Bacterial and Fungal Diseases of Potato and Their Management

Total Page:16

File Type:pdf, Size:1020Kb

Bacterial and Fungal Diseases of Potato and Their Management BACTERIAL AND FUNGAL DISEASES OF POTATO AND THEIR MANAGEMENT Jessica Rupp, Extension Plant Pathology Specialist, Department of Plant Sciences and Plant Pathology Barry Jacobsen, Associate Director and Head, Montana Ag Experiment Stations, Department of Research Centers EB 0225 new January 2017 BACTERIAL DISEASES THE SEED POTATO INDUSTRY IN MONTANA Blackleg 1 Seed potatoes are an important crop in Montana and Aeiral Stem Rot 1 are a crucial quality seed source for potato production Soft Rot 2 across the United States. The cooperation of commercial producers and home gardeners to control diseases of great Ring Rot 2 concern, such as late blight, is essential. Brown Rot 5 Dickeya Blackleg 5 Montana is one of the top five seed-potato producing states. According to the Montana Department of Common Scab 6 Agriculture, the state’s seed potatoes are prized because FUNGAL DISEASES growing areas are somewhat isolated from airborne spores of diseases such as late blight. To protect this industry, Alternaria Brown Spot 6 Montana only allows potatoes that originate in Montana to Early Blight 7 be grown as certified seed, and requires all seed potatoes Late Blight 8 to be inspected at their shipping point. Businesses can Powdery Mildew 9 sell garden seed potatoes from outside Montana, but need to be inspected at the point of shipping and have an Glossary 9 accompanying health certificate. © 2017 The U.S. Department of Agriculture (USDA), Montana State University and Montana State University Extension prohibit discrimination in all of their programs and activities on the basis of race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation, and marital and family status. Issued in furtherance of cooperative extension work in agriculture and home economics, acts of May 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture, Jeff Bader, Director, Montana State University Extension, Bozeman, MT 59717. Information in this document is provided for educational purposes only. Reference to commercial products or trade names does not imply an endorsement of them by MSU Extension. Common chemical and trade names are used in this publication for clarity for the reader. Inclusion of a common chemical or trade name does not imply endorsement of that particular product or brand of herbicide and exclusion does not imply non-approval. This publication is not intended to replace the product label. 1 BACTERIAL DISEASES OF POTATO AND THEIR MANAGEMENT IN MONTANA BLACKLEG, AERIAL STEM ROT and SOFT ROT are all caused by bacteria, that via their production of pectolytic enzymes cause a wet, mushy rot of tissues they infect. Pectolytic enzymes dissolve the middle lamella, composed of pectin, which holds plant cells together. BLACKLEG AERIAL STEM ROT General Information General Information Currently in Montana, blackleg is most commonly caused Aerial stem rot, also known as aerial blackleg, aerial soft by Pectobacterium spp. In the United Kingdom and Europe rot, or bacterial stem rot can be found anywhere potatoes another genus of soft rot bacteria, Dickeya spp. can cause are grown. This disease can be caused by several different blackleg and this will be discussed separately. bacteria including: Pectobacterium carotovorum subsp. As infected tubers are the source of this disease and carotovorum (syn. Erwinia carotovora subsp. carotovora), the pathogen is easily spread during seed cutting, blackleg Pectobacterium atrosepticum and Dickeya dianthicola is of great concern to certified seed growers. This disease (syn. Erwinia chrysanthemi). In Montana, aerial stem rot is has been minimized by the tissue culture-based, flush-out typically caused by Pectobacterium carotovorum subsp. certification system used by Montana seed growers. carotovorum, the causal agent of soft rot. Symptoms and Spread Symptoms and Spread Blackleg symptoms include soft rot of seed pieces, black to Aerial stem rot often begins as a water-soaked lesion brown discoloration of the stem extending from the seed on the stem that becomes a soft, rotted area. Under dry piece to above ground portions of the stem, and stunting conditions, stems appear shriveled and dark, while in wet, and wilting of affected stems (Figure 1). In some cases only humid conditions appear soft and slightly water soaked. the interior of the stem may show discoloration. Blackleg