30 4 (2009 7 ) J Korean Oriental Med 2009;30(4):13-27

Original Article

선영재1, 최영곤1,2 , 정미영1,2 , 황세희1, 이제현4, 조정희5, 임사비나1,2,3 1경희대학교 대학원 한방응용의학과, 2경희대학교 동서의학연구소, 3경희대학교 대학원 기초한의과학과, 4동국대학교 한의과대학 본초학교실, 5전라남도한방산업진흥원

The Effect of Trans -cinnamaldehyde on the Expression of Lipopolysaccharide-stimulated BV-2 Cells Using Microarray Analysis

Young-Jae Sun 1, Yeong-Gon Choi 1,2 , Mi-Young Jeong 1,2 , Se-Hee Hwang 1, Je-Hyun Lee 4, Jung-Hee Cho 5, Sabina Lim 1,2,3

1Dept. of Applied Eastern Medicine, Grad. School, 2WHO Collaborating Ctr. for Traditional Medicine, East-West Med. Res. Institute, 3Dept. of Basic Eastern Medicinal Science, Grad. School, Kyung Hee University, 4Dept. of Herbology, Col. of Eastern Medicine, Dongguk University, Gyeongju, Republic of Korea, 5Jeollanamdo Development Institute for Traditional Korean Medicine

Objectives: Trans -cinnamaldehyde (TCA) is the main component of Cinnamomi Ramulus and it has been reported that TCA inhibits inflammatory responses in various cell types. Inflammation-mediated neurological disorders induce the activation of macrophages such as microglia in brain, and these activated macrophages release various inflammation-related molecules, which can be neurotoxic if overproduced. In this study, we evaluated gene expression profiles using gene chip microarrays in lipopolysaccharide (LPS)-stimulated BV-2 cells to investigate the anti- inflammatory effect of TCA on inflammatory responses in brain microglia. Methods: A negative control group was cultured in normal medium and a positive control group was stimulated with 1 / LPS in the absence of TCA. TCA group was pretreated with 10 / TCA before 1 / LPS stimulation. The oligonucleotide microarray analysis was performed to obtain the expression profiles of 28,853 using gene chip mouse gene 1.0 ST array in this study. Results: In positive control group, 1522 probe sets were up-regulated in the condition of the cutoff value of 1.5-fold change and 341 genes with Unigene ID were retrieved. In TCA group, 590 probe sets were down-regulated from among 1522 probe sets and 33 genes with Unigene ID were retrieved, which included 6 inflammation-related genes. We found out that Id3 gene is associated with transforming growth factor- β (TGF- β) signaling pathway and Klra8 gene is related to natural killer cell-mediated cytotoxicity pathway. Conclusions: The results mean that TCA inhibits inflammatory responses through down-regulating the expressions of inflammation-related genes in LPS-stimulated BV-2 cells.

Key Words : trans -cinnamaldehyde, lipopolysaccharide, microglia, BV-2, microarray

Received :15 January 2009 Revised :14 May 2009 Accepted :26 May 2009 Correspondence to :임사비나(Sabina Lim) 서울시 동대문구 회기동 경희대학교 대학원 한방응용의학과 Tel :+82-2-961-0324, Fax :+82-2-961-7831, E-mail :[email protected]

13 (470) 30 4 (2009 7 )

서 론 9,10) . , microglia (Cinnamomi Ramulus) trans -cinnamaldehyde (TCA) 1) . 8) , 2) , TCA 3-5) . . TCA RAW 264.7 cell Nitric oxide (NO) Inducible nitric oxide synthase (iNOS) TCA 3) . , TCA TCA endothelial cell cyclooxygenase-2 (COX-2) , Lipopolysaccharide (LPS) Prostaglandin E2 (PGE2) murine microglial cell line BV-2 4) , murine macrophage cell TCA human blood monocyte interleukin-1 (IL-1), tumor necrosis factor- α (TNF- α) microarray . 5) . mouse (macrophage) Oligonucleotide probe set microarray chip whole transcript sense target labeling assay 11) (GO) TNF- . LPS α, IL-1 iNOS COX-2 eicosanoids, reactive oxygen , TCA LPS species (ROS), NO, superoxide (O 2) 6) , micr- clustering oglia pathway (microglial activation) TCA TNF- α, IL-1, IL-3, IL-5, IL-6, IL-8 . fibroblast growth factor- β (FGF- β), transforming growth factor- β1 (TGF- β1), nerve 재료 및 방법 growth factor (NGF) , brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), 1. 시료의 제조 NT-4/5 NO TCA TCA 7,8) . HPLC (CNS) microglia . (Cinnamomi Ramulus)

