A Recursive Algorithm for the K-Face Numbers of Wythoffian-N-Polytopes Constructed from Regular Polytopes

Total Page:16

File Type:pdf, Size:1020Kb

A Recursive Algorithm for the K-Face Numbers of Wythoffian-N-Polytopes Constructed from Regular Polytopes Journal of Information Processing Vol.25 528–536 (Aug. 2017) [DOI: 10.2197/ipsjjip.25.528] Invited Paper A recursive Algorithm for the k-face Numbers of Wythoffian-n-polytopes Constructed from Regular Polytopes Jin Akiyama1,a) Sin Hitotumatu2 Motonaga Ishii3,b) Akihiro Matsuura4,c) Ikuro Sato5,d) Shun Toyoshima6,e) Received: September 6, 2016, Accepted: May 25, 2017 Abstract: In this paper, an n-dimensional polytope is called Wythoffian if it is derived by the Wythoff construction from an n-dimensional regular polytope whose finite reflection group belongs to An,Bn,Cn,F4,G2,H3,H4 or I2(p). Based on combinatorial and topological arguments, we give a matrix-form recursive algorithm that calculates the num- ber of k-faces (k = 0, 1,...,n) of all the Wythoffian-n-polytopes using Schlafli-Wytho¨ ff symbols. The correctness of the algorithm is reconfirmed by the method of exhaustion using a computer. Keywords: Wythoff construction, Wythoffian polytopes, k-face numbers, recursive algorithm, Coxeter group ( c ) volumes and surface areas. 1. Introduction Our purpose has been completed and already implemented High-dimensional polytopes have been studied mainly by the as computer programs. We will introduce a new methodology following methodologies: to study volumes, surface areas, number of k-faces sharing a (1) Combinatorics and Topology, (2) Graph Theory, (3) Group vertex, etc. of Wythoffian-n-polytopes constructed from regular Theory and (4) Metric Geometry. See [1], [2], [8], [9], [10], [11], polytopes in the forthcoming papers. In this paper, as a first [14], [15], [18], [19] for some background researches on tilings, step, we develop a recursive algorithm that computes the f-vector lattices and polytopes. Coxeter [4], [5], [6] described polytopes ( f0, f1,..., fn), where fk (k = 0, 1,...,n) is the number of k-faces in terms of the Coxeter groups. The finite and infinite discrete of a Wythoffian-n-polytope. On f -vectors, so far it is not known groups of reflections systematically explain polytopes and honey- except for some of the components f0, f1, fn−1 and fn [12], [16], combs (tessellations), respectively, giving one of the most elegant [17], Our algorithm is elementary but powerful in that f -vectors theoretical backgrounds to the subject. It is noteworthy that he of all of the Wythoffian-n-polytopes can be recursively com- used the term “Wythoff construction” for some construction of puted using matrix multiplications. For example, among all of uniform polytopes obtained by using abundant symmetry of reg- the 98 Wythoffian-n-polytopes, f -vectors of the 6-polytope with ular polytopes. the Schlafli-Wytho¨ ff symbol {3, 3, 3, 3, 4}(0, 1, 0, 1, 1, 0) are ob- The subject of our study is to find the efficient methods to ob- tained as tain the following properties, especially fundamental quantities (1) f = ( f0, f1, f2, f3, f4, f5, f6) = (5760, 23040, 32160, 19680, of Wythoffian polytopes obtained by Wythoff construction: 5276, 476, 1) globally, and ( a ) Global numbers and shapes of k-faces, (2) f = ( f0, f1, f2, f3, f4, f5, f6) = (1, 8, 22, 29, 20, 7, 1) around ( b ) local numbers and shapes of k-faces sharing a vertex, and each vertex, by matrix multiplications without requiring any knowledge of 1 Research Center for Math Education, Tokyo University of Science, Shin- group theory. juku, Tokyo 162–8601, Japan The algorithm given in this paper is based on the classical com- 2 Research Institute for Mathematical Sciences, Kyoto University, Sakyo, Kyoto 606–8502, Japan binatorics, but has given new results and insights on the subject, 3 BANDAI NAMCO Studios Inc., Koto, Tokyo 135–0034, Japan including new classes of polytopes with tessellability and some 4 Division of Information System Design, Tokyo Denki University, Hiki, other interesting properties. High-dimensional discrete geometry Saitama 350–0394, Japan 5 Department of Pathology, Research Institute, Miyagi Cancer Center, Na- has many applications in the real world. For example, sphere- tori, Miyagi 981–1293, Japan packing problems