9783211838624.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

9783211838624.Pdf Martin Tajmar Advanced Space Propulsion Systems Springer-Verlag Wien GmbH Dipl. Ing. Dr. Martin Tajrnar ARC Seibersdorf Research GmBH, Seibersdorf, Austria This book was generously supported by the Austrian Research Centers This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machines or similar means, and storage in data banks. Product Liability: The publisher can give no guarantee for all the information contained in this book. This does also refer to information about drug dosage and application thereof. In every individual case the respective user must check its accuracy by consulting other pharmaceutical literature. The use of registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. © 2003 Springer-Verlag Wien Originally published by Springer-Verlag Wien New York in 2003 Typesetting: Thomson Press Ltd., Chennai, India Printing: A. Holzhausen Nfg., A-1l40 Wien Printed on acid-free and chlorine-free bleached paper SPIN: 10888345 With 121 (partly coloured) Figures CIP-data applied for ISBN 978-3-211-83862-4 ISBN 978-3-7091-0547-4 (eBook) DOI 10.1007/978-3-7091-0547-4 Contents Introduction .................................................... 1 Propulsion Fundamentals . 3 1.1 History......................................................... 3 1.2 Propulsion Fundamentals .......................................... 7 1.2.1 Tsiolkovski Equation . 8 1.2.2 Delta-V Budget. 9 l.2.3 Single-staging - Multi-staging. .. 12 1.3 Trajectory and Orbits ............................................. 14 1.3.1 Keplerian Orbital Elements in Elliptical Orbits ................... 15 1.3.2 Orbit Types ............................................... 17 1.3.3 Orbit Transfers. 19 1.4 Classification of Propulsion Systems ................................. 20 2 Chemical Propulsion Systems. 23 2.1 Thennodynamic Characterization. .. 23 2.2 Chemical Propulsion Overview ..................................... 24 2.2.1 Liquid Propulsion Systems ................................... 24 2.2.2 Solid Propulsion Systems .................................... 26 2.2.3 Hybrid Propulsion Systems. .. 27 2.3 Nozzle Design - Atmospheric Flight. .. 28 2.3.1 Cone-bell Shaped Nozzle .................................... 28 2.3.2 Advanced Nozzles with Aerodynamic Boundaries. .. 30 2.4 Advanced Propellants .... .. 31 2.4.1 Tripropellants ............................................. 31 2.4.2 High Energy Density Matter (HEDM) .......................... 32 2.5 Alternative Designs. .. 33 2.5.1 Pulse Detonation Rockets .................................... 33 2.5.2 Rocket-based Combined Cycle (RBCC) . .. 33 2.5.3 Rotary Rockets ............................................ 34 2.6 Reusable Launch Vehicles ......................................... 35 2.6.1 United States Future Launchers ............................... 36 2.6.2 European Future Launchers. .. 41 2.6.3 Japanese Future Launchers ................................... 42 3 Launch Assist Technologies ........................................... 43 3.1 Reduction of Required dv . .. 43 3.1.1 Aircraft Assisted Launch. .. 43 3.1.2 Catapults................................................. 44 3.1.3 Ultra-high Tower . .. 51 VI Contents 3.2 Advanced Drag Reduction ......................................... 51 3.2.1 Surface-charged Vehicles .................................... 52 3.2.2 Energy Spike . .. 52 3.3 Magnetohydrodynamic (MHD) Propulsion ............................ 53 3.4 MHD Energy Bypass Application ................................... 55 4 Nuclear Propulsion Systems .................•......................... 57 4.1 Overview....................................................... 57 4.2 Fission Propulsion. .. 58 4.2.1 Historical Overview-NERVAIPLUTO Program. .. 58 4.2.2 Solid Core ................................................ 61 4.2.3 Liquid Core.. .............................................. 62 4.2.4 Gas Core ................................................. 63 4.2.5 Fission-fragment Propulsion. .. 63 4.2.6 Improvements ............................................. 64 4.2.7 Induction Heating .......................................... 65 4.3 Radioisotope Nuclear Rocket ...... .. 65 4.4 Fusion Propulsion . .. 