Elements of Fission Weapon Design

Total Page:16

File Type:pdf, Size:1020Kb

Elements of Fission Weapon Design archived as http://www.stealthskater.com/Documents/Nuke_041.doc [pdf] more on nuclear weapons at http://www.stealthskater.com/Nuke.htm note: because important websites are frequently "here today but gone tomorrow", the following was archived from http://nuclearweaponarchive.org/Nwfaq/Nfaq4-1.html#Nfaq4.1 on October 20, 2003 . This is NOT an attempt to divert readers from the aforementioned website. Indeed, the reader should only read this back-up copy if it cannot be found at the original author's site. COPYRIGHT CAREY SUBLETTE This material may be excerpted, quoted, or distributed freely provided that attribution to the author (Carey Sublette) and document name (Nuclear Weapons Frequently Asked Questions) is clearly preserved. I would prefer that the user also include the URL of the source. Only authorized host sites may make this document publicly available on the Internet through the World Wide Web, anonymous FTP, or other means. Unauthorized host sites are expressly forbidden. If you wish to host this FAQ, in whole or in part, please contact me at: [email protected] This restriction is placed to allow me to maintain version control. The current authorized host sites for this FAQ are the High Energy Weapons Archive hosted/mirrored at http://nuketesting.enviroweb.org/hew/ and "mirrored" at http://nuclearweaponarchive.org/ , http://gawain.membrane.com/hew/ and Rand Afrikaans University Engineering hosted at http://www-ing.rau.ac.za/ 4.1 - Elements of Fission Weapon Design 4.1.1 Dimensional and Temporal Scale Factors In Section 2, the properties of fission chain reactions were described using 2 simplified mathematical model: (1) the discrete step chain reaction and (2) the more accurate continuous chain reaction model. A more detailed discussion of fission weapon design is aided by introducing more carefully defined means of quantifying the dimensions and time scales involved in fission explosions. These scale factors make it easier to analyze time-dependent neutron multiplication in systems of varying composition and geometry. These scale factors are based on an elaboration of the continuous chain reaction model. It uses the concept of the "average neutron collision" which combines the scattering, fission, and absorption cross- sections with the total number of neutrons emitted per fission to create a single figure of merit which can be used for comparing different assemblies. The basic idea is this: When a neutron interacts with an atom, we can think of it as consisting of 2 steps: 1. the neutron is "absorbed" by the collision; and 2. zero-or-more neutrons are emitted. If the interaction is ordinary neutron capture, then no neutron is emitted from the collision. If the interaction is a scattering event, then one neutron is emitted. If the interaction is a fission event, then the average number of neutrons produced per fission is emitted (this average number is often designated by υ). By combining these, we get the average number of neutrons produced per collision (also called the number of secondaries) designated by c: 1 c = (cross scatter + cross fission avg_n_per_fission) / cross total Eq. (4.1.1-1) The total cross-section cross total is equal to: cross total = cross scatter + cross fission + cross absorb Eq. (4.1.1-2) The total neutron mean free path (the average distance a neutron will travel before undergoing a collision) is given by: MFP = 1 / ( cross total * N) Eq. (4.1.1-3) where N is the number of atoms per unit volume, determined by the density. In computing the effective reactivity of a system, we must also take into account the rate at which neutrons are lost by escape from the system. This rate is measured by the number of neutrons lost per collision. For a given geometry, the rate is determined by the size of the system in MFPs. Put another way, for a given geometry and degree of reactivity, the size of the system as measured in MFPs is determined only by the parameter c. The higher the value of c, the smaller the assembly can be. An indication of the effect of c on the size of a critical assembly can be gained by the following table of critical radii (in MFPs) for bare (unreflected) spheres: Table 4.1.1-1. Critical Radius rC versus Number of Secondaries c c value rC (crit. Radius in MFP) 1.00 infinite 1.02 12.027 1.05 7.277 1.10 4.873 1.20 3.172 1.40 1.985 1.60 1.476 If the composition, geometry, and reactivity of a system are specified, then the size of a system in MFPs is fixed. From Eq. (4.1.1-3), we can see that the physical size or scale of the system (measured in centimeters, say) is inversely proportional to its density. Since the mass of the system is