, microglia Cinnamomum cassia PRESL , , , ,

14 6 : Trans-Cinnamaldehyde Lipopolysaccharide BV-2 cell : Microarray (471)

. 200 g 80% 4. TCA 의 세포독성 실험 1500 3 . BV-2 cell 96well well 5000 1% 7 g FBS DMEM (low glucose) 24 ( 3.5%) . Dime- pre- incubation . TCA thylsulfoxide (DMSO) 20 / BV-2 cell TCA (1, 3, 10, 20, 30 . TCA Sigma / ) 48 MTS (3-(4,5-dimet- (MO, USA) . TCA hylthiazol-2-yl)- (3-carboxymethoxyphenyl)-2(4-sulf- Dulbecco’s modified Eagle’s medium (DMEM, Sigma ophenyl)-2H) assay . Cell Titer 96 chemical Co., MO, USA) Aqueous Cell Proliferation Assay kit (Promega, USA) BV-2 cell . MTS solution 20 4 . 2. 桂枝 추출물의 HPLC 분석 ELISA plate reader (Microplate manager, BioRad, Coumarin, TCA, USA) 490nm . cinnamic acid, glacial acetic acid Sigma-Aldrich Chemical Co. (MO, USA) . HPLC 5. 세포 배양과 실험군 분류 methanol (99.8%, Merck, Darmstadt, Germany) BV-2 cell 100 dish (Corning- Costar, USA) , (Mili-Q 10% FBS DMEM system, USA) . . 3 HPLC (DIONEX SUMMIT HPLC System, Germany) . P680 HPLC pump, ASI-100 Automated Sample 10% FBS DMEM Injector, UVD 340U UV/VIS-detector, column (250 12-14 . BV-2 cell mm × 4.6 mm i.d.; particle size, 5μm; Phenomenex negative control , 1 Inc., CA, USA) , data CHRO- / LPS positive control , MELEON 6.70 Chromatography Management Software TCA LPS 1 (Dionex) . methanol TCA (10 / ) TCA - 0.01% acetic acid (50:50, v/v) . , 1.0 ml/min , UV 275nm 3 . TCA standard LPS 2 LPS curve HPLC 0.406, 0.081, 0.016 . , mg/mL . TCA 1 TCA 3. Cell culture . Mouse microglial cell line BV-2 cell 100 U/ 24 . penicillin, 100 / streptomycin (Gibco BRL, Grand Island, NY, USA) 10% fetal bovine serum 6. BV-2 cell 에서의 유전자 발현양 분석 (FBS; Gibco BRL, Grand Island, NY, USA) 1) Total RNA DMEM 37°C, 5% CO 2 incubator . BV-2 cell pellet phosphate buffer (PBS)

15 (472) 30 4 (2009 7 )

RNeasy Mini kit (QIAGEN, USA) (6) Second-Cycle, First-Strand cDNA synthesis protocol total RNA . Second-Cycle, First-Strand cDNA GeneChip total RNA spectrophotometer (Ultro- spec WT cDNA Synthesis Kit . 2000, Pharmacia Biotech Inc. USA) NaNoDrop (7) cRNA Single-Stranded DNA ND-1000 (NanoDrop Technologies, USA) Cleanup . cRNA Single-Stranded DNA Cleanup 2) Microarray Analysis GeneChip WT cDNA Amplification Kit Genechip Mouse Gene 1.0 ST array GeneChip Sample Cleanup Module . whole transcript sense targe labeling assay (Affymetrix, NanoDrop ND-1000 USA) manual Single-Stranded DNA 5.5 . .

