other actinomycetes populations in fallow soil remained constant or decreased. -
Micronutrients and Soil Microorganisms in the Suppression of Potato Common Scab
agronomy Review Micronutrients and Soil Microorganisms in the Suppression of Potato Common Scab Jan Kopecky 1, Daria Rapoport 1,2, Ensyeh Sarikhani 3, Adam Stovicek 3, Tereza Patrmanova 1 and Marketa Sagova-Mareckova 3,* 1 Epidemiology and Ecology of Microorganisms, Crop Research Institute, 16106 Prague, Czech Republic; [email protected] (J.K.); [email protected] (D.R.); [email protected] (T.P.) 2 Department of Genetics and Microbiology, Charles University, 12800 Prague, Czech Republic 3 Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 16500 Prague, Czech Republic; [email protected] (E.S.); [email protected] (A.S.) * Correspondence: [email protected] Abstract: Nature-friendly approaches for crop protection are sought after in the effort to reduce the use of agrochemicals. However, the transfer of scientific findings to agriculture practice is relatively slow because research results are sometimes contradictory or do not clearly lead to applicable approaches. Common scab of potatoes is a disease affecting potatoes worldwide, for which no definite treatment is available. That is due to many complex interactions affecting its incidence and severity. The review aims to determine options for the control of the disease using additions of micronutrients and modification of microbial communities. We propose three approaches for the improvement by (1) supplying soils with limiting nutrients, (2) supporting microbial communities with high mineral solubilization capabilities or (3) applying communities antagonistic to the pathogen. Citation: Kopecky, J.; Rapoport, D.; The procedures for the disease control may include fertilization with micronutrients and appropriate Sarikhani, E.; Stovicek, A.; organic matter or inoculation with beneficial strains selected according to local environmental Patrmanova, T.; Sagova-Mareckova, conditions. -
WO 2016/007985 Al 21 January 2016 (21.01.2016) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/007985 Al 21 January 2016 (21.01.2016) P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A01P 21/00 (2006.01) A01N 43/653 (2006.01) kind of national protection available): AE, AG, AL, AM, A01G 1/00 (2006.01) A01N 43/54 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, (21) Number: International Application DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/AU2015/000393 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (22) International Filing Date: KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, 8 July 2015 (08.07.2015) MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (25) Filing Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 2014902720 15 July 2014 (15.07.2014) AU kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, (71) Applicant: SIMPLOT AUSTRALIA PTY LTD TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, [AU/AU]; Chifley Business Park, 2 Chifley Drive, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, Mentone, Victoria 31 4 (AU). -
F[Ffi',Dtftarer
#,f[ffi',Dtftarer Gommon Scab of Potato Phillip Whartonl, Jarred Driscoll2, David Douches2, Ray Hammerschmidtl and William Kirkl lDepartment of Plant Pathology, 2Department of Crop & Soil Sciences, Michigan State University Common Scab Symptoms Streptomyces scabies (Thaxter) Waksman & Henrici. The symptoms of potato common scab are quite (Acti nobacteria, Acti nomycetales) variable and occur on the surface of the potato tuber. The disease forms several types of corklike lntrod uction lesions - surface (Fig. 1), raised (Fig. 2) and pitted Of the more than 400 identified species in the lesions (Fig. 3). Sometimes surface lesions are also genus Streptomyces, only a fraction are considered referred to as russeting, particularly on round whites, plant pathogenic. Common scab may be caused because the general appearance resembles the skin by several soil-dwelling plant pathogenic bacterial of a russet-type tuber. Pitted lesions vary in depth, '1lB species in this genus, including S. scabies and S. although on average they extend inch deep. turgidiscabies. ln particular, S. scabies has been well The type of lesion formed on a tuber is thought to documented in causing scab lesions. Streptomyces be determined by a combination of host resistance, scabies infects a number of root crops, including aggressiveness of the pathogen strain, time of infec- radish (Raphanus sativus), parsnip (Pastinaca tion and environmental conditions. sativa), beet (Beta vulgaris) and carrol (Daucus carota), as well as potato (Solanum tuberosum). The Scab symptoms are usually f irst noticed late in the disease occurs worldwide wherever potatoes are growing season or at harvest. Tubers are susceptible grown. Common scab does not usually affect total to infection as soon as they are formed.