equal to volume*density and volume varies with the cube of the radius, we can immediately derive the following scaling law: 2 2 mcritc = mcrit0 / (ρ/ ρ0) = mcrit0 / C Eq. (4.1.1-4) That is, the critical mass of a system is inversely proportional to the square of the density. C is the degree of compression (density ratio). This scaling law applies to bare cores. It also applies cores with a surrounding reflector if the reflector is density has an identical degree of compression. This is usually not the case in real weapon designs, a higher degree of compression generally being achieved in the core than in the reflector. An approximate relationship for this is: 2 1.2 0.8 mcritc = mcrit0 / (Cc * Cr ) Eq. (4.1.1-5) where Cc is the compression of the core and Cr is the compression of the reflector. Note that when Cc = Cr, then this is identical to Eq. (4.1.1-4). For most implosion weapon designs (since Cc > Cr), we can use the approximate relationship: 1.7 mcritc = mcrit0 / Cc Eq. (4.1.1-6) These same considerations are also valid for any other specified degree of reactivity, not just critical cores. Fission explosives depend on a very rapid release of energy. We are thus very interested in measuring the rate of the fission reaction. This is done using a quantity called the effective multiplication rate or "alpha α". The neutron population at time t is given by: (α*t) Nt = N0 e Eq. (4.1.1-7) α thus has units of 1/t, and the neutron population will increase by a factor of e (2.71...) in a time interval equal to 1/ α. This interval is known as the "time constant" (or "e-folding time") of the system, tC. The more familiar concept of "doubling time" is related to α and the time constant simply by: doubling time = (ln 2)/ α = (ln 2) tc Eq. (4.1.1-8) α is often more convenient than tc or doubling times since its value is bounded and continuous: zero at criticality; positive for supercritical systems; and negative for subcritical systems. The time constant goes to infinity at criticality. The term "time constant" seems unsatisfactory for this discussion though since it is hardly constant, tc continually changes during reactivity insertion and disassembly. Therefore I will henceforth refer to the quantity 1/α as the "multiplication interval". α is determined by the reactivity (c and the probability of escape) and the length of time it takes an average neutron (for a suitably defined average) to traverse an MFP. If we assume no losses from the system, then α can be calculated by: α = (1/τ) (c - 1) = (vn / totalMFP) (c - 1) Eq. (4.1.1-9) where τ is the average neutron lifetime between collisions and vn is the average neutron velocity (which is 2.0x109 cm/sec for a 2 MeV neutron, the average fission spectrum energy). The "no losses" assumption is an idealization. It provides an upper bound for reaction rates and a good indication of the relative reaction rates in different materials. For very large assemblies consisting of many critical masses, neutron losses may actually become negligible and approach the α's given below. The factor c-1 used above is the "neutron number". It represents the average neutron excess per collision. In real systems, there is always some leakage. When this leakage is taken in account, we get the "effective neutron number" which is always less than c-1. When the effective neutron number is zero, the system is exactly critical. 4.1.2 Nuclear Properties of Fissile Materials The actual value of alpha at a given density is the result of many interacting factors: the relative neutron density and cross-sections values as a function of neutron energy, weighted by neutron velocity 3 which in turn is determined by the fission neutron energy spectrum modified by the effects of both moderation and inelastic scattering. Ideally the value of α should be determined by "integral experiments". That is, measured directly in the fissile material where all of these effects will occur naturally. Calculating τ and α from differential cross-section measurements, adjusted neutron spectrums, etc. is fraught with potential error. In the table below, I give some illustrative values of c, total cross-section, total mean free path lengths for the principal fissionable materials (at 1 MeV), and the α's at maximum uncompressed densities. Compression to above normal density (achievable factors range up to 3 or so in weapons) reduce the MFPs, α's(and the physical dimensions of the system) proportionately. Table 4.1.2-1. Fissile Material Properties isotope c crosstotal totalMFP density α tdouble (barns) (cm) (1/μsec) (nano-sec) U233 1.43 6.5 3.15 18.9 273 2.54 U235 1.27 6.8 3.04 18.9 178 3.90 Pu239 1.40 7.9 2.54 19.8 315 2.20 Values of c and totalMFP can be easily calculated for mixtures of materials as well.