Internal stem pith is often discolored outside the boundary infected tubers can show soft rot symptoms in storage, but of lesion edges. When present, external discoloration symptom development is favored by wet soils at planting due to decay ranges from dark green to dark brown, and and temperatures between 50 and 60ºF before emergence black. The infection is not tuber borne, and often remains and >68°F after emergence. Under unfavorable conditions confined to the aboveground portion of the plant. Stem for disease development, plants may be asymptomatic. infections occur through wounds or natural openings, such as a leaf scar. Affected stems become wilted and Management often die. Aerial stem rot is differentiated from blackleg by The key to management of Blackleg is disease-free seed. occurring higher up the stem and spreading downward, Cleaning seed handling, planting, and cutting equipment whereas blackleg occurs from the ground up. The soft rot is important and this will be discussed in the Soft Rot/Ring bacterium is a common soil inhabitant and is spread by Rot disease sections. FIGURE 1. Typical blackleg infection FIGURE 2. Aerial stem rot following hail event Photo: Payton Strawser, The Ohio State University Photo: Barry Jacobsen, Montana State University 2 BACTERIAL & FUNGAL DISEASES OF POTATO AND THEIR MANAGEMENT IN MONTANA irrigation, splashing water or insects. This bacterium must favored by 70-80ºF temperatures, but can be active at any infect through wounds with hail injury (Figure 2, page 1) temperature between 32 and 90ºF with decay and bacteria and mechanical damage (equipment, blowing sand) being reproduction being sharply retarded below 50ºF. Soft rot the most common routes for infection. Where European bacteria spread from infected to non-infected tubers via corn borer is found, their oviposition and feeding sites are water films in storage. another common infection site. Under moist conditions Symptoms and Spread decay is soft and slimy. Factors that lead to prolonged Symptoms of soft rot are characterized by soft, mushy canopy wetness such as rain, dense canopies, excessive decay of tuber tissue. Rotted tissues are typically cream nitrogen fertilization, etc. are predisposing factors. Under to tan in color. When infected tubers are cut, the margin dry conditions infected tissues rapidly shrivel, and dry of the rotted area will turn brown to black with a clear up. Warm to hot temperatures are favorable for bacterial boundary between the rotted and sound tissue. Initial replication. Simple molecular laboratory tests can easily decay is relatively odorless, but as other bacteria begin to differentiate black leg from soft rot bacteria. grow within the rotted tissue, the odor will become foul. Management When tubers are harvested from wet soils or washed before Management of the disease can prove difficult. The storage, lenticel infection is common. Lenticel infections are suggestions for integrated control follow. typically ¼-½ inch in diameter and while still moist, may 1. Plant only clean, certified seed potatoes. be raised and slightly darker than the potato skin. Flesh up 2. Use whole tubers, or allow cut seed pieces to to ½ inch deep under the infected lenticel is water-soaked suberize, or cork over, before planting. and yellow to cream in color. When these infections dry 3. Use recommended plant spacing. out under dry or cold conditions, they are typically slightly 4. Avoid over irrigation, use less frequent irrigation, with sunken. Un-suberized bruises or wounds are common longer durations. Early day irrigation allows for drying entry points and seed decay is common when seed pieces to occur later in the day. have not been properly suberized before planting. Typical symptoms of soft rot are shown in Figures 3. 5. Avoid over fertilization (especially nitrogen) to prevent excessive vine growth. Management 6. Avoid stem damage during hilling and use optimal Management of soft rot requires addressing the ever- sanitation practices present pathogen and its requirement for wounds or The use of copper-based fungicides with or without damaged tissues for infection. The following are important mancozeb is recommended after hail events. Spray suggestions. programs with famadone +cymoxanil+ mancozeb and 1. Avoid harvest when temperatures are >65-75ºF, copper hydroxide + mancozeb have been shown to reduce particularly when conditions are wet. disease incidence and severity. 2. Have good skin set before harvest. Generally this requires 10-14 days post vine kill. SOFT ROT General Information This disease can be caused by any one of several FIGURE 3. Typical cross section of tuber affected by soft rot pectolytic bacteria including: Pectobacterium carotovorum subsp. carotovorum, Pectobacterium carotovorum subsp. odoriferum, Pectobacterium atrosepticum, Dickeya dianthicola (syn. Erwinia chrysanthemi), and certain strains of bacteria in the genus Pseudomonas, Bacillus and Clostridium. Decay by Clostridium species usually only occurs under anaerobic conditions. Soft rot decay of seed pieces and potatoes in storage is most commonly caused by Pectobacterium carotovorum subsp. carotovorum,
