Modular Continued Fractions and the Snub Cube REU Project Description

Total Page:16

File Type:pdf, Size:1020Kb

Modular Continued Fractions and the Snub Cube REU Project Description Modular Continued Fractions and the Snub Cube REU Project Description Jordan Schettler 1 Motivation This project is inspired by the following remarkable identities of Srinivasa Ramanujan: e−2π=5 e−2π 4e−2π=3 e−2π + e−4π = 1 + = 1 + p p −4π p p p −4π −8π ' 5 − ' e 6 3 − (1 + 3) e + e 1 + 1 + e−6π e−6π + e−12π 1 + 1 + 1 + ··· 1 + ··· Equation 1 Equation 2 p Here ' = (1+ 5)=2 is the golden ratio. It is known that Equation 1 is intimately related to the Platonic solid with twenty faces known as the icosahedron (see Table 1); similarly, Equation 2 is related to the Platonic solid with 4 faces known as the tetrahedron. Tetrahedron Octahedron Icosahedron Table 1: The Regular Polyhedra (up to dual) During the 2012-2013 academic year, I ran a undergraduate research project (see http://math. ucsb.edu/~jcs/Ramanujan/) which centered around understanding and visualizing the case of the icosahedron. Our guide was William Duke’s beautiful article Continued fractions and modular func- tions [Duk05]. In particular, Duke explains how Equation 1 and related identities arise from the study of a function on the complex upper half plane which is modular for the congruence subgroup Γ(5): for q = exp(2πiτ) we define q1=5 q q2 q3 r(τ) = 1 + 1 + 1 + 1 + ··· 1 The relationship of the function r(τ) to the icosahedron can be seen via the expression of the j- invariant (a fundamental modular function) as a rational function of v: (r 20 − 228r 15 + 494r 10 + 228r 5 + 1)3 j(τ) = − r 5(r 10 + 11r 5 − 1)5 The roots of the denominator (resp. numerator) are precisely the stereographically projected vertices (resp. centers of faces) of an icosahedron inscribed in a unit sphere. See Table 2. Inscribe Tesselate Project to C Table 2: Stereographic Projection of Icosahedron In fact, Equation 1 follows by recognizing that r(i) is the fixed point of a rotationp of the icosahedron. More generally, we can give an elegant Galois theoretic proof of the fact that r(i n) can be expressed in radicals over Q for every positive integer n. There is an analogous theory for Equation 2 and the tetrahedron which uses a function on the complex upper half plane which is modular for the congruence subgroup Γ(6): q1=3 q + q2 q2 + q4 q3 + q6 s(τ) = (0.1) 1 + 1 + 1 + 1 + ··· However, the case of the tetrahedron is not as well-documented, and, in fact, Duke writes “We leave the treatment of the continued fraction [Eq. 0.1] using Γ(6) along the lines of this paper as a (chal- lenging) exercise.” Even though Ramanujan derived his identities in the early 1900s, he was both unaware of the connection to Platonic solids and of the deeper complex analytic properties. In fact, this is still very much an active research; for example, an article in 2012 [MNCB12] takes note of a new algebraic relation found for the function s(τ) above which is analogous to one previously known for r(τ). One major goal of the REU project would be to understand and visualize the case of the tetrahe- dron. [Note: The software we employed to do this for the icosahedron is very user friendly (Geogebra 3D and SAGE).] This will give a concrete introduction to the theory of modular functions, Riemann surfaces (perhaps even moduli spaces), and even combinatorics of the “Rogers-Ramanujan” type. 2 Further Study: The Snub Cube Even less well documented than the tetrahedron is the possibility that some Archimedean solids may also have functions defined by continued fractions which are modular up to the symmetry group. We take a rather intriguing possibility as our potential for new/interesting research. Just as the golden 2 ratio ' = limn!1 Fn=Fn−1 is the limiting value of the ratio of consecutive members of the Fibonacci p3 p p3 p sequence (1, 1, 2, 3, 5, 8, 13, ...), the Tribonacci constant T = (1 + 19 + 3 33 + 19 − 3 33)=3 = limn!1 Tn=Tn−1 is the limiting value of the ratio of consecutive members of the Tribonacci sequence (1, 1, 2, 4, 7, 13, 24, 44, ...). This constant is related to the (non-Platonic) solid known as the snub cube in a suggestively similar way that ' is related to the icosahedron. See Table 3. s 613T + 203 Volume = 9(35T − 62) Table 3: The Snub Cube of Edge Length 1 and the Tribonacci Constant T On the other hand, there is a beautiful (though apparently not widely-known) continued fraction involving T which is strikingly reminiscent of Ramanujan’s Platonic identities: p p eπ 11=24 e−π 11 p p −1 = 1 − T + 1 p e−3π 11 + e−2π 11 1 + e−π 11 − p p e−5π 11 + e−3π 11 1 − p p e−7π 11 + e−4π 11 1 − 1 − · · · This leads us to the following questions: 1. Is the a function defined by a continued fraction which is modular up to the symmetries of the snub cube which recovers the above identity? 