in the 8-dimensional and the 24-dimensional 6 Systems Design Co. Ltd., Suginami, Tokyo, 168–0063, Japan Euclidean spaces play an important role in information theory. a) [email protected] b) [email protected] The authors are expecting that this program gives somewhat c) [email protected] polytope-version of this success. d) [email protected] e) [email protected] c 2017 Information Processing Society of Japan 528 Journal of Information Processing Vol.25 528–536 (Aug. 2017) Fig. 1 Fundamental simplices for the square and the cube. Fig. 2 Spherical tiling obtained by the symmetry of fundamental simplices of regular polyhedra (a) {3, 3} = {3, 3}∗,(b){3, 4} = {4, 3}∗,and(c){3, 5} = {5, 3}∗, respectively. Regular polyhedra which are dual to each other have identical spherical tiling although labels of fundamental simpli- cies are inverted. duals of each other, we have 2nn! fundamental simplices (Fig. 2). 2. Regular Polytopes and Schlafli¨ Symbols Notice that the shifting operation is important. Let us take a A Platonic solid is defined to be a convex polyhedron which regular polytope P which is expressed as {p1, p2,...,pn−1} by is regular in the sense that the faces are congruent regular poly- the Schlafli¨ symbol. The vertex figure and the facet of P are ex- gons and the number of faces meeting at each vertex is uniform. pressed as {p2, p3,...,pn−1} and {p1, p2,...,pn−2}, respectively. There exist 5 Platonic solids. Extending the concept to higher di- For the 4-dimensional polytopes, the following inclusion prop- mensions, call a convex polytope regular if facets are congruent erty holds; {3}⊂{3, 3}⊂{3, 3, 4}⊃{3, 4}⊃{4}, which is called regular polytopes and every vertex figure is uniform. In the 4- double flag architecture. dimensional Euclidean space, there exists 6 types of regular poly- 3. Wythoffian Polytopes and Wythoff Symbols topes. In the n-dimensional (n ≥ 5) space, however, there exist only 3 types of regular polytopes; namely, the regular simplex, The term of semi-regular polytope is often used for some al- the cross-polytope and the hypercube. They are labeled αn, βn, ternative classes of polytopes with the most abundant symmetry and γn, respectively, by Coxeter, H.S.M. [7]. after regular polytopes. To avoid confusion, in this paper, we = − ffi The numbers of k-faces (k 0, 1,...,n 1) of αn, βn,andγn would only consider Wytho an-n-polytopes. n+1 k+1 n n−k n n ff are k+1 ,2 k+1 , and 2 k , respectively. Here, k means a Di erent from the Schlafli¨ symbol, there is no definitive no- binomial coefficient and is 0 if k > n. tation for approaching to Wythoffian polytopes. For the sake Along with the convention that the number of n-faces of an of computer programs, we introduce the notation for Wythoff- n-polytope is 1, we have the f -vectors of αn, βn,andγn. ian polytopes based on Ref. [12]. Note that the notation we use in It is well-known [7] that an n-dimensional regular polytope can this paper is slightly different from the Coxeter’s original one. For be described by a unique Schlafli¨ symbol {p1, p2,...,pn−1}, con- example, the Wythoffian-4-polytope {3, 3, 3}(1, 0, 0, 1) is denoted sisting of n−1 components of natural numbers each of which is 3, by eα4 in Coxeter [5]. However, {3, 3, 3}(1, 0, 0, 1) corresponds 4, or 5 if n ≤ 4 and each of which is 3 or 4 if n ≥ 5. For example, naturally to the Coxeter-Dynkin diagram in the following table. we have α3 = {3, 3}, β4 = {3, 3, 4}, γ5 = {4, 3, 3, 3}. The polytope {p1, p2,...,pn−1} is defined recursively to be the polytope consisting of pn−1 facets p1, p2,...,pn−2 meeting at each (n − 3)-dimensional faces. Note that the dual of A = ∗ {p1, p2,...,pn−1} is A = {pn−1, pn−2,...,p1}. A regular polytope A is divided into fundamental simplices, each of which is given as the convex hull Conv (P0, P1,...,Pn) An n-dimensional polytope is called Wythoffian if it is de- where P0 = a0 is a vertex of A, P1 is the center of an edge a1 of A rived by the Wythoff construction from an n-dimensional regu- including a0, P2 is the center of a face a2 of A including a1,..., lar polytope. Given a regular polytope A = {p1, p2,...,pn−1} n n and Pn is the center of A (Fig. 1). Note that the distances PkPn and given a Wythoff symbol (q0, q1,...,qn−1) ∈{0, 1} \{0} , ··· are ordered as Pn−1Pn < Pn−2Pn < < P0Pn. In