Recommended publications
  • Reactive Oxygen Species Alleviate Cell Death Induced by Thaxtomin a in Arabidopsis Thaliana Cell Cultures
    plants Article Reactive Oxygen Species Alleviate Cell Death Induced by Thaxtomin A in Arabidopsis thaliana Cell Cultures Fatima Awwad 1,2, Guillaume Bertrand 3, Michel Grandbois 3 and Nathalie Beaudoin 1,* 1 Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada 2 Groupe de Recherche en Biologie Végétale, Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières, Trois-Rivières, QC G9A 5H7, Canada 3 Institut de Pharmacologie de Sherbrooke, Département de Pharmacologie et Physiologie, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada * Correspondence: [email protected]; Tel.: +1-819-821-8000 Received: 28 June 2019; Accepted: 3 September 2019; Published: 6 September 2019 Abstract: Thaxtomin A (TA) is a cellulose biosynthesis inhibitor synthesized by the soil actinobacterium Streptomyces scabies, which is the main causal agent of potato common scab. TA is essential for the induction of scab lesions on potato tubers. When added to Arabidopsis thaliana cell cultures, TA induces an atypical programmed cell death (PCD). Although production of reactive oxygen species (ROS) often correlates with the induction of PCD, we observed a decrease in ROS levels following TA treatment. We show that this decrease in ROS accumulation in TA-treated cells is not due to the activation of antioxidant enzymes. Moreover, Arabidopsis cell cultures treated with hydrogen peroxide (H2O2) prior to TA treatment had significantly fewer dead cells than cultures treated with TA alone. This suggests that H2O2 induces biochemical or molecular changes in cell cultures that alleviate the activation of PCD by TA. Investigation of the cell wall mechanics using atomic force microscopy showed that H2O2 treatment can prevent the decrease in cell wall rigidity observed after TA exposure.
    [Show full text]
  • Potato Tuber Viruses: Mop-Top Management A1777
    NDSU EXTENSION NDSU EXTENSION EXTENDING KNOWLEDGEEXTENDING CHANGING KNOWLEDGE LIVES CHANGINGNDSU EXTENSION LIVES EXTENDING KNOWLEDGE CHANGING LIVES A1777 (Revised September 2018) Potato Tuber Viruses: Mop-top Management Andy Robinson Potato Extension Agronomist NDSU/University of Minnesota Department of Plant Sciences, NDSU Shashi K.R. Yellareddygari Research Scientist Department of Plant Pathology, NDSU Owusu Domfeh Student (former) Department of Plant Pathology, NDSU Neil Gudmestad University Distinguished Professor and Endowed Chair of Potato Pathology Department of Plant Pathology, NDSU The potato mop-top virus (PMTV) is spreading throughout the potato-growing regions in the U.S. This viral disease was con- firmed in Maine (2003), North Dakota (2010), Washington (2011), Idaho (2013), New Mexico (2015) and Colorado (2015). It also is found in production areas of Europe, South America and Asia. Figure 1. Tuber flesh exhibiting arcs, streaks and/or flecks Potato mop-top virus is seed- and soil-borne, and vectored when infected with mop-top virus. Flesh also may become by Spongospora subterranea f. sp. subterranea. It is the rust-colored or tinged with brown. (Owusu Domfeh) causal agent of powdery scab on potato. Once established in fields, powdery scab can survive for up to 18 years in the absence of a potato crop. Potato mop-top virus is of economic importance to potato growers throughout the U.S. because it may affect tuber quality and may be transferred from seed to daughter tubers. The potato mop-top virus is restricted primarily to the Solanaceae and Chenopodiaceae families. In addition to infested fields, PMTV has many other potential hosts, such as eastern black nightshade (Solanum ptycanthum), hairy nightshade (Solanum physalifolium), common lambsquarters (Chenpodium album) and sugar beets (Beta vulgaris).