2. If so, can we describe the situation sufficiently well enough to generate more identifies of this type? 3. Can we classify when special values can be expressed in terms of radicals over Q? 4. What’s the congruence subgroup/Riemann surface involved? 5. Does anything similar occur for other Archimedean solids? 6. What about higher dimensional polytopes? References [Duk05] W. Duke, Continued fractions and modular functions, Bull. Amer. Math. Soc. (N.S.) 42 (2005), no. 2, 137–162. [MNCB12] M. S. Mahadeva Naika, S. Chandankumar, and K. Sushan Bairy, New identities for Ra- manujan’s cubic continued fraction, Funct. Approx. Comment. Math. 46 (2012), no. part 1, 29–44. 3.
Recommended publications
  • On the Archimedean Or Semiregular Polyhedra
    ON THE ARCHIMEDEAN OR SEMIREGULAR POLYHEDRA Mark B. Villarino Depto. de Matem´atica, Universidad de Costa Rica, 2060 San Jos´e, Costa Rica May 11, 2005 Abstract We prove that there are thirteen Archimedean/semiregular polyhedra by using Euler’s polyhedral formula. Contents 1 Introduction 2 1.1 RegularPolyhedra .............................. 2 1.2 Archimedean/semiregular polyhedra . ..... 2 2 Proof techniques 3 2.1 Euclid’s proof for regular polyhedra . ..... 3 2.2 Euler’s polyhedral formula for regular polyhedra . ......... 4 2.3 ProofsofArchimedes’theorem. .. 4 3 Three lemmas 5 3.1 Lemma1.................................... 5 3.2 Lemma2.................................... 6 3.3 Lemma3.................................... 7 4 Topological Proof of Archimedes’ theorem 8 arXiv:math/0505488v1 [math.GT] 24 May 2005 4.1 Case1: fivefacesmeetatavertex: r=5. .. 8 4.1.1 At least one face is a triangle: p1 =3................ 8 4.1.2 All faces have at least four sides: p1 > 4 .............. 9 4.2 Case2: fourfacesmeetatavertex: r=4 . .. 10 4.2.1 At least one face is a triangle: p1 =3................ 10 4.2.2 All faces have at least four sides: p1 > 4 .............. 11 4.3 Case3: threefacesmeetatavertes: r=3 . ... 11 4.3.1 At least one face is a triangle: p1 =3................ 11 4.3.2 All faces have at least four sides and one exactly four sides: p1 =4 6 p2 6 p3. 12 4.3.3 All faces have at least five sides and one exactly five sides: p1 =5 6 p2 6 p3 13 1 5 Summary of our results 13 6 Final remarks 14 1 Introduction 1.1 Regular Polyhedra A polyhedron may be intuitively conceived as a “solid figure” bounded by plane faces and straight line edges so arranged that every edge joins exactly two (no more, no less) vertices and is a common side of two faces.
    [Show full text]
  • Archimedean Solids
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-2008 Archimedean Solids Anna Anderson University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/mathmidexppap Part of the Science and Mathematics Education Commons Anderson, Anna, "Archimedean Solids" (2008). MAT Exam Expository Papers. 4. https://digitalcommons.unl.edu/mathmidexppap/4 This Article is brought to you for free and open access by the Math in the Middle Institute Partnership at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in MAT Exam Expository Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Archimedean Solids Anna Anderson In partial fulfillment of the requirements for the Master of Arts in Teaching with a Specialization in the Teaching of Middle Level Mathematics in the Department of Mathematics. Jim Lewis, Advisor July 2008 2 Archimedean Solids A polygon is a simple, closed, planar figure with sides formed by joining line segments, where each line segment intersects exactly two others. If all of the sides have the same length and all of the angles are congruent, the polygon is called regular. The sum of the angles of a regular polygon with n sides, where n is 3 or more, is 180° x (n – 2) degrees. If a regular polygon were connected with other regular polygons in three dimensional space, a polyhedron could be created. In geometry, a polyhedron is a three- dimensional solid which consists of a collection of polygons joined at their edges. The word polyhedron is derived from the Greek word poly (many) and the Indo-European term hedron (seat).