the case of the Wythoffian-n-polytope A(q0, q1,...,qn−1) is defined as fol- the regular simplex αn,wehave(n + 1)! fundamental simplices. lows: Choose an arbitrary initial point P on the interior of the face In the cases of the hypercube and the cross-polytope which are Conv{Pi | qi = 1} of the surface facet Conv{P0, P1,...,Pn−1} of c 2017 Information Processing Society of Japan 529 Journal of Information Processing Vol.25 528–536 (Aug. 2017) Fig. 3 Wythoff construction for {3, 4}(1, 1, 1) and its corresponding reflection planes. a fundamental simplex Conv{P0, P1,...,Pn} of A. For the sake We should count the total number of Wythoffian polytopes of notation, the interior of a point is defined to be the point it- from all of the regular polytopes.
Recommended publications
  • Interaction of the Past of Parallel Universes
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by CERN Document Server Interaction of the Past of parallel universes Alexander K. Guts Department of Mathematics, Omsk State University 644077 Omsk-77 RUSSIA E-mail: [email protected] October 26, 1999 ABSTRACT We constructed a model of five-dimensional Lorentz manifold with foliation of codimension 1 the leaves of which are four-dimensional space-times. The Past of these space-times can interact in macroscopic scale by means of large quantum fluctuations. Hence, it is possible that our Human History consists of ”somebody else’s” (alien) events. In this article the possibility of interaction of the Past (or Future) in macroscopic scales of space and time of two different universes is analysed. Each universe is considered as four-dimensional space-time V 4, moreover they are imbedded in five- dimensional Lorentz manifold V 5, which shall below name Hyperspace. The space- time V 4 is absolute world of events. Consequently, from formal standpoints any point-event of this manifold V 4, regardless of that we refer it to Past, Present or Future of some observer, is equally available to operate with her.Inotherwords, modern theory of space-time, rising to Minkowsky, postulates absolute eternity of the World of events in the sense that all events exist always. Hence, it is possible interaction of Present with Past and Future as well as Past can interact with Future. Question is only in that as this is realized. The numerous articles about time machine show that our statement on the interaction of Present with Past is not fantasy, but is subject of the scientific study.
    [Show full text]
  • On the Archimedean Or Semiregular Polyhedra
    ON THE ARCHIMEDEAN OR SEMIREGULAR POLYHEDRA Mark B. Villarino Depto. de Matem´atica, Universidad de Costa Rica, 2060 San Jos´e, Costa Rica May 11, 2005 Abstract We prove that there are thirteen Archimedean/semiregular polyhedra by using Euler’s polyhedral formula. Contents 1 Introduction 2 1.1 RegularPolyhedra .............................. 2 1.2 Archimedean/semiregular polyhedra . ..... 2 2 Proof techniques 3 2.1 Euclid’s proof for regular polyhedra . ..... 3 2.2 Euler’s polyhedral formula for regular polyhedra . ......... 4 2.3 ProofsofArchimedes’theorem. .. 4 3 Three lemmas 5 3.1 Lemma1.................................... 5 3.2 Lemma2.................................... 6 3.3 Lemma3.................................... 7 4 Topological Proof of Archimedes’ theorem 8 arXiv:math/0505488v1 [math.GT] 24 May 2005 4.1 Case1: fivefacesmeetatavertex: r=5. .. 8 4.1.1 At least one face is a triangle: p1 =3................ 8 4.1.2 All faces have at least four sides: p1 > 4 .............. 9 4.2 Case2: fourfacesmeetatavertex: r=4 . .. 10 4.2.1 At least one face is a triangle: p1 =3................ 10 4.2.2 All faces have at least four sides: p1 > 4 .............. 11 4.3 Case3: threefacesmeetatavertes: r=3 . ... 11 4.3.1 At least one face is a triangle: p1 =3................ 11 4.3.2 All faces have at least four sides and one exactly four sides: p1 =4 6 p2 6 p3. 12 4.3.3 All faces have at least five sides and one exactly five sides: p1 =5 6 p2 6 p3 13 1 5 Summary of our results 13 6 Final remarks 14 1 Introduction 1.1 Regular Polyhedra A polyhedron may be intuitively conceived as a “solid figure” bounded by plane faces and straight line edges so arranged that every edge joins exactly two (no more, no less) vertices and is a common side of two faces.