(1) total RNA (8) Fragmentation of Single-Stranded DNA BV-2 cell total RNA 300 Single-Stranded DNA Fragmentation Gene- ng/3 . Chip WT Terminal Labeling Kit (Affymetrix Inc. USA) . 45 0.2 strip (2) total RNA T7-(N) 6 Primer, Poly-A RNA tube , 3 2% agarose control Mix gel ethidium- bromide total RNA 300 ng 3 T7-(N) 6 (ET- Br, Sigma-Aldrich, USA) fragme- Primer, Poly-A RNA control ntation . 2 5 70°C 5 4°C 2 . (9) Fragmented Single-Stranded DNA Labeling Fragmented Single-Stranded DNA Labeling (3) First-Cycle, First-strand cDNA GeneChip WT Terminal Labeling Kit First-Cycle, First-strand cDNA GeneChip . WT cDNA Synthesis Kit (Affymetrix Inc., USA) . (10) Hybridization Hybridization GeneChip Hybridization, Wash (4) First-Cycle, Second-Strand cDNA and Stain Kit (Affymetrix Inc., USA) . First-Cycle, Second-Strand cDNA GeneChip GeneChip ST Array septa hybridization WT cDNA Synthesis Kit . cocktail 80 septa 45°C, 60 rpm hybridization (5) First-Cycle, cRNA Synthesis and Cleanup oven 17±1 . First-Cycle, cRNA Synthesis and Cleanup GeneChip WT cDNA Amplification Kit Gene- (11) Fluidics Scanning Chip Sample Cleanup Module (Affymetrix Inc., USA) GeneChip ST Arrays Fluidics Protocols . NanoDrop ND-1000 (NanoDrop Fluidics Station 450 (Affymetrix Inc., USA) Technologies, USA) cRNA Fluidics Scripts FS450_0007 (Affymetrix Inc., USA) . .

16 6 : Trans-Cinnamaldehyde Lipopolysaccharide BV-2 cell : Microarray (473)

GeneChip Operating Software (GCOS, Affymetrix (Normalization) Quantile Normalization Inc., USA) GeneChip Scanner 3000 , log2 . 7G (Affymetrix Inc., USA) scan . Fold Change cutoff value 1.5 detection p-value 7. Data 분석 . (Clustering analysis) (Hierarchical clustering) Gene chip scan data GeneChip Operating . Pathway ( Software (Affymetrix Inc., USA), Expression Console ) Kyoto Encyclopedia Software (Affymetrix Inc., USA) GenPlex v3.0 of Genes and Genomes (KEGG) pathway (ISTECH Inc., Korea) 28,853 pathway P-value . . Hybridization control oligonucleotide B2, bioB, bioC, bioDn, CreX, poly A controls, positive 결 과 vs negative area under the curve (pos_vs_neg_auc) . 1. 桂枝 추출물의 HPLC 분석 결과 signal intensity average Coumarin, TCA, cinnamic acid differential expression (AD) 277 nm, 290 nm, and 277 nm . . UV 275 nm GenPlex v3.0 software (ISTECH Inc., Korea) , 0.01% acetic acid - BeadStudio Signal methanol (50:50, v/v) . (Preprocessing module normalization), HPLC coumarin, TCA, cinnamic (differentially expressed genes (DEG) finding acid retention time 7.2 , 12.3 , 16.0 module DEG ), (Clust- . chrom- ering module ) pathway atogram Fig. 1. . (Pathway module chromatogram ) . .

AAA BBB

Fig. 1.

17 (474) 30 4 (2009 7 )

(mean ± S.E.M.; n = 3), TCA 2) Chip internal controls 161.35 ± 1.55 mg/g . TCA control . . control 2. TCA 의 세포독성 평가 hybridization Bio B, C, Dn, CreX 3` 5`, poly-A (lys, phe, BV-2 cell TCA thr, dap) , BV-2 cell TCA (Sigma-Aldrich, pos_vs_neg_auc . USA) 1, 3, 10, 20, 30 / Chip internal control MTS assay . (Fig. 2). TCA 10 / microarray 4. Microarray 실험 결과 . 1) Scan image 3. Gene chip 에 적용된 sample 의 상태 평가 (1) Hybridization gene chip biotin-labeled cDNA gene chip hybri- 1) cDNA Fragmentation dization scan pseudocolor Gene chip target cDNA . 2% agarose gel chip ET-Br cDNA (GeneChip Mouse Gene 1.0 ST array) fragmentation . . , negative control cDNA size 4,000 bp . , fragmented cDNA 200 bp fragme- (2) Negative control positive control , TCA ntation . gene chip scan image

120

100 el viabilityCell (%) 80

60

40

20

0 0 10 20 30 40 50 TCA(㎍/ml)

Fig. 2.