    [Show full text]
  • Uniform Panoploid Tetracombs
    Uniform Panoploid Tetracombs George Olshevsky TETRACOMB is a four-dimensional tessellation. In any tessellation, the honeycells, which are the n-dimensional polytopes that tessellate the space, Amust by definition adjoin precisely along their facets, that is, their ( n!1)- dimensional elements, so that each facet belongs to exactly two honeycells. In the case of tetracombs, the honeycells are four-dimensional polytopes, or polychora, and their facets are polyhedra. For a tessellation to be uniform, the honeycells must all be uniform polytopes, and the vertices must be transitive on the symmetry group of the tessellation. Loosely speaking, therefore, the vertices must be “surrounded all alike” by the honeycells that meet there. If a tessellation is such that every point of its space not on a boundary between honeycells lies in the interior of exactly one honeycell, then it is panoploid. If one or more points of the space not on a boundary between honeycells lie inside more than one honeycell, the tessellation is polyploid. Tessellations may also be constructed that have “holes,” that is, regions that lie inside none of the honeycells; such tessellations are called holeycombs. It is possible for a polyploid tessellation to also be a holeycomb, but not for a panoploid tessellation, which must fill the entire space exactly once. Polyploid tessellations are also called starcombs or star-tessellations. Holeycombs usually arise when (n!1)-dimensional tessellations are themselves permitted to be honeycells; these take up the otherwise free facets that bound the “holes,” so that all the facets continue to belong to two honeycells. In this essay, as per its title, we are concerned with just the uniform panoploid tetracombs.
    [Show full text]
  • Five-Vertex Archimedean Surface Tessellation by Lanthanide-Directed Molecular Self-Assembly
    Five-vertex Archimedean surface tessellation by lanthanide-directed molecular self-assembly David Écijaa,1, José I. Urgela, Anthoula C. Papageorgioua, Sushobhan Joshia, Willi Auwärtera, Ari P. Seitsonenb, Svetlana Klyatskayac, Mario Rubenc,d, Sybille Fischera, Saranyan Vijayaraghavana, Joachim Reicherta, and Johannes V. Bartha,1 aPhysik Department E20, Technische Universität München, D-85478 Garching, Germany; bPhysikalisch-Chemisches Institut, Universität Zürich, CH-8057 Zürich, Switzerland; cInstitute of Nanotechnology, Karlsruhe Institute of Technology, D-76344 Eggenstein-Leopoldshafen, Germany; and dInstitut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), CNRS-Université de Strasbourg, F-67034 Strasbourg, France Edited by Kenneth N. Raymond, University of California, Berkeley, CA, and approved March 8, 2013 (received for review December 28, 2012) The tessellation of the Euclidean plane by regular polygons has by five interfering laser beams, conceived to specifically address been contemplated since ancient times and presents intriguing the surface tiling problem, yielded a distorted, 2D Archimedean- aspects embracing mathematics, art, and crystallography. Sig- like architecture (24). nificant efforts were devoted to engineer specific 2D interfacial In the last decade, the tools of supramolecular chemistry on tessellations at the molecular level, but periodic patterns with surfaces have provided new ways to engineer a diversity of sur- distinct five-vertex motifs remained elusive. Here, we report a face-confined molecular architectures, mainly exploiting molecular direct scanning tunneling microscopy investigation on the cerium- recognition of functional organic species or the metal-directed directed assembly of linear polyphenyl molecular linkers with assembly of molecular linkers (5). Self-assembly protocols have terminal carbonitrile groups on a smooth Ag(111) noble-metal sur- been developed to achieve regular surface tessellations, includ- face.