Recommended publications
  • Radiation Poisoning , Also Called Radiation Sickness Or a Creeping Dose , Is a Form of Damage to Organ Tissue Due to Excessive Exposure to Ionizing Radiation
    Radiation poisoning , also called radiation sickness or a creeping dose , is a form of damage to organ tissue due to excessive exposure to ionizing radiation . The term is generally used to refer to acute problems caused by a large dosage of radiation in a short period, though this also has occurred with long term exposure. The clinical name for radiation sickness is acute radiation syndrome ( ARS ) as described by the CDC .[1][2][3] A chronic radiation syndrome does exist but is very uncommon; this has been observed among workers in early radium source production sites and in the early days of the Soviet nuclear program. A short exposure can result in acute radiation syndrome; chronic radiation syndrome requires a prolonged high level of exposure. Radiation exposure can also increase the probability of contracting some other diseases, mainly cancer , tumours , and genetic damage . These are referred to as the stochastic effects of radiation, and are not included in the term radiation sickness. The use of radionuclides in science and industry is strictly regulated in most countries (in the U.S. by the Nuclear Regulatory Commission ). In the event of an accidental or deliberate release of radioactive material, either evacuation or sheltering in place are the recommended measures. Radiation sickness is generally associated with acute (a single large) exposure. [4][5] Nausea and vomiting are usually the main symptoms. [5] The amount of time between exposure to radiation and the onset of the initial symptoms may be an indicator of how much radiation was absorbed. [5] Symptoms appear sooner with higher doses of exposure.
    [Show full text]
  • THE MEETING Meridel Rubenstein 1995
    THE MEETING Meridel Rubenstein 1995 Palladium prints, steel, single-channel video Video assistance by Steina Video run time 4:00 minutes Tia Collection The Meeting consists of twenty portraits of people from San Ildefonso Pueblo and Manhattan Project physicists—who met at the home of Edith Warner during the making of the first atomic bomb—and twenty photographs of carefully selected objects of significance to each group. In this grouping are people from San Ildefonso Pueblo and the objects they selected from the collections of the Museum of Indian Arts and Culture to represent their culture. 1A ROSE HUGHES 2A TALL-NECKED JAR 3A BLUE CORN 4A SLEIGH BELLS 5A FLORENCE NARANJO Rose Hughes holding a photograph of WITH AVANYU One of the most accomplished and (Museum of Indian Arts and Culture) Married to Louis Naranjo; her father, Tony Peña, who organized (plumed serpent) made by Julian and recognized of the San Ildefonso Sleigh bells are commonly used in granddaughter of Ignacio and Susana the building of Edith Warner’s second Maria Martinez, ca. 1930 (Museum of potters. Like many women from the ceremonial dances to attract rain. Aguilar; daughter of Joe Aguilar, who house. Hughes worked at Edith Indian Arts and Culture) Edith Warner pueblos, she worked as a maid for the Tilano Montoya returned with bells like helped Edith Warner remodel the Warner’s with Florence Naranjo one was shown a pot like this one in 1922 Oppenheimers. these from Europe, where he went on tearoom. Edith called her Florencita. summer. She recalls that Edith once on her first visit to San Ildefonso, in the tour with a group of Pueblo dancers.