    [Show full text]
  • Phase Behavior of a Family of Truncated Hard Cubes Anjan P
    THE JOURNAL OF CHEMICAL PHYSICS 142, 054904 (2015) Phase behavior of a family of truncated hard cubes Anjan P. Gantapara,1,a) Joost de Graaf,2 René van Roij,3 and Marjolein Dijkstra1,b) 1Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands 2Institute for Computational Physics, Universität Stuttgart, Allmandring 3, 70569 Stuttgart, Germany 3Institute for Theoretical Physics, Utrecht University, Leuvenlaan 4, 3584 CE Utrecht, The Netherlands (Received 8 December 2014; accepted 5 January 2015; published online 5 February 2015; corrected 9 February 2015) In continuation of our work in Gantapara et al., [Phys. Rev. Lett. 111, 015501 (2013)], we inves- tigate here the thermodynamic phase behavior of a family of truncated hard cubes, for which the shape evolves smoothly from a cube via a cuboctahedron to an octahedron. We used Monte Carlo simulations and free-energy calculations to establish the full phase diagram. This phase diagram exhibits a remarkable richness in crystal and mesophase structures, depending sensitively on the precise particle shape. In addition, we examined in detail the nature of the plastic crystal (rotator) phases that appear for intermediate densities and levels of truncation. Our results allow us to probe the relation between phase behavior and building-block shape and to further the understanding of rotator phases. Furthermore, the phase diagram presented here should prove instrumental for guiding future experimental studies on similarly shaped nanoparticles and the creation of new materials. C 2015 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4906753] I. INTRODUCTION pressures, i.e., at densities below close packing.
    [Show full text]
  • Smooth & Fractal Polyhedra Ergun Akleman, Paul Edmundson And
    Smooth & Fractal Polyhedra Ergun Akleman, Paul Edmundson and Ozan Ozener Visualization Sciences Program, Department of Architecture, 216 Langford Center, College Station, Texas 77843-3137, USA. email: [email protected]. Abstract In this paper, we present a new class of semi-regular polyhedra. All the faces of these polyhedra are bounded by smooth (quadratic B-spline) curves and the face boundaries are C1 discontinues every- where. These semi-regular polyhedral shapes are limit surfaces of a simple vertex truncation subdivision scheme. We obtain an approximation of these smooth fractal polyhedra by iteratively applying a new vertex truncation scheme to an initial manifold mesh. Our vertex truncation scheme is based on Chaikin’s construction. If the initial manifold mesh is a polyhedra only with planar faces and 3-valence vertices, in each iteration we construct polyhedral meshes in which all faces are planar and every vertex is 3-valence, 1 Introduction One of the most exciting aspects of shape modeling and sculpting is the development of new algorithms and methods to create unusual, interesting and aesthetically pleasing shapes. Recent advances in computer graphics, shape modeling and mathematics help the imagination of contemporary mathematicians, artists and architects to design new and unusual 3D forms [11]. In this paper, we present such a unusual class of semi-regular polyhedra that are contradictorily interesting, i.e. they are smooth but yet C1 discontinuous. To create these shapes we apply a polyhedral truncation algorithm based on Chaikin’s scheme to any initial manifold mesh. Figure 1 shows two shapes that are created by using our approach.