    [Show full text]
  • Math.MG] 25 Sep 2012 Oisb Ue N Ops,O Ae Folding
    Constructing the Cubus simus and the Dodecaedron simum via paper folding Urs Hartl and Klaudia Kwickert August 27, 2012 Abstract The archimedean solids Cubus simus (snub cube) and Dodecaedron simum (snub dodecahe- dron) cannot be constructed by ruler and compass. We explain that for general reasons their vertices can be constructed via paper folding on the faces of a cube, respectively dodecahedron, and we present explicit folding constructions. The construction of the Cubus simus is particularly elegant. We also review and prove the construction rules of the other Archimedean solids. Keywords: Archimedean solids Snub cube Snub dodecahedron Construction Paper folding · · · · Mathematics Subject Classification (2000): 51M15, (51M20) Contents 1 Construction of platonic and archimedean solids 1 2 The Cubus simus constructed out of a cube 4 3 The Dodecaedron simum constructed out of a dodecahedron 7 A Verifying the construction rules from figures 2, 3, and 4. 11 References 13 1 Construction of platonic and archimedean solids arXiv:1202.0172v2 [math.MG] 25 Sep 2012 The archimedean solids were first described by Archimedes in a now-lost work and were later redis- covered a few times. They are convex polyhedra with regular polygons as faces and many symmetries, such that their symmetry group acts transitively on their vertices [AW86, Cro97]. They can be built by placing their vertices on the faces of a suitable platonic solid, a tetrahedron, a cube, an octahedron, a dodecahedron, or an icosahedron. In this article we discuss the constructibility of the archimedean solids by ruler and compass, or paper folding. All the platonic solids can be constructed by ruler and compass.
    [Show full text]
  • Snubs, Alternated Facetings, & Stott-Coxeter-Dynkin Diagrams
    Symmetry: Culture and Science Vol. 21, No.4, 329-344, 2010 SNUBS, ALTERNATED FACETINGS, & STOTT-COXETER-DYNKIN DIAGRAMS Dr. Richard Klitzing Non-professional mathematician, (b. Laupheim, BW., Germany, 1966). Address: Kantstrasse 23, 89522 Heidenheim, Germany. E-mail: [email protected] . Fields of interest: Polytopes, geometry, mathematical quasi-crystallography. Publications: (2002) Axial Symmetrical Edge-Facetings of Uniform Polyhedra. In: Symmetry: Cult. & Sci., vol. 13, nos. 3- 4, pp. 241-258. (2001) Convex Segmentochora. In: Symmetry: Cult. & Sci., vol. 11, nos. 1-4, pp. 139-181. (1996) Reskalierungssymmetrien quasiperiodischer Strukturen. [Symmetries of Rescaling for Quasiperiodic Structures, Ph.D. Dissertation, in German], Eberhard-Karls-Universität Tübingen, or Hamburg, Verlag Dr. Kovač, ISBN 978-3-86064-428- 7. – (Former ones: mentioned therein.) Abstract: The snub cube and the snub dodecahedron are well-known polyhedra since the days of Kepler. Since then, the term “snub” was applied to further cases, both in 3D and beyond, yielding an exceptional species of polytopes: those do not bow to Wythoff’s kaleidoscopical construction like most other Archimedean polytopes, some appear in enantiomorphic pairs with no own mirror symmetry, etc. However, they remained stepchildren, since they permit no real one-step access. Actually, snub polytopes are meant to be derived secondarily from Wythoffians, either from omnitruncated or from truncated polytopes. – This secondary process herein is analysed carefully and extended widely: nothing bars a progress from vertex alternation to an alternation of an arbitrary class of sub-dimensional elements, for instance edges, faces, etc. of any type. Furthermore, this extension can be coded in Stott-Coxeter-Dynkin diagrams as well.
    [Show full text]
  • Convex Polytopes and Tilings with Few Flag Orbits
    Convex Polytopes and Tilings with Few Flag Orbits by Nicholas Matteo B.A. in Mathematics, Miami University M.A. in Mathematics, Miami University A dissertation submitted to The Faculty of the College of Science of Northeastern University in partial fulfillment of the requirements for the degree of Doctor of Philosophy April 14, 2015 Dissertation directed by Egon Schulte Professor of Mathematics Abstract of Dissertation The amount of symmetry possessed by a convex polytope, or a tiling by convex polytopes, is reflected by the number of orbits of its flags under the action of the Euclidean isometries preserving the polytope. The convex polytopes with only one flag orbit have been classified since the work of Schläfli in the 19th century. In this dissertation, convex polytopes with up to three flag orbits are classified. Two-orbit convex polytopes exist only in two or three dimensions, and the only ones whose combinatorial automorphism group is also two-orbit are the cuboctahedron, the icosidodecahedron, the rhombic dodecahedron, and the rhombic triacontahedron. Two-orbit face-to-face tilings by convex polytopes exist on E1, E2, and E3; the only ones which are also combinatorially two-orbit are the trihexagonal plane tiling, the rhombille plane tiling, the tetrahedral-octahedral honeycomb, and the rhombic dodecahedral honeycomb. Moreover, any combinatorially two-orbit convex polytope or tiling is isomorphic to one on the above list. Three-orbit convex polytopes exist in two through eight dimensions. There are infinitely many in three dimensions, including prisms over regular polygons, truncated Platonic solids, and their dual bipyramids and Kleetopes. There are infinitely many in four dimensions, comprising the rectified regular 4-polytopes, the p; p-duoprisms, the bitruncated 4-simplex, the bitruncated 24-cell, and their duals.
