Cranfield University the Development of a Laser
Total Page:16
File Type:pdf, Size:1020Kb
CRANFIELD UNIVERSITY THE DEVELOPMENT OF A LASER DETONATOR SYSTEM DEFENCE COLLEGE OF MANAGEMENT AND TECHNOLOGY PhD THESIS MIKE BOWDEN CRANFIELD UNIVERSITY DEFENCE COLLEGE OF MANAGEMENT AND TECHNOLOGY DEPARTMENT OF MATERIALS AND APPLIED SCIENCES PhD THESIS Mike Bowden The Development of a Laser Detonator System Supervisor: Professor J Akhavan Industrial Supervisor: Dr R. C. Drake January 2014 © Crown Copyright 2014. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holder. ABSTRACT Laser detonators offer several advantages over traditional electrical detonators, such as exploding bridgewire and slapper detonators, in terms of both safety and performance. Laser detonators remove the electrical conduction path to the energetic material, providing immunity from threats such as electrostatic discharge and lightning. A larger separation between the initiating energy source and the explosive devices is possible, up to several tens of metres, compared to a few metres for electrical slapper detonators. A laser detonator system has been developed, with laser-driven flyer plates used to shock initiate the explosive. All aspects of the system, including coupling into an optical fibre, used to transmit the laser energy to the detonator, the optical fibre, the flyer plate launch and acceleration and subsquent shock into the explosive, and the explosive initiation have been investigated, with an understanding of the underlying principles and processes developed. Shock initiation of two secondary explosives, hexanitrostilbene and pentaerythritol tetranitrate, has been studied at extremely high shock pressures, comparable to the detonation pressure, and the critical energy fluence required for initiation establised. The laser detonator system is robust and optimised, with design tools developed to enable efficient design of future systems. i ACKNOWLEDGEMENTS I would like to thanks Sarah Knowles and Matthew Cheeseman (AWE) for experimental assistance for flyer and initiation experiments, Matthew Maisey (AWE) for advice on shock physics, Steven Clarke (LANL) and Ted Strand (LLNL) for technical discussions and advice on PDV, Adrian Akinci (LANL), Steven Harris (SNL), Eric Welle (AFRL), Alan Frank and Paul Wilkins (LLNL) for many invaluable technical discussions and debates on explosive initiation, Arnie Duncan and BWTX Pantex for HNS supply, Ray Everest and Roger Quant (AWE) and their staff for pellet pressing, Chris Hall and David Holder (AWE) for funding and John Richardson (AWE) for being the ultimate Devil’s advocate and technical sounding board. I would also like to thank my amazing wife Dondra and son David, for their love and understanding during my studies. ii TABLE OF CONTENTS ABSTRACT ...................................................................................................................... i ACKNOWLEDGEMENTS .............................................................................................. ii TABLE OF CONTENTS ................................................................................................ iii TABLE OF FIGURES ................................................................................................... viii TABLE OF TABLES ................................................................................................... xvii GLOSSARY ................................................................................................................... xx CHAPTER 1: INTRODUCTION ..................................................................................... 1 1.1. Functional Description of a Laser Detonator System ...................................................... 56 1.1.1. Laser Operation ............................................................................................................. 56 1.1.2. Fibre Optic Coupling and Transmission ....................................................................... 57 1.1.3. Flyer Launch and Acceleration ..................................................................................... 58 1.1.4. Explosive Initiation ....................................................................................................... 59 1.2. Typical Experimental Configuration ............................................................................... 62 1.2.1. Imaging of Laser Beam ................................................................................................. 63 1.2.2. Measurement of Laser Energy ...................................................................................... 64 1.2.3. Measurement of Laser Temporal Profile ...................................................................... 64 1.2.4. Triggering and Syncronisation ...................................................................................... 64 1.2.5. Laser to Fibre Coupling ................................................................................................ 65 1.2.6. Flyer Plate Studies ........................................................................................................ 68 1.2.7. Explosive Initiation ....................................................................................................... 72 CHAPTER 2: LITERATURE REVIEW .......................................................................... 3 2.1. Optical Fibre Delivery of High Energy Laser Pulses ........................................................ 3 2.2. Summary of Optical Fibre Delivery of High Energy Laser Pulses ................................. 13 2.2.1. Injection method ........................................................................................................... 13 2.2.2. Fibre Face Preparation Method ..................................................................................... 13 2.2.3. Fibre Core Diameter ..................................................................................................... 14 2.2.4. Laser Pulse Length ........................................................................................................ 14 2.3. Laser-Driven Flyers ......................................................................................................... 16 2.3.1. Experimental Studies of Laser-driven Flyer Plates ...................................................... 16 2.3.1.1. Flyer plates Launched Using Free-space Lasers ........................................................ 16 iii 2.3.1.2. Flyer Plates Launched Using Fibre Optically Coupled Lasers .................................. 24 2.3.2. Summary of Experimental Results for Laser-Driven Flyer Plates ............................... 40 2.3.3. Theoretical and Computation Studies of Laser-driven Flyer Plates ............................. 41 2.3.3.1. Analytical Models ...................................................................................................... 41 2.3.3.2. Numerical Models ...................................................................................................... 43 2.3.3.3. Summary of Theoretical and Computation Studies of Laser-driven Flyer Plates ..... 48 2.4. Laser-induced Explosive Initiation .................................................................................. 49 2.4.1. Summary of Laser-induced Explosive Initiation .......................................................... 51 2.5. Summary of Literature Review ........................................................................................ 52 2.6. A Baseline Laser Detonator System ................................................................................ 54 CHAPTER 3: DEVELOPMENT OF A PHOTONIC DOPPLER VELOCIMETER .... 74 3.1. System Design and Construction ..................................................................................... 76 3.1.1. 4 Channel PDV System ................................................................................................ 76 3.1.2. Optically Upshifted PDV System ................................................................................. 77 3.2. PDV Data Analysis .......................................................................................................... 79 CHAPTER 4: OPTICAL FIBRE COUPLING AND TRANSMISSION ...................... 82 4.1. Introduction to Optical Fibre Coupling and Transmission .............................................. 82 4.1.1. Fibre Coupling .............................................................................................................. 82 4.1.2. Damage Threshold ........................................................................................................ 82 4.1.3. Transmission Efficiency ............................................................................................... 83 4.1.4. Bend Radius .................................................................................................................. 83 4.1.5. Spatial Profile ................................................................................................................ 83 4.1.6. Axial and Radial Fibre Coupling .................................................................................. 85 4.2. Optimal Polishing Methods for High Energy Optical Fibres .......................................... 85 4.2.1. Assessment of Polish Quality ....................................................................................... 88 4.2.2. Determination of Damage Threshold ............................................................................ 88 4.2.3. Results of