    [Show full text]
  • 1 Lifts of Polytopes
    Lecture 5: Lifts of polytopes and non-negative rank CSE 599S: Entropy optimality, Winter 2016 Instructor: James R. Lee Last updated: January 24, 2016 1 Lifts of polytopes 1.1 Polytopes and inequalities Recall that the convex hull of a subset X n is defined by ⊆ conv X λx + 1 λ x0 : x; x0 X; λ 0; 1 : ( ) f ( − ) 2 2 [ ]g A d-dimensional convex polytope P d is the convex hull of a finite set of points in d: ⊆ P conv x1;:::; xk (f g) d for some x1;:::; xk . 2 Every polytope has a dual representation: It is a closed and bounded set defined by a family of linear inequalities P x d : Ax 6 b f 2 g for some matrix A m d. 2 × Let us define a measure of complexity for P: Define γ P to be the smallest number m such that for some C s d ; y s ; A m d ; b m, we have ( ) 2 × 2 2 × 2 P x d : Cx y and Ax 6 b : f 2 g In other words, this is the minimum number of inequalities needed to describe P. If P is full- dimensional, then this is precisely the number of facets of P (a facet is a maximal proper face of P). Thinking of γ P as a measure of complexity makes sense from the point of view of optimization: Interior point( methods) can efficiently optimize linear functions over P (to arbitrary accuracy) in time that is polynomial in γ P . ( ) 1.2 Lifts of polytopes Many simple polytopes require a large number of inequalities to describe.
    [Show full text]
  • Archimedean Solids
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln MAT Exam Expository Papers Math in the Middle Institute Partnership 7-2008 Archimedean Solids Anna Anderson University of Nebraska-Lincoln Follow this and additional works at: https://digitalcommons.unl.edu/mathmidexppap Part of the Science and Mathematics Education Commons Anderson, Anna, "Archimedean Solids" (2008). MAT Exam Expository Papers. 4. https://digitalcommons.unl.edu/mathmidexppap/4 This Article is brought to you for free and open access by the Math in the Middle Institute Partnership at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in MAT Exam Expository Papers by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Archimedean Solids Anna Anderson In partial fulfillment of the requirements for the Master of Arts in Teaching with a Specialization in the Teaching of Middle Level Mathematics in the Department of Mathematics. Jim Lewis, Advisor July 2008 2 Archimedean Solids A polygon is a simple, closed, planar figure with sides formed by joining line segments, where each line segment intersects exactly two others. If all of the sides have the same length and all of the angles are congruent, the polygon is called regular. The sum of the angles of a regular polygon with n sides, where n is 3 or more, is 180° x (n – 2) degrees. If a regular polygon were connected with other regular polygons in three dimensional space, a polyhedron could be created. In geometry, a polyhedron is a three- dimensional solid which consists of a collection of polygons joined at their edges. The word polyhedron is derived from the Greek word poly (many) and the Indo-European term hedron (seat).
    [Show full text]
  • Near-Death Experiences and the Theory of the Extraneuronal Hyperspace
    Near-Death Experiences and the Theory of the Extraneuronal Hyperspace Linz Audain, J.D., Ph.D., M.D. George Washington University The Mandate Corporation, Washington, DC ABSTRACT: It is possible and desirable to supplement the traditional neu rological and metaphysical explanatory models of the near-death experience (NDE) with yet a third type of explanatory model that links the neurological and the metaphysical. I set forth the rudiments of this model, the Theory of the Extraneuronal Hyperspace, with six propositions. I then use this theory to explain three of the pressing issues within NDE scholarship: the veridicality, precognition and "fear-death experience" phenomena. Many scholars who write about near-death experiences (NDEs) are of the opinion that explanatory models of the NDE can be classified into one of two types (Blackmore, 1993; Moody, 1975). One type of explana tory model is the metaphysical or supernatural one. In that model, the events that occur within the NDE, such as the presence of a tunnel, are real events that occur beyond the confines of time and space. In a sec ond type of explanatory model, the traditional model, the events that occur within the NDE are not at all real. Those events are merely the product of neurobiochemical activity that can be explained within the confines of current neurological and psychological theory, for example, as hallucination. In this article, I supplement this dichotomous view of explanatory models of the NDE by proposing yet a third type of explanatory model: the Theory of the Extraneuronal Hyperspace. This theory represents a Linz Audain, J.D., Ph.D., M.D., is a Resident in Internal Medicine at George Washington University, and Chief Executive Officer of The Mandate Corporation.