    [Show full text]
  • Chapter 2 Figures and Shapes 2.1 Polyhedron in N-Dimension in Linear
    Chapter 2 Figures and Shapes 2.1 Polyhedron in n-dimension In linear programming we know about the simplex method which is so named because the feasible region can be decomposed into simplexes. A zero-dimensional simplex is a point, an 1D simplex is a straight line segment, a 2D simplex is a triangle, a 3D simplex is a tetrahedron. In general, a n-dimensional simplex has n+1 vertices not all contained in a (n-1)- dimensional hyperplane. Therefore simplex is the simplest building block in the space it belongs. An n-dimensional polyhedron can be constructed from simplexes with only possible common face as their intersections. Such a definition is a bit vague and such a figure need not be connected. Connected polyhedron is the prototype of a closed manifold. We may use vertices, edges and faces (hyperplanes) to define a polyhedron. A polyhedron is convex if all convex linear combinations of the vertices Vi are inside itself, i.e. i Vi is contained inside for all i 0 and all _ i i 1. i If a polyhedron is not convex, then the smallest convex set which contains it is called the convex hull of the polyhedron. Separating hyperplane Theorem For any given point outside a convex set, there exists a hyperplane with this given point on one side of it and the entire convex set on the other. Proof: Because the given point will be outside one of the supporting hyperplanes of the convex set. 2.2 Platonic Solids Known to Plato (about 500 B.C.) and explained in the Elements (Book XIII) of Euclid (about 300 B.C.), these solids are governed by the rules that the faces are the regular polygons of a single species and the corners (vertices) are all alike.
    [Show full text]
  • Local Symmetry Preserving Operations on Polyhedra
    Local Symmetry Preserving Operations on Polyhedra Pieter Goetschalckx Submitted to the Faculty of Sciences of Ghent University in fulfilment of the requirements for the degree of Doctor of Science: Mathematics. Supervisors prof. dr. dr. Kris Coolsaet dr. Nico Van Cleemput Chair prof. dr. Marnix Van Daele Examination Board prof. dr. Tomaž Pisanski prof. dr. Jan De Beule prof. dr. Tom De Medts dr. Carol T. Zamfirescu dr. Jan Goedgebeur © 2020 Pieter Goetschalckx Department of Applied Mathematics, Computer Science and Statistics Faculty of Sciences, Ghent University This work is licensed under a “CC BY 4.0” licence. https://creativecommons.org/licenses/by/4.0/deed.en In memory of John Horton Conway (1937–2020) Contents Acknowledgements 9 Dutch summary 13 Summary 17 List of publications 21 1 A brief history of operations on polyhedra 23 1 Platonic, Archimedean and Catalan solids . 23 2 Conway polyhedron notation . 31 3 The Goldberg-Coxeter construction . 32 3.1 Goldberg ....................... 32 3.2 Buckminster Fuller . 37 3.3 Caspar and Klug ................... 40 3.4 Coxeter ........................ 44 4 Other approaches ....................... 45 References ............................... 46 2 Embedded graphs, tilings and polyhedra 49 1 Combinatorial graphs .................... 49 2 Embedded graphs ....................... 51 3 Symmetry and isomorphisms . 55 4 Tilings .............................. 57 5 Polyhedra ............................ 59 6 Chamber systems ....................... 60 7 Connectivity .......................... 62 References
    [Show full text]
  • Paper Models of Polyhedra
    Paper Models of Polyhedra Gijs Korthals Altes Polyhedra are beautiful 3-D geometrical figures that have fascinated philosophers, mathematicians and artists for millennia Copyrights © 1998-2001 Gijs.Korthals Altes All rights reserved . It's permitted to make copies for non-commercial purposes only email: [email protected] Paper Models of Polyhedra Platonic Solids Dodecahedron Cube and Tetrahedron Octahedron Icosahedron Archimedean Solids Cuboctahedron Icosidodecahedron Truncated Tetrahedron Truncated Octahedron Truncated Cube Truncated Icosahedron (soccer ball) Truncated dodecahedron Rhombicuboctahedron Truncated Cuboctahedron Rhombicosidodecahedron Truncated Icosidodecahedron Snub Cube Snub Dodecahedron