    [Show full text]
  • Bob Farquhar
    1 2 Created by Bob Farquhar For and dedicated to my grandchildren, their children, and all humanity. This is Copyright material 3 Table of Contents Preface 4 Conclusions 6 Gadget 8 Making Bombs Tick 15 ‘Little Boy’ 25 ‘Fat Man’ 40 Effectiveness 49 Death By Radiation 52 Crossroads 55 Atomic Bomb Targets 66 Acheson–Lilienthal Report & Baruch Plan 68 The Tests 71 Guinea Pigs 92 Atomic Animals 96 Downwinders 100 The H-Bomb 109 Nukes in Space 119 Going Underground 124 Leaks and Vents 132 Turning Swords Into Plowshares 135 Nuclear Detonations by Other Countries 147 Cessation of Testing 159 Building Bombs 161 Delivering Bombs 178 Strategic Bombers 181 Nuclear Capable Tactical Aircraft 188 Missiles and MIRV’s 193 Naval Delivery 211 Stand-Off & Cruise Missiles 219 U.S. Nuclear Arsenal 229 Enduring Stockpile 246 Nuclear Treaties 251 Duck and Cover 255 Let’s Nuke Des Moines! 265 Conclusion 270 Lest We Forget 274 The Beginning or The End? 280 Update: 7/1/12 Copyright © 2012 rbf 4 Preface 5 Hey there, I’m Ralph. That’s my dog Spot over there. Welcome to the not-so-wonderful world of nuclear weaponry. This book is a journey from 1945 when the first atomic bomb was detonated in the New Mexico desert to where we are today. It’s an interesting and sometimes bizarre journey. It can also be horribly frightening. Today, there are enough nuclear weapons to destroy the civilized world several times over. Over 23,000. “Enough to make the rubble bounce,” Winston Churchill said. The United States alone has over 10,000 warheads in what’s called the ‘enduring stockpile.’ In my time, we took care of things Mano-a-Mano.
    [Show full text]
  • Nuclear Fallout and Intelligence As Secrets, Problems, and Limitations on the Arms Race, 1940-1964
    © Copyright 2016 Michael R. Lehman NUISANCE TO NEMESIS: NUCLEAR FALLOUT AND INTELLIGENCE AS SECRETS, PROBLEMS, AND LIMITATIONS ON THE ARMS RACE, 1940-1964 BY MICHAEL R. LEHMAN DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in History in the Graduate College of the University of Illinois at Urbana-Champaign, 2016 Urbana, Illinois Doctoral Committee: Professor Lillian Hoddeson, Chair Professor Kristin Hoganson, Co-Chair Professor Michael Weissman Professor Robert Jacobs, Hiroshima City University Abstract Fallout sampling and other nuclear intelligence techniques were the most important sources of United States strategic intelligence in the early Cold War. Operated as the Atomic Energy Detection System by a covert Air Force unit known as AFOAT-1, the AEDS detected emissions and analyzed fallout from Soviet nuclear tests, as well as provided quantitative intelligence on the size of the Russian nuclear stockpile. Virtually unknown because the only greater Cold War secret than nuclear weapons was intelligence gathered about them, data on the Soviet threat produced by AFOAT-1 was an extraordinary influence on early National Intelligence Estimates, the rapid growth of the Strategic Air Command, and strategic war plans. Official guidance beginning with the first nuclear test in 1945 otherwise suggested fallout was an insignificant effect of nuclear weapons. Following AFOAT-1’s detection of Soviet testing in fall 1949 and against the cautions raised about the problematic nature of higher yield weapons by the General Advisory Committee, the Atomic Energy Commission’s top scientific advisers, President Harry Truman ordered the AEC to quickly build these extraordinarily powerful weapons, testing the first in secrecy in November 1952.