    [Show full text]
  • Arxiv:Math/9906062V1 [Math.MG] 10 Jun 1999 Udo Udmna Eerh(Rn 96-01-00166)
    Embedding the graphs of regular tilings and star-honeycombs into the graphs of hypercubes and cubic lattices ∗ Michel DEZA CNRS and Ecole Normale Sup´erieure, Paris, France Mikhail SHTOGRIN Steklov Mathematical Institute, 117966 Moscow GSP-1, Russia Abstract We review the regular tilings of d-sphere, Euclidean d-space, hyperbolic d-space and Coxeter’s regular hyperbolic honeycombs (with infinite or star-shaped cells or vertex figures) with respect of possible embedding, isometric up to a scale, of their skeletons into a m-cube or m-dimensional cubic lattice. In section 2 the last remaining 2-dimensional case is decided: for any odd m ≥ 7, star-honeycombs m m {m, 2 } are embeddable while { 2 ,m} are not (unique case of non-embedding for dimension 2). As a spherical analogue of those honeycombs, we enumerate, in section 3, 36 Riemann surfaces representing all nine regular polyhedra on the sphere. In section 4, non-embeddability of all remaining star-honeycombs (on 3-sphere and hyperbolic 4-space) is proved. In the last section 5, all cases of embedding for dimension d> 2 are identified. Besides hyper-simplices and hyper-octahedra, they are exactly those with bipartite skeleton: hyper-cubes, cubic lattices and 8, 2, 1 tilings of hyperbolic 3-, 4-, 5-space (only two, {4, 3, 5} and {4, 3, 3, 5}, of those 11 have compact both, facets and vertex figures). 1 Introduction arXiv:math/9906062v1 [math.MG] 10 Jun 1999 We say that given tiling (or honeycomb) T has a l1-graph and embeds up to scale λ into m-cube Hm (or, if the graph is infinite, into cubic lattice Zm ), if there exists a mapping f of the vertex-set of the skeleton graph of T into the vertex-set of Hm (or Zm) such that λdT (vi, vj)= ||f(vi), f(vj)||l1 = X |fk(vi) − fk(vj)| for all vertices vi, vj, 1≤k≤m ∗This work was supported by the Volkswagen-Stiftung (RiP-program at Oberwolfach) and Russian fund of fundamental research (grant 96-01-00166).
    [Show full text]
  • Arxiv:1902.02232V1 [Cond-Mat.Mtrl-Sci] 6 Feb 2019
    Hyperspatial optimisation of structures Chris J. Pickard∗ Department of Materials Science & Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS, United Kingdom and Advanced Institute for Materials Research, Tohoku University 2-1-1 Katahira, Aoba, Sendai, 980-8577, Japan (Dated: February 7, 2019) Anticipating the low energy arrangements of atoms in space is an indispensable scientific task. Modern stochastic approaches to searching for these configurations depend on the optimisation of structures to nearby local minima in the energy landscape. In many cases these local minima are relatively high in energy, and inspection reveals that they are trapped, tangled, or otherwise frustrated in their descent to a lower energy configuration. Strategies have been developed which attempt to overcome these traps, such as classical and quantum annealing, basin/minima hopping, evolutionary algorithms and swarm based methods. Random structure search makes no attempt to avoid the local minima, and benefits from a broad and uncorrelated sampling of configuration space. It has been particularly successful in the first principles prediction of unexpected new phases of dense matter. Here it is demonstrated that by starting the structural optimisations in a higher dimensional space, or hyperspace, many of the traps can be avoided, and that the probability of reaching low energy configurations is much enhanced. Excursions into the extra dimensions are progressively eliminated through the application of a growing energetic penalty. This approach is tested on hard cases for random search { clusters, compounds, and covalently bonded networks. The improvements observed are most dramatic for the most difficult ones. Random structure search is shown to be typically accelerated by two orders of magnitude, and more for particularly challenging systems.
    [Show full text]
  • Can Every Face of a Polyhedron Have Many Sides ?