    [Show full text]
  • Spongospora Subterranea on Potato
    STUDIES ON THE DEVELOPMENT AND MANAGEMENT OF POWDERY SCAB AND ROOT GALL FORMATION CAUSED BY SPONGOSPORA SUBTERRANEA ON POTATO (SOLANUM TUBEROSUM L.) A Dissertation Submitted to the Graduate Faculty of the North Dakota State University of Agriculture and Applied Science By Francisco Gabriel Bittara Molina In Partial Fulfillment of the Requirements for the Degree of DOCTOR OF PHILOSOPHY Major Department: Plant Pathology November 2015 Fargo, North Dakota North Dakota State University Graduate School Title Studies on the development and management of powdery scab and root gall formation caused by Spongospora subterranea on potato (Solanum tuberosum L.) By Francisco Gabriel Bittara Molina The Supervisory Committee certifies that this disquisition complies with North Dakota State University’s regulations and meets the accepted standards for the degree of DOCTOR OF PHILOSOPHY SUPERVISORY COMMITTEE: Dr. Gary A. Secor Co-Chair Dr. Neil C. Gudmestad Co-Chair Dr. Asunta L. Thompson Dr. Luis E. del Rio Mendoza Approved: 11/02/2015 Dr. Jack B. Rasmussen Date Department Chair ABSTRACT The biotroph protozoan Spongospora subterranea causes root gall formation and powdery scab on potato. Symptoms on tubers affect directly the quality and marketability of the harvested product while infection in roots are associated with yield reductions. Moreover, S. subterranea is the vector of the Potato mop-top virus. The management of the disease is difficult due to the limited number of current control options and requires the integration of control measures among which host resistance represents the most economically and long-term approach. This dissertation focuses on the evaluation of management strategies for the control of powdery scab and root gall formation.
    [Show full text]
  • Powdery Scab of Potatoes
    PT303 Epidemiology and control of powdery scab of potatoes Rudolf de Boer and Megan Theodore Agriculture Victoria PT303 This report is published by the Horticultural Research and Development Corporation to pass on information concerning horticultural research and development undertaken for the potato industry. The research contained in this report was funded by the Horticultural Research and Development Corporation with the financial support of the potato industry. All expressions of opinion are not to be regarded as expressing the opinion of the Horticultural Research and Development Corporation or any authority of the Australian Government. The Corporation and the Australian Government accept no responsibility for any of the opinions or the accuracy of the information contained in this report and readers should rely upon their own enquiries in making decisions concerning their own interests. Cover price: $20.00 HRDC ISBN 1 86423 682 5 Published and distributed by: Horticultural Research & Development Corporation Level 6 7 Merriwa Street Gordon NSW 2072 Telephone: (02)9418 2200 Fax: (02)9418 1352 E-Mail: [email protected] © Copyright 1997 HORTICULTURAL RESEARCH & DEVELOPMENT CORPORATION HRDVC Partnership in horticulture The epidemiology and control of powdery scab of potatoes Contents 1. INDUSTRY SUMMARY 2 2. TECHNICAL SUMMARY 3 3. RECOMMENDATIONS 4 4. EXTENSION AND PUBLICATIONS 6 5. ACKNOWLEDGMENTS 7 6. TECHNICAL REPORT 8 6.1 Introduction 8 6.2 Studies on alternative hosts and on the influence of rotation on powdery scab 13 6.2.1 Alternative hosts and their role in the life-cycle of S. subterranea 13 6.2.2 Towards a method of quantifying populations of S.