    [Show full text]
  • In the PHYSICAL SCIENCES
    UNITED STATES ATOMIC ENERGY COMMISSION RESEARCH CONTRACTS in the PHYSICAL SCIENCES he JULY 1, 1969 DIVISION OF RESEARCH INDEX Page Introduction .................................. ....................... ......... 2 List of Federally Funded Research and Development Centers ..................... 5 Summary of Off-Site Contracts ................................................. 6 Summary of New Proposals Received and Actions Taken ........................... 7 Summary of Contracts by State ................................................. 8 Contract Listing: High Energy Physics .................................................. 13 Medium Energy Physics ................................................ 15 Low Energy Physics ................................................... 16 Mathematics and Computer Research .................................... 20 Chemistry ......... .............................................. 22 Metallurgy and Materials ............................................. 32 Controlled Thermonuclear Research .................................... 41 1 INTRODUCT ION The Physical Research Program is chiefly concerned with basic research investigations undertaken to discover new scientific knowledge and also includes some applied research investigations relevant to certain aspects of the practical utilization of nuclear energy. Research is conducted in the fields of high, medium, and low energy physics, mathematics and computers, chemistry, metallurgy and materials, and controlled thermonuclear reactions. Approximately three-fourths
    [Show full text]
  • Center for History of Physics Newsletter, Spring 2008
    One Physics Ellipse, College Park, MD 20740-3843, CENTER FOR HISTORY OF PHYSICS NIELS BOHR LIBRARY & ARCHIVES Tel. 301-209-3165 Vol. XL, Number 1 Spring 2008 AAS Working Group Acts to Preserve Astronomical Heritage By Stephen McCluskey mong the physical sciences, astronomy has a long tradition A of constructing centers of teaching and research–in a word, observatories. The heritage of these centers survives in their physical structures and instruments; in the scientific data recorded in their observing logs, photographic plates, and instrumental records of various kinds; and more commonly in the published and unpublished records of astronomers and of the observatories at which they worked. These records have continuing value for both historical and scientific research. In January 2007 the American Astronomical Society (AAS) formed a working group to develop and disseminate procedures, criteria, and priorities for identifying, designating, and preserving structures, instruments, and records so that they will continue to be available for astronomical and historical research, for the teaching of astronomy, and for outreach to the general public. The scope of this charge is quite broad, encompassing astronomical structures ranging from archaeoastronomical sites to modern observatories; papers of individual astronomers, observatories and professional journals; observing records; and astronomical instruments themselves. Reflecting this wide scope, the members of the working group include historians of astronomy, practicing astronomers and observatory directors, and specialists Oak Ridge National Laboratory; Santa encounters tight security during in astronomical instruments, archives, and archaeology. a wartime visit to Oak Ridge. Many more images recently donated by the Digital Photo Archive, Department of Energy appear on page 13 and The first item on the working group’s agenda was to determine through out this newsletter.
    [Show full text]
  • Trinity Transcript
    THE NATIONAL ACADEMIES Committee on International Security and Arms Control 60th Anniversary of Trinity: First Manmade Nuclear Explosion, July 16, 1945 PUBLIC SYMPOSIUM July 14, 2005 National Academy of Sciences Auditorium 2100 C Street, NW Washington, DC Proceedings By: CASET Associates, Ltd. 10201 Lee Highway, Suite 180 Fairfax, VA 22030 (703) 352-0091 CONTENTS PAGE Introductory Remarks Welcome: Ralph Cicerone, President, The National Academies (NAS) 1 Introduction: Raymond Jeanloz, Chair, Committee on International Security and Arms Control (CISAC) 3 Roundtable Discussion by Trinity Veterans Introduction: Wolfgang Panofsky, Chair 5 Individual Statements by Trinity Veterans: Harold Agnew 10 Hugh Bradner 13 Robert Christy 16 Val Fitch 20 Don Hornig 24 Lawrence Johnston 29 Arnold Kramish 31 Louis Rosen 35 Maurice Shapiro 38 Rubby Sherr 41 Harold Agnew (continued) 43 1 PROCEEDINGS 8:45 AM DR. JEANLOZ: My name is Raymond Jeanloz, and I am the Chair of the Committee on International Security and Arms Control that organized this morning’s symposium, recognizing the 60th anniversary of Trinity, the first manmade nuclear explosion. I will be the moderator for today’s event, and primarily will try to stay out of the way because we have many truly distinguished and notable speakers. In order to allow them the maximum amount of time, I will only give brief introductions and ask that you please turn to the biographical information that has been provided to you. To start with, it is my special honor to introduce Ralph Cicerone, the President of the National Academy of Sciences, who will open our meeting with introductory remarks. He is a distinguished researcher and scientific leader, recently serving as Chancellor of the University of California at Irvine, and his work in the area of climate change and pollution has had an important impact on policy.