    Can Every Face of a Polyhedron Have Many Sides ? Branko Grünbaum Dedicated to Joe Malkevitch, an old friend and colleague, who was always partial to polyhedra Abstract. The simple question of the title has many different answers, depending on the kinds of faces we are willing to consider, on the types of polyhedra we admit, and on the symmetries we require. Known results and open problems about this topic are presented. The main classes of objects considered here are the following, listed in increasing generality: Faces: convex n-gons, starshaped n-gons, simple n-gons –– for n ≥ 3. Polyhedra (in Euclidean 3-dimensional space): convex polyhedra, starshaped polyhedra, acoptic polyhedra, polyhedra with selfintersections. Symmetry properties of polyhedra P: Isohedron –– all faces of P in one orbit under the group of symmetries of P; monohedron –– all faces of P are mutually congru- ent; ekahedron –– all faces have of P the same number of sides (eka –– Sanskrit for "one"). If the number of sides is k, we shall use (k)-isohedron, (k)-monohedron, and (k)- ekahedron, as appropriate. We shall first describe the results that either can be found in the literature, or ob- tained by slight modifications of these. Then we shall show how two systematic ap- proaches can be used to obtain results that are better –– although in some cases less visu- ally attractive than the old ones. There are many possible combinations of these classes of faces, polyhedra and symmetries, but considerable reductions in their number are possible; we start with one of these, which is well known even if it is hard to give specific references for precisely the assertion of Theorem 1.
    [Show full text]
  • Crystalline Assemblies and Densest Packings of a Family of Truncated Tetrahedra and the Role of Directional Entropic Forces
    Crystalline Assemblies and Densest Packings of a Family of Truncated Tetrahedra and the Role of Directional Entropic Forces Pablo F. Damasceno1*, Michael Engel2*, Sharon C. Glotzer1,2,3† 1Applied Physics Program, 2Department of Chemical Engineering, and 3Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA. * These authors contributed equally. † Corresponding author: [email protected] Dec 1, 2011 arXiv: 1109.1323v2 ACS Nano DOI: 10.1021/nn204012y ABSTRACT Polyhedra and their arrangements have intrigued humankind since the ancient Greeks and are today important motifs in condensed matter, with application to many classes of liquids and solids. Yet, little is known about the thermodynamically stable phases of polyhedrally-shaped building blocks, such as faceted nanoparticles and colloids. Although hard particles are known to organize due to entropy alone, and some unusual phases are reported in the literature, the role of entropic forces in connection with polyhedral shape is not well understood. Here, we study thermodynamic self-assembly of a family of truncated tetrahedra and report several atomic crystal isostructures, including diamond, β-tin, and high- pressure lithium, as the polyhedron shape varies from tetrahedral to octahedral. We compare our findings with the densest packings of the truncated tetrahedron family obtained by numerical compression and report a new space filling polyhedron, which has been overlooked in previous searches. Interestingly, the self-assembled structures differ from the densest packings. We show that the self-assembled crystal structures can be understood as a tendency for polyhedra to maximize face-to-face alignment, which can be generalized as directional entropic forces.
    [Show full text]
  • A Tourist Guide to the RCSR
    A tourist guide to the RCSR Some of the sights, curiosities, and little-visited by-ways Michael O'Keeffe, Arizona State University RCSR is a Reticular Chemistry Structure Resource available at http://rcsr.net. It is open every day of the year, 24 hours a day, and admission is free. It consists of data for polyhedra and 2-periodic and 3-periodic structures (nets). Visitors unfamiliar with the resource are urged to read the "about" link first. This guide assumes you have. The guide is designed to draw attention to some of the attractions therein. If they sound particularly attractive please visit them. It can be a nice way to spend a rainy Sunday afternoon. OKH refers to M. O'Keeffe & B. G. Hyde. Crystal Structures I: Patterns and Symmetry. Mineral. Soc. Am. 1966. This is out of print but due as a Dover reprint 2019. POLYHEDRA Read the "about" for hints on how to use the polyhedron data to make accurate drawings of polyhedra using crystal drawing programs such as CrystalMaker (see "links" for that program). Note that they are Cartesian coordinates for (roughly) equal edge. To make the drawing with unit edge set the unit cell edges to all 10 and divide the coordinates given by 10. There seems to be no generally-agreed best embedding for complex polyhedra. It is generally not possible to have equal edge, vertices on a sphere and planar faces. Keywords used in the search include: Simple. Each vertex is trivalent (three edges meet at each vertex) Simplicial. Each face is a triangle.
    [Show full text]