Kepler-Poinsot Polyhedra Great Stellated Dodecahedron Small Stellated Dodecahedron Great Icosahedron Great Dodecahedron Other Uniform Polyhedra Tetrahemihexahedron Octahemioctahedron Cubohemioctahedron Small Rhombihexahedron Small Rhombidodecahedron S mall Dodecahemiododecahedron Small Ditrigonal Icosidodecahedron Great Dodecahedron Compounds Stella Octangula Compound of Cube and Octahedron Compound of Dodecahedron and Icosahedron Compound of Two Cubes Compound of Three Cubes Compound of Five Cubes Compound of Five Octahedra Compound of Five Tetrahedra Compound of Truncated Icosahedron and Pentakisdodecahedron Other Polyhedra Pentagonal Hexecontahedron Pentagonalconsitetrahedron Pyramid Pentagonal Pyramid Decahedron Rhombic Dodecahedron Great Rhombihexacron Pentagonal Dipyramid Pentakisdodecahedron Small Triakisoctahedron Small Triambic
    [Show full text]
  • How to Stay Away from Each Other in a Spherical Universe 1
    GENERAL I ARTICLE How to Stay Away from Each Other in a Spherical Universe 1. Tammes' Problem Bhaskar Bagchi Mathematics is full of innocent looking problems which, when pursued, soon grow to majestic pro­ portions and begin to impinge upon the frontiers of research. One such problem is the subject of this two-part article - the problem of packing spherical caps on the surface of a sphere. Bhaskar Bagchi is with Twelve Men on a Sphere the Indian Statistical Institute since 1971, first For most practical purposes, we humans are inhabitants of as a student and then as a member of the faculty. a (two dimensional) spherical universe: we are constrained He is interested in to eke out our lives on the surface of the earth. Suppose diverse areas of twelve denizens of this spherical universe hate each other mathematics like so much that they decide to build their houses as far away combinatorics, from each other 88 possible. We assume that, except for elementary and analytic this morbid hatred, these guys have no other constraints: number theory, they may build their houses anywhere on the earth's surface functional analysis, (must be stinkingly rich to have such freedom!). The ques­ combinatorial topology tion is: how should these twelve houses be positioned ? The and statistics. answer depends, of course, on what we mean by the phrase 'as far away from each other as possible'. Let us take it to mean that the minimum of the pair-wise distances between the twelve houses is to be maximised subjected to the only Figure 1 Icosahedron.
    [Show full text]
  • Wythoffian Skeletal Polyhedra
    Wythoffian Skeletal Polyhedra by Abigail Williams B.S. in Mathematics, Bates College M.S. in Mathematics, Northeastern University A dissertation submitted to The Faculty of the College of Science of Northeastern University in partial fulfillment of the requirements for the degree of Doctor of Philosophy April 14, 2015 Dissertation directed by Egon Schulte Professor of Mathematics Dedication I would like to dedicate this dissertation to my Meme. She has always been my loudest cheerleader and has supported me in all that I have done. Thank you, Meme. ii Abstract of Dissertation Wythoff's construction can be used to generate new polyhedra from the symmetry groups of the regular polyhedra. In this dissertation we examine all polyhedra that can be generated through this construction from the 48 regular polyhedra. We also examine when the construction produces uniform polyhedra and then discuss other methods for finding uniform polyhedra. iii Acknowledgements I would like to start by thanking Professor Schulte for all of the guidance he has provided me over the last few years. He has given me interesting articles to read, provided invaluable commentary on this thesis, had many helpful and insightful discussions with me about my work, and invited me to wonderful conferences. I truly cannot thank him enough for all of his help. I am also very thankful to my committee members for their time and attention. Additionally, I want to thank my family and friends who, for years, have supported me and pretended to care everytime I start talking about math. Finally, I want to thank my husband, Keith.
    [Show full text]