18 6 : Trans-Cinnamaldehyde Lipopolysaccharide BV-2 cell : Microarray (475)

AAABA BBBCCCC

Fig. 3.

gene chip scanner Box plot (Fig. 3). data . chip control . data . 2) (Normalization) data (1) Magnitude versus amplitude (MA) plot 3) data Correlation matrix plot signal value biotin-labeled cDNA data . Heat map genechip hybridization Quantile normalization data . ( 0.98-1.0) , (2) Box plot (Normalization) (Fig. 4).

Pearson's Correlation (signal) -RMA-GENE-DEFAULT -Group1

1,000 Con 0.998 LPS TCA10/LPS 0.996

Con LPS TCA10/LPS 0.993

0.991

0.989

Fig. 4.

19 (476) 30 4 (2009 7 )

4) DEG selection, Clustering, pathway . Differentially expressed gene (DEG) selection negative control positive control , (1) Negative control positive control TCA probe set comparison LPS probe set 1522 . Fold Change cutoff GeneArray positve control negative = 1.5 (1.5-fold) 1.5 control (Up-regulated) 1.5 . (Down-regulated) gene ontology biological processes molecular detection function , “Absent” . , probe set 341 grouping Clustering (Similarity 0.95) . . Pathway (2) Negative control positive control , TCA . DEG positive control Pathway module (GenPlex v3.0, Istech, Korea) pathway DEG selection LPS TCA pathway 590 probe set clustering . GeneArray p-value . positve control negative control pathway , pathway 33 p-value p-value 0.05 pathway

Table 1.

Average Average Gene Fold Change Gene Fold Change Gene Description Gene Description Symbol LPS TCA Symbol LPS TCA UP DOWN UP DOWN 1110012L19Rik RIKEN cDNA 1110012L19 gene 1.51 0.49 Ifi204 activated gene 204 2.63 0.64 interferon-induced with 5330426P16Rik RIKEN cDNA 5330426P16 gene 1.74 0.64 Ifit1 2.37 0.65 tetratricopeptide repeats 1 killer cell lectin-like receptor, 9630025I21Rik RIKEN cDNA 9630025I21 gene 1.62 0.46 Klra8 2.03 0.61 subfamily A, member 8 aldo-keto reductase family 1, Akr1c12 1.64 0.60 Krt16 keratin 16 1.87 0.58 member C12 Table continues

20 6 : Trans-Cinnamaldehyde Lipopolysaccharide BV-2 cell : Microarray (477)

Table 1.

Average Average Gene Fold Change Gene Fold Change Gene Description Gene Description Symbol LPS TCA Symbol LPS TCA UP DOWN UP DOWN complement component 1, s C1s 1.59 0.52 L3mbtl4 l(3)mbt-like 4 (Drosophila) 1.59 0.66 subcomponent cytochrome P450, family 2, LOC629081 similar to LOC654472 protein 2.90 0.62 Cyp2c67 1.53 0.63 subfamily c, polypeptide 67 similar to nucleolar protein DNA segment, Chr 19, ERATO LOC666672 1.76 0.57 D19Ertd652e 1.62 0.61 GU2 Doi 652, expressed lymphocyte antigen 6 DIP2 disco-interacting protein 2 Ly6a 1.63 0.63 Dip2c 1.52 0.52 complex, A homolog C (Drosophila) Olfr132 olfactory receptor 132 1.50 0.63 Dmrtc1b DMRT-like family C1b 2.07 0.53 Olfr192 olfactory receptor 192 2.13 0.54 EG619597 predicted gene, EG619597 2.72 0.56 Olfr963 olfactory receptor 963 1.80 0.63 EG629203 predicted gene, EG629203 1.87 0.65 Olfr1029 olfactory receptor 1029 2.62 0.38 guanylate cyclase 1, Gucy1b3 1.51 0.66 soluble, beta 3 olfactory receptor 1065 Olfr1065 1.65 0.61 (Olfr1065), mRNA guanine nucleotide binding Gng5 protein (G protein), gamma 5 1.53 0.58 olfactory receptor 1231 Olfr1231 1.60 0.66 subunit (Olfr1231), mRNA RAB2B, member RAS Hao1 hydroxyacid oxidase 1, liver 1.89 0.63 Rab2b 1.79 0.63 oncogene family Id3 inhibitor of DNA binding 3 1.74 0.62 V1rh10 vomeronasal 1 receptor, H10 1.50 0.65 Ifi203 interferon activated gene 203 2.22 0.59 V1rh16 vomeronasal 1 receptor, H16 1.82 0.64

(Table 1). gene . ontology biological processes molecular function pathway gene ontology . pathway (Table 2). Ifi204, Ifi203, Rab2b, Ifit1, Id3, Klra8 6 Clustrring

Table 2.