    [Show full text]
  • Microbiologytoday
    microbiologytoday vol34|may07 quarterly magazine of the society for general microbiology actinobacteria streptomyces – not just antibiotics good, bad, but beautiful actinobacteria corynebacteria – good guys and bad guys the mycobacteria review of uk microbial science contents vol34(2) regular features 54 News 88 Gradline 96 Reviews 82 Meetings 90 Hot off the press 99 Addresses 84 Schoolzone 93 Going public other items 59 Micro shorts 94 Members’ reports 98 Obituary articles 60 An introduction to the 74 Corynebacteria: actinobacteria the good guys and the bad David Hopwood guys Pathogenic, symbiotic and industrially important, Michael Bott this group of micro-organisms is diverse and The products of this genus range from useful amino acids fascinating. used as flavour-enhancing food additives to deadly toxins that help us to understand virulence. 64 Streptomyces: not just antibiotics 78 The mycobacteria Rosemary Loria, Madhumita Joshi & Matt Hutchings Simon Moll These successful pathogens, causing diseases An alternative insight into the pathogenic ability of these such as tuberculosis and leprosy, are still a usually life-saving organisms. major threat to global health. 68 Good, bad, but 100 Comment: beautiful: the weird and Review of UK microbial wonderful actinobacteria science Paul Hoskisson Charles Dorman Morphologically complex, challenging and Microbiology plays a pivotal role in the scientific and rewarding; we have barely scratched the surface economic life of the UK. Greater interaction between when it comes to the Jekyll and
    [Show full text]
  • Research Collection
    Research Collection Doctoral Thesis Global population genetics of Spongospora subterranea F. SP. subterranea, the plasmodiophorid pathogen causing powdery scab of potato and its impact on disease management Author(s): Gau, Rebecca D. Publication Date: 2012 Permanent Link: https://doi.org/10.3929/ethz-a-007593856 Rights / License: In Copyright - Non-Commercial Use Permitted This page was generated automatically upon download from the ETH Zurich Research Collection. For more information please consult the Terms of use. ETH Library DISS. ETH No. 20653 GLOBAL POPULATION GENETICS OF SPONGOSPORA SUBTERRANEA F. SP. SUBTERRANEA, THE PLASMODIOPHORID PATHOGEN CAUSING POWDERY SCAB OF POTATO AND ITS IMPACT ON DISEASE MANAGEMENT REBECCA DOROTHEA GAU Zürich, 2012 Diss. ETH No. 20653 GLOBAL POPULATION GENETICS OF SPONGOSPORA SUBTERRANEA F. SP. SUBTERRANEA, THE PLASMODIOPHORID PATHOGEN CAUSING POWDERY SCAB OF POTATO AND ITS IMPACT ON DISEASE MANAGEMENT A dissertation submitted to the ETH ZURICH for the degree of DOCTOR OF SCIENCES presented by REBECCA DOROTHEA GAU MSc in Genome Based Systems Biology, Bielefeld University, Germany Born on December 28th, 1982 Citizen of Germany Accepted on the recommendation of Prof. Dr Bruce A. McDonald, examiner Dr Ueli Merz, co-examiner Prof. Dr Richard E. Falloon, co-examiner Dr Patrick C. Brunner, co-examiner Zürich, 2012 TABLE OF CONTENTS ABSTRACT ................................................................................................................................................ 9 ZUSAMMENFASSUNG...........................................................................................................................
    [Show full text]
  • Tracking the Subtle Mutations Thriving Host Sensing by the Plant Pathogen Streptomyces Scabies
    bioRxiv preprint doi: https://doi.org/10.1101/097998; this version posted January 3, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Tracking the Subtle Mutations Thriving Host Sensing by the Plant Pathogen Streptomyces scabies Samuel Jourdana, Isolde M. Francisb, Benoit Deflandrea, Rosemary Loriac, and Sébastien Rigalia,* InBioS – Centre for Protein Engineering, University of Liège, Institut de Chimie,Liège, Belgiuma; Department of Biology, California State University, Bakersfield, California, USAb; Department of Plant Pathology, University of Florida, Gainesville, Florida, USAc Address correspondence to: Sébastien Rigali, [email protected]. Abstract The acquisition of genetic material conferring the arsenal necessary for host virulence is a prerequisite on the path to become a plant pathogen. More subtle mutations are also required for perception of cues witnessing the presence of the target host and optimal conditions for colonization. The decision to activate the pathogenic lifestyle is not ‘taken lightly’ and involves efficient systems monitoring environmental conditions. But how can a pathogen timely trigger the expression of virulence genes if the main signal inducing its pathogenic behavior originates from cellulose, the most abundant polysaccharide on earth? This situation is encountered by Streptomyces scabies responsible for common scab disease on tuber and root crops. We here propose a series of hypotheses of how S. scabies could optimally distinguish whether cello- oligosaccharides originate from decomposing lignocellulose (nutrient sources) or, instead, emanate from living and expanding plant tissue (virulence signals), and accordingly adapt its physiological response.