    [Show full text]
  • 2020 Assessment Institute Participant List Firstname Lastname Title
    2020 Assessment Institute Participant List FirstName LastName Title InstitutionAffiliation Bethany Arnold Professor/IE Lead Mountain Empire Community College Diandra Jugmohan Director Hostos Community College Jim Logan Business Officer ‐ Student Learning Texas State Technical College Jessica (Blair) Soland Faculty Manager Grand Canyon University Meredith (Stoops) Doyle Director of Service‐Learning Benedictine College (Atchison, KS) JUAN A ALFEREZ Statewide Department Chair, Instructor Texas State Technical college Executive Director, Student Affairs Assessment & Robert Aaron Planning Northwestern University Osomiyor Abalu Residence Hall Director Iowa State University Brianna Abate Associate Professor of Communication Prairie State College Marie Abate Professor and Director of Programmatic Assessment West Virginia University ISMAT ABBAS PhD Candidate Montclair State University Noura Abbas Dr. Colorado Technical University Sophia Abbot Graduate Research Assistant George Mason University Associate Professor of English/Learning Outcomes Michelle Abbott Assessment Coordinator Georgia Highlands College Talia Abbott Chalew Dr. Purdue Global Sienna Abdulahad Director Tulane University Fitsum Abebe Instructional Designer and Technology Specialist Doane University Farhana Abedin Assistant Professor California State Polytechnic University Pomona Kristin Abel Professor Valencia College Robert Abel Jr Chief Academic Officer Abraham Lincoln University Leslie Abell Lecturer Faculty CSU Channel Islands Dana Abell‐Huffman Faculty instructor Ivy Tech Annette
    [Show full text]
  • Robert Dicke and the Naissance of Experimental Gravity Physics
    Eur. Phys. J. H 42, 177–259 (2017) DOI: 10.1140/epjh/e2016-70034-0 THE EUROPEAN PHYSICAL JOURNAL H RobertDickeandthenaissance of experimental gravity physics, 1957–1967 Phillip James Edwin Peeblesa Joseph Henry Laboratories, Princeton University, Princeton NJ, USA Received 27 May 2016 / Received in final form 22 June 2016 Published online 6 October 2016 c The Author(s) 2016. This article is published with open access at Springerlink.com Abstract. The experimental study of gravity became much more active in the late 1950s, a change pronounced enough be termed the birth, or naissance, of experimental gravity physics. I present a review of devel- opments in this subject since 1915, through the broad range of new approaches that commenced in the late 1950s, and up to the transition of experimental gravity physics to what might be termed a normal and accepted part of physical science in the late 1960s. This review shows the importance of advances in technology, here as in all branches of nat- ural science. The role of contingency is illustrated by Robert Dicke’s decision in the mid-1950s to change directions in mid-career, to lead a research group dedicated to the experimental study of gravity. The re- view also shows the power of nonempirical evidence. Some in the 1950s felt that general relativity theory is so logically sound as to be scarcely worth the testing. But Dicke and others argued that a poorly tested theory is only that, and that other nonempirical arguments, based on Mach’s Principle and Dirac’s Large Numbers hypothesis, suggested it would be worth looking for a better theory of gravity.
    [Show full text]
  • Nuclear Weapons FAQ (NWFAQ) Organization Back to Main Index
    Nuclear Weapons FAQ (NWFAQ) Organization Back to Main Index This is a complete listing of the decimally numbered headings of the Nuclear Weapons Frequently Asked Questions, which provides a comprehensive view of the organization and contents of the document. Index 1.0 Types of Nuclear Weapons 1.1 Terminology 1.2 U.S. Nuclear Test Names 1.3 Units of Measurement 1.4 Pure Fission Weapons 1.5 Combined Fission/Fusion Weapons 1.5.1 Boosted Fission Weapons 1.5.2 Staged Radiation Implosion Weapons 1.5.3 The Alarm Clock/Sloika (Layer Cake) Design 1.5.4 Neutron Bombs 1.6 Cobalt Bombs 2.0 Introduction to Nuclear Weapon Physics and Design 2.1 Fission Weapon Physics 2.1.1 The Nature Of The Fission Process 2.1.2 Criticality 2.1.3 Time Scale of the Fission Reaction 2.1.4 Basic Principles of Fission Weapon Design 2.1.4.1 Assembly Techniques - Achieving Supercriticality 2.1.4.1.1 Implosion Assembly 2.1.4.1.2 Gun Assembly 2.1.4.2 Initiating Fission 2.1.4.3 Preventing Disassembly and Increasing Efficiency 2.2 Fusion Weapon Physics 2.2.1 Candidate Fusion Reactions 2.2.2 Basic Principles of Fusion Weapon Design 2.2.2.1 Designs Using the Deuterium+Tritium Reaction 2.2.2.2 Designs Using Other Fuels 3.0 Matter, Energy, and Radiation Hydrodynamics 3.1 Thermodynamics and the Properties of Gases 3.1.1 Kinetic Theory of Gases 3.1.2 Heat, Entropy, and Adiabatic Compression 3.1.3 Thermodynamic Equilibrium and Equipartition 3.1.4 Relaxation 3.1.5 The Maxwell-Boltzmann Distribution Law 3.1.6 Specific Heats and the Thermodynamic Exponent 3.1.7 Properties of Blackbody