KEGG Pathway P-Value Gene Symbol Cell Communication 0.02206 Krt16 Complement and coagulation cascades 0.01175 C1s Gap junction 0.01525 Gucy1b3 Glyoxylate and dicarboxylate metabolism 0.00219 Hao1 Long-term depression 0.01208 Gucy1b3 Natural killer cell mediated cytotoxicity 0.01858 Klra8 Purine metabolism 0.02272 Gucy1b3 TGF-beta signaling pathway 0.01525 Id3

21 (478) 30 4 (2009 7 ) T C A 1 0 / L P S Con LPS

1

2

3

4

5 6

7 Similarity: 0.95 # of clusters: 7 cluster

Fig. 5.

, 고 찰 , Fig. 5 negative control , positive control TCA , TCA TCA (Fig. 5, Fig. 6). LPS

Cluster 1 Cluster 2 Cluster 3 Cluster 4 (Number of Genes = 28) (Number of Genes = 73) (Number of Genes = 141) (Number of Genes = 78) 7.5 7 6 6 6 5 5 5 4 5.0 4 4 3 3 3 2.5 2 2 2 1 1 1 0 0.0 0 0 1 2 3 1 2 3 1 2 3 1 2 3

Cluster 5 Cluster 6 Cluster 7 (Number of Genes = 60) (Number of Genes = 9) (Number of Genes = 201)

7.5 5

4 5.0 5.0 3

2 2.5 2.5 1

0.0 0 0.0 1 2 3 1 2 3 1 2 3

Fig. 6.

22 6 : Trans-Cinnamaldehyde Lipopolysaccharide BV-2 cell : Microarray (479)

murine microglial cell line BV-2 cell 8,13,14) . LPS TCA LPS nuclear factor-kappa B . (NF- κB) iNOS mRNA mouse Oligonucleotide probe iNOS NO set microarray chip whole trans- 15,16) . microglia cript sense target labeling assay (WT Gene microarray) 11) gene ontology (GO) microglia . BV-2 cell 1 / LPS 17) . 1522 probe set , Unigene LPS 341 ID 341 . , TCA gene ontology biological process molecular LPS functions probe set TCA 10 / . NO Nos2 (iNOS), 1.5 fold probe set 590 prostaglandin (PG) (Ptges, Ptgs2, . Unigene ID Ptgir), NF- κB (Nfkbia, Nfkbiz, 33 Ifi204, Nfkbie), interleukin (Il1 α, Il1 β, Ifi203, Rab2b, Ifit1, Id3, Klra8 6 Il6, Il22, Il7r, Iltifb, Il1f9, Il1rn), interferon . (Ifi203, Ifi204, Irf7, Irf9, Ifit1, Ifitm3, TCA (Cinnamomi Ramulus) Ifih1, Isg20), TNF (Tnf, Tnfaip2, , Tnfaip3, Tnfrsf1b Traf1 Fas), chemokine ligand (Ccl2, Ccl4, Ccl5, Ccl7, Cxcl2, Cxcl10, Ccrl2), TCA MMP family (Mmp9, Mmp23) Grin2a, 2,3,5,12) . TCA RAW 264.7 cell iNOS Csf3, Peli1, Icam1 . NO 3) , endothelial cell LPS bacterial endotoxin TNF COX-2 PGE2 4) , murine macrophage human blood monocyte TNF- α IL-1, TNF- α 5) LPS 18) . . iNOS L-arginine NO (macrophage) NOS 3 isoform 19) , LPS, IL-1, IL-6, TNF- α, IFN- γ, Alzehimer’s amyloid peptide , microglia cell, macrophage, NO, TNF- α, monocyte , , , chemoattractant protein-1 (MCP-1), macrophage iNOS NO inflammatory peptide-1 α (MIP-1 α), IL-1 β, IL-6, , , IL-8, IL-18, macrophage colony-stimulating factor 20) , NO (M-CSF) TNF- α, IL-1, IL-6 , cytokine COX-2