    [Show full text]
  • STUDIES on POWDERY SCAB on POTATO in SOUTH AFRICA By
    STUDIES ON POWDERY SCAB ON POTATO IN SOUTH AFRICA by JESSICA WRIGHT Submitted in partial fulfilment of the requirements for the degree of Magister Scientiae (Agriculture) Plant Pathology In the Faculty of Natural and Agricultural Sciences Department of Microbiology and Plant Pathology University of Pretoria Pretoria November 2012 © University of Pretoria DECLARATION I, Jessica Wright, declare that the thesis, which I hereby submit for the degree Magister Scientiae (Agriculture) Plant Pathology at the University of Pretoria, is my own work and has not previously been submitted by me for a degree at this or any other tertiary institution. Signed: ______________________ Date: ______________________ i ACKNOWLEDGEMENTS The author would like to acknowledge and thank the following: The National Research Foundation and Potatoes South Africa for financial assistance throughout the project Jacquie van der Waals for all her advice, support and motivation throughout my Master’s degree Alison Lees for her guidance in preparing this thesis Charles Wairuri for his knowledge, patience and encouragement regarding the molecular aspects of this thesis Friends and colleagues at Plant Pathology for providing a working atmosphere that was supportive and enjoyable Family, my Mom and Dad for their on going support, understanding, encouragement and love throughout my academic years. To Jaco Liebenberg for his love and understanding when I needed it the most ii Studies on powdery scab on potatoes in South Africa By Jessica Wright Supervisor: Dr. J. E. van der Waals Co-Supervisor: Dr. A.K. Lees Department: Microbiology and Plant Pathology University of Pretoria Degree: Magister Scientiae (Agriculture) Abstract Spongospora subterranea (Wallroth) Lagerheim f.
    [Show full text]
  • Seedborne Transmission of Clubroot
    SeedborneSeedborne TransmissionTransmission ofof ClubrootClubroot ofof CrucifersCrucifers ResearchResearch Team:Team: S.E.S.E. StrelkovStrelkov,, R.J.R.J. HowardHoward andand S.F.S.F. HwangHwang GraduateGraduate Student:Student: D.C.D.C. RennieRennie OutlineOutline ofof PresentationPresentation •• IntroductionIntroduction andand backgroundbackground •• StudyStudy objectivesobjectives •• DetectionDetection ofof seedseed infestationinfestation levels,levels, naturalnatural infestationinfestation ofof seedsseeds andand tuberstubers •• EffectsEffects ofof seedseed cleaningcleaning •• EvaluationEvaluation ofof seedseed treatmentstreatments •• ConclusionsConclusions ClubrootClubroot SpreadSpread •• SoilborneSoilborne pathogenpathogen 7 8 •• MovementMovement ofof infestedinfested 0.169 0.155 soilsoil 6 9 0.296 0.225 – Machinery 150 m 150 m – Soil erosion and water 3 4 2 5 run-off 0.324 0.310 •• PossibilityPossibility forfor 0.394 0.479 transmissiontransmission ofof restingresting 150 m 150 m sporesspores asas seedborneseedborne 1 Field Entrance contaminants?contaminants? 0.901 Frequency of infection SeedborneSeedborne ClubrootClubroot TransmissionTransmission •• ManyMany nonnon--refereedrefereed factfact--sheetssheets && websiteswebsites mentionmention thisthis possibilitypossibility butbut provideprovide nono datadata •• LittleLittle informationinformation availableavailable inin refereedrefereed literatureliterature –– WarneWarne (1943):(1943): introductionintroduction ofof clubrootclubroot toto aa gardengarden onon infestedinfested seedsseeds
    [Show full text]
  • Powdery Scab and PMTV
    2/23/2021 Management of Powdery Scab and Potato Mop Top Virus Jeff Miller, James Woodhall, and Nora Olsen S pongosporasubterraneasubsp. subterranea(Protozoa) Photo from Ueli Merz Photo from Ueli Merz Photo from Ueli Merz Photo from Ueli Merz 1 2/23/2021 2 2/23/2021 3 2/23/2021 PMTV • Foliar symptoms not associated with primary infection. • Foliar = similar to calico. • Symptoms favored by cool weather. • Tuber = necrotic arcs (may require alternating storage temperatures to develop). – Can look like TRV, PVYntn, internal brown spot • Symptoms increase with time in storage • Can cause external symptoms TRV PMTV Photos courtesy of Jonathan Whitworth Which one is PMTV? TRV? 4 2/23/2021 Photo courtesy of Jonathan Whitworth PMTV Positive 5 2/23/2021 Powdery Scab Disease Cycle • Environmental conditions which favor disease: – Cool, wet soil – 52-65°F – Alternating wet/dry conditions – Excessive soil moisture (especially 3-4 weeks after TI) • Sandy soils and poor drainage more conducive for disease. • Tuber infection typically occurs at tuber initiation. • Very little inoculum required to cause disease. Powdery Scab Management • Longer crop rotation - > 5 years (12 year survival). • Avoid planting in contaminated, poorly drained soils. • Plant disease-free seed in disease-free areas. • Avoid using manure if animals ingested infected tubers. • Plant resistant cultivars. • Carefully manage irrigation water. • Use of fertility, pesticides? Compendium of Potato Diseases, 2nd Ed. Falloon, AJPR (2008) 85:253-260 6 2/23/2021 Effect of Seed on Powdery Scab 25 20 15 10 5 0 Diseased Visually disease free Mini-tubers Trial 1 Trial 2 Tegg et al., 2016, AJPR 93:231-238 Effect of Seed/Soil Inoculum on Powdery Scab Dr.