    [Show full text]
  • Early Criticality Accidents
    An Historic Perspective The Real Basis of Nuclear Criticality Safety Presented at NCSD 2013 Wilmington, North Carolina September 30, 2013 Dick Malenfant Los Alamos National Laboratory - Retired Based on work by Otto Frisch, Raemer Schreiber, Harry Daghlian, Louis Slotin, and others Although I have worked in the field for over fifty years, I do not feel that I have been accepted by the Criticality Safety Community – because Although I have worked in the field for over fifty years, I do not feel that I have been accepted by the Criticality Safety Community – because I have spent a large portion of my life making systems critical – rather than keeping systems from going critical! Nevertheless, it has been my privilege to have worked with GIANTS… Hugh Paxton Dixon Callihan Gordon Hansen John Orndoff Bob Keepin Bob Long Bob Jefferson Gene Plassmann Dave Smith Raemer Schreiber and others…. ALWAYS REMEMBER -- You don’t Plan To Have An Accident! BECAUSE An Accident is an UNPLANNED Event Ac-ci-dent 1.An unexpected and undesirable event. 2.Something that occurs unexpectedly or unintentionally 3.A circumstance or attribute that is not essential to the nature of something. 4.Fortune or chance What I would like to have you take from my presentation: Neither the Code of Federal Regulations, ANSI Standards, DOE Orders, nor even training prevents ACCIDENTS! Safety is a state of mind, attention to detail, and a result of experience… Although you cannot teach safety, you can study the lessons of the past and avoid repeating the environment that has resulted in accidents! In considering the details of the following three accidents, I would like to make them personal by putting us in the position of the participants.
    [Show full text]
  • History Newsletter CENTER for HISTORY of PHYSICS&NIELS BOHR LIBRARY & ARCHIVES Vol
    History Newsletter CENTER FOR HISTORY OF PHYSICS&NIELS BOHR LIBRARY & ARCHIVES Vol. 45, No. 2 • Winter 2013–2014 1,000+ Oral History Interviews Now Online Since June 2007, the Niels Bohr Library societies. Some of the interviews were Through this hard work, we have been & Archives (NBL&A) has been working conducted by staff of the Center for able to receive updated permissions to place its widely used oral history History of Physics (CHP) and many were and often hear from families that did interview collection online for its acquired from individual scholars who not know an interview existed and are researchers to easily access. With the were often helped by our Grant-in-Aid pleased to know that their relative’s work help of two National Endowment for the program. These interviews help tell will be remembered and available to Humanities (NEH) grants, we are proud the personal stories of these famous anyone interested. to announce that we have now placed over two- With the completion of thirds of our collection the grants, we have just online (http://www.aip.org/ over 1,025 of our over history/ohilist/transcripts. 1,500 transcripts online. html ). These transcripts include abstracts of the interview, The oral histories at photographs from ESVA NBL&A are one of our when available, and links most used collections, to the interview’s catalog second only to the record in our International photographs in the Emilio Catalog of Sources (ICOS). Segrè Visual Archives We have short audio clips (ESVA). They cover selected by our post- topics such as quantum doctoral historian of 75 physics, nuclear physics, physicists in a range of astronomy, cosmology, solid state physicists and allow the reader insight topics showing some of the interesting physics, lasers, geophysics, industrial into their lives, works, and personalities.
    [Show full text]