23 (480) 30 4 (2009 7 )

21) . positive control interleukin (Il1 α, Il1 β, Il6, Il22, LPS NO Il7r, Iltifb, Il1f9, Il1rn) Nos2, NF- κB (Nfkbia, . Nfkbiz, Nfkbie) . LPS IL-1, TNF TCA , Ifi204, Ifi203, Rab2b, Ifit1, Id3, (blood brain Klra8 . GO molecular barrier; BBB) , function , ifi203 protein binding, Ifi204 (cell adhesion molecule) transcription cofactor activity protein binding, chemokine Ifit1 binding, Id3 transcription factor binding , iNOS protein domain specific binding, Klra8 receptor 22,23) . positive activity protein binding control interleukin (Il1 α, . , Id3 Klra8 cell growth, adhesion, Il1 β, Il6, Il22, Il7r, Iltifb, Il1f9, Il1rn), TNF migration, cell-fate determination, differentiation, (Tnf, Tnfaip2, Tnfaip3, Tnfrsf1b Traf1 apoptosis TGF-beta signaling pathway 29) Fas) Natural killer cell mediated cytotoxicity pathway . cytokine (Table 2). TNF IL-1 IL-6 , Id DNA (Inhibitor IL-1 IL-6 TNF 22) . of DNA binding protein: Id) PTGES , , (inhibitor of differentiation: Id) PGE2 Id1, Id2, Id3 Id4 4 , COX-2 PTGS2 helix-loop-helix (HLH) 30) . basic , COX-2 HLH 31,32) PG , , , 24,25) . 32,33) . , Tzeng Matrix metalloproteinase (MMP) 56) TNF- α microglia , , , Id1, Id2, Id3 mRNA , BBB , , Id glia . 26,27) . KEGG pathway , Pelli1 IL-1 NF-kB IL-8 , Id3 TGF-beta signaling , IL-1 receptor-ass- pathway . TGF- β ociated kinase (IRAK)-IRAK4-tumor necrosis factor (Autocrine), receptor-associated factor 6 (TRAF6) (paracrine) IL-1 , 34) , 28) . Positive control Pelli1 NF- type , serine/threonine kinase κB (Nfkbia, Nfkbiz, Nfkbie) receptors transmembrane

24 6 : Trans-Cinnamaldehyde Lipopolysaccharide BV-2 cell : Microarray (481)

, Smads, mitogen activated protein pathway kinase (MAPK)

35) . TGF- β . Kowanetz 36) Id2 Id3 TGF- β Bone morphogenetic protein (BMP) . TGF- β BMP Id , 결 론 Kim 37) TGF- β1 phosphatidyli- nositol 3-kinase microglia TCA LPS BV-2 , LPS p38 mitogen-activated cell kinase c-jun N-terminal kinase WT ST labeling assay NF- κB , GenPlex Wyss-Coray 38) v3.0 software (ISTECH Inc., Korea) TGF- β signaling pathway (neurotrophic . pathway) . 1. DEG (cutoff 1.5 fold change) , TCA TCA positive control negative control . NO 1522 probe set iNOS promoter activity , Unigene ID 341 iNOS (transcription) . 39) . Nos2, Ptges, Il1 α, Il1 β, Il6, Tnf, Nfkbia, microarray cutoff 1.5 fold change Mmp9, Mmp23, Ccl2, Ccl5, Grin2a, Csf3, LPS , iNOS, Peli1, Icam1 cytokine, chemokine, interleukin TGF- β transcription factor . 2. Positive control TCA cutoff 1.5 fold change LPS probe set (cutoff=1.5 TCA fold change) 590 , Unigene ID 33 , Ifi204, . TCA Ifi203, Rab2b, Ifit1, Id3, Klra8 6 TCA . Id3 3. Pathway , id3 pathway apoptosis, TGF-beta signaling pathway , Klra8 TGF-beta signaling pathway natural killer cell mediated cytotoxicity microglia TGF-beta pathway .