    [Show full text]
  • Biology and Chemical Ecology of Spongospora Subterranea During Resting Spore Germination
    Biology and Chemical Ecology of Spongospora subterranea During Resting Spore Germination Towards a germinate/exterminate control approach for Spongospora diseases of potato by Mark Angelo O. Balendres BSc in Agriculture, Major in Plant Pathology Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy University of Tasmania, May 5, 2017 Statements and Declarations Statement of Originality This thesis contains no material which has been accepted for a degree or diploma by the University or any other institution, except by way of background information and duly acknowledged in the thesis. To the best of my knowledge and belief, no material previously published or written by another person, except where due acknowledgement is made in the text of the thesis, nor does the thesis contain any material that infringes copyright. Authority of Access The publishers of the papers (as indicated in next section) hold the copyright for that content, and access to the material should be sought from the respective journals. The remaining non-published content of the thesis is not to be made available for loan or copying for two years following the date this statement was signed. Following that time, the remaining non-published content of the thesis may be made available for loan and limited copying and communication in accordance with the Copyright Act 1968. Mark Angelo O. Balendres University of Tasmania May 5, 2017 i Statement of Co-Authorship and Contribution The following people and institutions contributed to the publication of work undertaken as part of this thesis: Mark Angelo Balendres Tasmanian Institute of Agriculture, UTAS, Australia Calum Rae Wilson Tasmanian Institute of Agriculture, UTAS, Australia Robert Steven Tegg Tasmanian Institute of Agriculture, UTAS, Australia David Scott Nichols Central Science Laboratory, UTAS, Australia Paper 1: Balendres MA, Tegg RS and Wilson CR.
    [Show full text]
  • Metabolic Profiling for Identification of Potential Biomarkers in Potato Tuber Extracts Associated with Tolerance to Spongospora Subterranea F
    Metabolic profiling for identification of potential biomarkers in potato tuber extracts associated with tolerance to Spongospora subterranea f. sp. subterranea infection. By Gontse Kehumile Joyce Modisane Submitted in partial fulfilment of the requirements for the degree Magister Scientiae (M.Sc.) (Specialisation in Biochemistry) In the Faculty of Natural and Agricultural Sciences Department of Biochemistry, Genetics and Microbiology University of Pretoria South Africa Supervisor: Prof Z. Apostolides Co-supervisor: Prof J. van der Waals June 2019 SUBMISSION DECLARATION I, Gontse Kehumile Joyce Modisane declare that the thesis/dissertation, which I hereby submit for the degree at Magister Scientiae (Specialisation in Biochemistry) the University of Pretoria, is my work and has not previously been submitted by me for the degree at this or any other tertiary institution. Signature: Date: i PLAGIARISM DECLARATION Full name: Gontse Kehumile Joyce Modisane Student number: 15056237 Title of the work: Metabolic profiling for identification of potential biomarkers in potato tuber extracts associated with tolerance to Spongospora subterranea f. sp. subterranea infection. Declaration 1. I understand what plagiarism entails and am aware of the University’s policy in this regard. 2. I declare that this Dissertation is my own original work. Where someone else’s work was used (either from a printed source, internet or any other source), due acknowledgement was given, and reference was made according to departmental requirements. 3. I did not make use of another student’s previous work and submit it as my own. 4. I did not allow and will not allow anyone to copy my work with the intention of presenting it as his or her own work.
    [Show full text]