51) International Patent Classification: (71) Applicant: LAWRENCE LIVERMORE NATIONAL F42B 3/12 (2006.0 1) F42B 3/13 (2006.0 1
Total Page:16
File Type:pdf, Size:1020Kb
( 2 (51) International Patent Classification: (71) Applicant: LAWRENCE LIVERMORE NATIONAL F42B 3/12 (2006.0 1) F42B 3/13 (2006.0 1) SECURITY, LLC [US/US]; 7000 East Avenue, P.O. Box 808, L-703, Livermore, California 94550-9234 (US). (21) International Application Number: PCT/US20 19/032536 (72) Inventors: WEST, Connor M.; 15 Meritage Common, Apt 201, Livermore, California 94551 (US). LE, Dat Q.; 5867 (22) International Filing Date: Woodrose Way, Livermore, California 9455 1 (US). 15 May 2019 (15.05.2019) (74) Agent: GALLENSON, Mavis et al.; 4525 Wilshire Boule¬ (25) Filing Language: English vard, Suite 240, Los Angeles, California 90010 (US). (26) Publication Language: English (81) Designated States (unless otherwise indicated, for every (30) Priority Data: kind of national protection av ailable) . AE, AG, AL, AM, 15/982,580 17 May 2018 (17.05.2018) US AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (63) Related by continuation (CON) or continuation-in-part DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (CIP) to earlier application: HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, US 15/982,580 (CON) KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, Filed on 17 May 2018 (17.05.2018) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (54) Title: CHIP SLAPPER DETONATOR (57) Abstract: A method of making a low cost chip slapper detonator includes the steps of: providing a substrate having a substrate top and a substrate bottom; electroplating a pattern of conductive pads on the substrate bottom; drilling a pattern of via holes through the substrate, wherein the via holes are in contact with the conductive pads; plating the via holes with a conductive material to create a conductive path in the via holes between the substrate top and the substrate bottom; metallization of a multiplicity of conductive bridges on the substrate top; adhering a slapper layer over the multiplicity conductive bridges on the substrate; and dicing the substrate into individual chip slapper detonators wherein each the individual chip slapper detonator includes one of the multiplicity conductive bridges. [Continued on next page] WO 2019/222434 A1 SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (84) Designated States (unless otherwise indicated, for every kind of regional protection available) : ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, TR), OAPI (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW, KM, ML, MR, NE, SN, TD, TG). Published: — with international search report (Art. 21(3)) — before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments (Rule 48.2(h)) CHIP SLAPPER DETONATOR CROSS REFERENCE TO RELATED APPLICATIONS This application claims priority to and the benefit of United States Serial Number 15/982,580 filed on May 17, 2018 and entitled "Low Cost Chip Slapper Detonator", which application is incorporated herein b reference. STATEMENT AS TO RIGHTS TO APPLICATIONS MADE UNDER FEDERALLY SPONSORED RESEARCH AND DEVELOPMENT [0001] The United States Government has rights in this application pursuant to Contract No. DE-AC52-07NA27344 between the United States Department of Energy and Lawrence Livermore National Security, LLC for the operation of Lawrence Livermore National Laboratory. BACKGROUND Field of Endeavor [0002] The present technology relates generally to devices for setting off an explosive charge and more particularly to a low cost chip slapper detonator. State of Technology [0003] This section provides background information related to the present disclosure, which is not necessarily prior art. [0004] United States Published Patent Application No. 2013/0284043 for a silver bridge element slapper detonator provides the state of technology information reproduced below. Slapper detonators are used to initiate explosives for commercial and other applications. Slapper detonators are a class of detonators that has been capturing a larger and larger share of the detonator market. The value of slapper detonators is found in the fact that these detonators can be made to fire at low energies and yet remain safe due to the unique firing requirements. Paragraph [0005] High Voltage Detonators contain small "bridges" that are exploded by the high current pulse from the fireset. The bridges can be made of different materials, but the best performance is generally achieved by the best conductors. The four best conductors are in rank order, silver, copper, gold and aluminum. Early designs that required the bndgewire to be in contact with the explosive used gold because it s highly resistant to chemical attack. Silver, due to its high suscepti-bility to chemical attack, was rejected early for this application. Paragraph [0006] Slapper detonators operate by using the exploding bridge to propel a small plastic insulating layer or "flyer” into the explosive. Because the bridge is no longer in contact with the explosive, other materials besides gold can and have been used. Silver, however, has never been tried m a slapper appli-cation, perhaps due to the early rejection. Paragraph [0007] [0005] United States Patent No. 6,470,802 for a multilayer chip slapper provides the state of technology information reproduced below. Chip slapper type detonators in general cause a "flying plate" to be propelled at a high velocity against a secondary explosive medium creating a shock wave which results in the detonation of the secondary explosive. In a typical design, there are two wide-area conductive lands separated by a narrow rectangular bridge member. The lands are connected to a capacitor through a high voltage switch. When the switch closes, the capacitor provides current across the lands, which vaporizes the bridge member turning into a plasma. This plasma accelerates a portion of the dielectric material covering the bridge member to a high velocity , causing it to slap into an explosive. The resulting shock wave causes detonation of the explosive. Traditional chip slappers include a ceramic substrate and a copper conductive layer on one surface of the substrate in the shape of the two wide lands separated by the narrow- bridge portion. There may be a protective gold coating on the copper to prevent the copper conductive layer from corroding and to enhance electrical connections made to the lands. A flyer layer made of polyimide is then secured over the bridge portion. There are several potential problems associated with this current design. First, the flyer layer does not exhibit an affinity for the gold coating and may not properly stick in place on the bridge portion. Second, the gold of the coating can migrate into the copper of the conductive layer and vice versa. The result is that the gold coating loses its corrosion prevention ability and its ability to enhance the electrical connections to the lands. Also, when the copper material migrates into the gold, there s a higher susceptibility to corrosion. SUMMARY [0006] Features and advantages of the disclosed apparatus, systems, and methods will become apparent from the following description. This description, drawings and examples of specific embodiments, are provided to give a broad representation of the apparatus, systems and methods here considered. Various changes and modifications within the scope of this writing will become apparent to those skilled in the art from this writing and by practice of the apparatus, systems, and methods presented herein. The scope of the apparatus, systems, and methods is not intended to be limited to the particular forms disclosed. All modifications, equivalents, and alternatives that fall within the scope of this presentation and as defined by the claims are to be included as part of this technology. [0007] The inventors' apparatus, systems, and methods provide a chip slapper including a substrate with a conductive bridge layer and a flyer layer on one side of the substrate. The other side of the substrate consists of conductive pads. The bridge side of the substrate is electrically connected to the pad side of the substrate through a conductive pathway. The design and shape of the conductive bridge is manufactured using a masked physical vapor deposition process. The flyer layer is applied using a lamination technique. The inventors here provide a method of making chip slapper detonators. The method includes the steps of: providing a substrate having a substrate top and a substrate bottom; electroplating a pattern of conductive pads on the substrate bottom; drilling a pattern of via holes through the substrate, wherein the via holes are in contact with the conductive pads; plating the via holes with a conductive material to create a conductive path in the via holes between the substrate top and the substrate bottom; metallization of a multiplicity of conductive bridges on the substrate top; adhering a slapper layer over the multiplicity conductive bridges on the substrate; and dicing the substrate into individual chip slapper detonators wherein each the individual chip slapper detonator includes one of the multiplicity conductive bridges. [0008] The inventors' chip slapper uses a vapor deposition process to create a substrate with a conductive bridge layer on one side. The bridge layer is designed with two wide ends connected by a narrow bridge.