. ,

25 (482) 30 4 (2009 7 )

감사의 글 9. Orr CF, Rowe DB, Haliday GM. An inflammatory review of Parkinson’s disease. Progress in Neu- 2005 ( ) robiology. 2002;68:325-340. 10. Norton WT, Aquino DA, Hozymi I, Chiu FC, Brosnan CF. Quantitive aspects of reactive gliosis: (KRF-2005-005-J00702). a review. Neurochem. Res. 1992;17:877-885. 11. GeneChip Whole Transcript (WT) Sense Target 참고문헌 Labeling Assay Manual Version 4; Copyright 2007, Affymetrix, Inc. 1. KFDA (Korea Food & Drug Administration). 12. Kim DH, Kim CH, Kim MS, Kim JY, Jung KJ, The Korean Herbal Phamacopoeia. 8th ed. Seoul: Chung JH, et al.. Suppression of age-related Yakup Daily. 2002:1241-1243. inflammatory NF- κB activation by cinnamaldehyde. 2. Park HJ, Lee JS, Lee JD, Kim NJ, Pyo JH, Kang Biogerontology 2007;8:545-554. JM, et al.. The anti-inflammatory effect of 13. Meme W, Calvo CF, Froger N, Ezan P, Amigou Cinnamomi Ramulus. J Korean Oriental Med. E, Koulakoff A, et al.. Proinflammatory cytokines 2005; 26(2):140-151. released from microglia inhibit gap junctions in 3. Lee HS, Kim BS, Kim MK. Suppression effect astrocyte: potentiation by beta-amyloid. FASEB of Cinnamomum cassia derived component on J. 2006;20:494-496. nitric oxide synthase. J Agric Food Chem 2002; 14. Lue LF, Rydel R, Brigham EF, Yang LB, Hampel 50:7700-7703. H, Murphy GM Jr, et al.. Infalmmatory repertoire 4. Guo JY, Huo HR, Zhao BS, Liu HB, Li LF, Ma of Alzheimer’s disease and nondemented elderly YY, et al.. Cinnamaldehyde reduces IL-1beta- microglia in vitro. Glia. 2001; 35: 72-79. induced cyclooxygenase-2 activity in rat cerebral 15. Moilanen E, Whittle B, Moncada S. Nitric oxide microvascular endothelial cells. Eur J Pharmacol. as a factor in inflammation. In: Gallin JI, Snyde- 2006; 537(1-3):174-180. rman R, Editors, Inflammation: basic principles 5. Chao LK, Hua KF, Hsu HY, Cheng SS, Lin IF, and clinical corralates. Williams and Wilkins, Chen CJ, et al.. Cinnamaldehyde inhibits pro- Philadelphia. 1999;787-800. inflammatory cytokines secretion from monocytes/ 16. Moncada S, Palmer RM, Higgs EA. Nitric oxide: macrophages through suppression of intracellular physiology, pathophysiology and pharmacology. signaling. Food Chem Toxicol. 2008; 46(1):220- Pharmacol Rev. 1991;43:109-142. 231. 17. Campbell A. Inflammation, neurodegenerative 6. Lundberg IE. The role of cytokines, chemokines diseases, and environmental exposures. Ann. N.Y. and adhesion molecules in the pathogenesis of Acad. Sci. 2004;1035:117-132. idiopathic inflammatory myopathies. Current 18. Guha M, Mackman N. LPS induction of gene Rheumatology Report. 2000;2:216-224. expression in human monocytes. Cellular Signaling. 7. Murabe Y, Sano Y. Morphological studies on 2001;13:85-94. neuralgia. . Postnatal development of microglia 19. Stuechr DJ. Structure-function aspects in the cells. Cell Tissue Res. 1982; 225: 469-485. nitric oxide synthases. Annu. Rev. Pharmacol. 8. Gonzalez-Scarano F, Baultuch G. Microglia as Toxicol. 1997;37:339-359. mediators of inflammatory and degenerative 20. Meda L, Cassatella MA, Szendrei GI, Otvos L, disease. Annual Rev Neurosci. 1999;34:307-321. Baron P, Villalba M, et al.. Activation of micr-

26 6 : Trans-Cinnamaldehyde Lipopolysaccharide BV-2 cell : Microarray (483)

oglial cell by β-amyloid protein and interferon- γ. to the nation on the status of cancer (1973 through Nature. 1995;374:647-650. 1998), featuring cancers with recent increasing 21. Miyasaka N, Hirata Y. Nitric oxide and inflamm- trends. J Natl Cancer Inst. 2001;93:824-842. atory arthritides. Life Sci. 1997;61(21):2073-2081. 31. Massari ME, Murre C. Helix-loop-helix : 22. Lucas SM, Rothwell NJ, Gibson RM. The role regulators of transcription in eucaryotic organisms. of inflammation in CNS injury and disease. British Mol Cell Biol. 2000;20:429-440. Journal of Pharmacology. 2006;147:232-240. 32. Norton JD. ID helix-loop-helix proteins in cell 23. Sedgwick JD, Riminton DS, Cyster JG, Korner growth, differentiation and tumorigenesis. J Cell H. Tumor necrosis factor: a master-regulator Sci. 2000;113:3897-3905. leukocyte movement. Immunol Today. 2000;21: 33. Springhorn JP, Singh K, Kelly RA, Smith TW. 110-113. Posttranscriptional regulation of Id1 activity in 24. Hoozemans JJ, Veerhuis R, Janssen I, van Elk cardiac muscle. Alternative splicing of novel Id1 EJ, Rozemuller AJ, Eikelenboom P. The role of transcript permits homodimerization. J Biol Chem. cyclo-oxygenase 1 and 2 activity in prostaglandin 1994;269:5132-5136. E (2) secretion by cultured human adult microglia 34. Martin M, Lefaix J, Delanian S. TGF- β1 and : implications for Alzheimer’s disease. Brain Res. radiation fibrosis : a master switch and a specific 2002;951:218-226. therapeutic target. International Journal of Radiation 25. Teismann P, Tieu K, Choi DK, Wu DC, Naini Oncology, Bio and Physics. 2000;47(2):277-290. A, Hunot S, et al.. Cyclooxygenase-2 is instrum- 35. Yue J, Mulder KM. Transforming growth factor- ental in Parkinson’s disease neurodegeneration. β signal transduction in epithelial cells. Pharma- Proc Natl Acad Sci USA. 2003;100(9):5473-5478. cology & Therapeutics. 2001;91:1-34. 26. Leib SL, Leppert D, Clements J, Tauber MG. 36. Kowanetz M, Valcourt U, Bergström R, Heldin Matrix metalloproteinases contribute to brain CH, Moustakas A. Id2 and Id3 define the potency damage in experimental pneumococcal meningitis. of cell proliferation and differentiation responses Infect Immun. 2000;68:615-620. to transforming growth factor beta and bone 27. Kieseier BC, Schneider C, Clements JM, Gearing morphogenetic protein. Mol Cell Biol. 2004; AJ, Gold R, Toyka KV, et al.. Expression of 24(10):4241-4254. specific matrix metalloproteinases in inflammatory 37. Kim WK, Hwang SY, Oh ES, Piao HZ, Kim myopathies. Brain. 2001;124:341-351. KW, Han IO. TGF-beta1 represses activation and 28. Jiang Z, Johnson HJ, Nie H, Qin J, Bird TA, Li resultant death of microglia via inhibition of X. Pellino 1 is required for interleukin-1 (IL-1) phosphatidylinositol 3-kinase activity. J Immunol. -mediated signaling through its interaction with 2004;172:7015-7023. the IL-1 receptor-associated kinase 4 (IRAK4)- 38. Wyss-Coray T. TGF-Beta pathway as a potential IRAK-tumor necrosis factor receptor- associated target in neurodegeneration and Alzheimer’s. Curr factor 6 (TRAF6) complex. J Biol Chem. 2003; Alzheimer Res. 2006;3(3):191-195. 278(13):10952-10956. 39. Kleinert H, Euchenholer C, Ihrig-Biedert I, 29. Lyons RM, Moses HL. Transforming growth Forstermann U. Glucocorticoids inhibit the indu- factors and the regulation of cell proliferation. ction of nitric oxide synthase by down- Eur J Biochem. 1990;187:461-473. regulating cytokine -induced activity of transcr- 30. Howe HL, Wingo PA, Thun MJ, Ries LA, iption factor nuclear factor- κB. Mol Pharmacol. Rosenberg HM, Feigal EG, et al.. Annual report 1996;49:15-21.

27