66 4.4.1 Inertial Confinement Fusion (ICF) ............................. 67 4.4.2 Magnetic Confinement Fusion (MCF) .......................... 67 4.4.3 Inertial Electrostatic Confinement Fusion (1EC) . .. 69 4.5 Antimatter Propulsion. .. 69 4.5.1 Anti-proton Catalyzed FissionlFusion Propulsion ................. 71 4.5.2 Direct Antimatter Propulsion System ........................... 72 5 Electric Propulsion Systems ........................................... 73 5.1 Electrothermal................................................... 75 5.1.1 Resistojet................................................. 77 5.1.2 Arcjet.................................................... 78 5.1.3 SolarILaserlMicrowave Thermal Propulsion ..................... 78 5.2 Electrostatic..................................................... 80 5.2.1 Ion Thruster. .. 80 5.2.2 Hall Thruster . .. 85 5.2.3 Field Emission Thruster ..................................... 87 5.2.4 Colloid Thruster ........................................... 91 5.2.5 Laser Accelerated Plasma Propulsion . .. 92 5.3 Electromagnetic ................................................. 93 5.3.1 Magnetoplasmadynamic (MPD) Thruster. .. 93 5.3.2 Pulsed Plasma Thruster (PPT) . .. 94 5.3.3 Variable lsp Plasma Rocket (VASIMR) ......... .. 95 5.4 Induced Spacecraft Interactions ..................................... 96 6 Micropropulsion .................................................... 99 6.1 Chemical Propulsion . .. 99 6.1.1 Solid Microthrusters ........................................ 99 6.1.2 Micro Mono-propellant Thruster. .. 100 6.1.3 Micro Bi-propellant Thruster ................................. 101 6.1.4 Cold Gas Thruster .......................................... 101 contents VII 6.2 Electric Propulsion ............................................... 102 6.2.1 Micro Ion Thruster ......................................... 102 6.2.2 Low Power Hall Thruster .................................... 102 6.2.3 Micro PPT Thruster. .. 104 6.2.4 MEMS FEEP/Colloid Thruster. .. 104 6.2.5 Microchip Laser Thruster .................................... 105 7 Propellantless Propulsion . ............................................ 107 7.1 Tethers......................................................... 107 7.1.1 Momentum Exchange Tether ................................. 107 7.1.2 Electrodynamic Tether ...................................... 107 7.2 Propellantless ElectriclNuclear Propulsion. .. 109 7.3 Photon Rocket . .. 109 7.4 Beamed Energy Earth-to-orbit Propulsion ............................. 110 7.5 Solar Sails ... .. III 7.6 Magnetic Sails. .. 112 8 Breakthrough Propulsion ............................................. 115 8.1 Current Fundamental Limitations in Propulsion. .. 115 8.2 Quantum Physics, Relativity Theory, Electromagnetism and Space PropUlsion ............................................. 116 8.2.1 Quantum Theory and the Casimir Effect ........................ 116 8.2.2 Coupling of Gravitation and Electromagnetism ................... 118 8.3 Experiments Leading to Possible Breakthroughs . .. 120 8.3.1 Superconductor Gravitational Shielding . .. 120 8.3.2 Coupling of Charge, Mass and Acceleration. .. 121 8.4 When Will We Revolutionize Space Travel? ........................... 122 Further Reading . .. 123 Subject Index . .. 127 Acknowledgement I'm very grateful to Erich Kny and Wolfgang Renner from the Austrian Research Centers for their support and encouragement of this book. I would also like to thank my father, Peter Tajmar, for his continued help towards publication, drawings and lots of advise. This book is dedicated to my wife Yvonne and my son Alexander, who gave me the time to write this book during many nights in our kitchen! Introduction This book shall provide an up-to-date overview on a variety of advanced propulsion concepts, showing their limitations and potentials. Only necessary equations are given to understand the working principle without going into complicated details. The book is suitable for any technical student and everyone who is interested in how we will explore space in the future. M. Tajmar, Advanced Space Propulsion Systems © Springer-Verlag Wien 2003 Chapter 1 propulsion Fundamentals 1.1 History The theoretical basis of all "classical" propulsion systems is the reaction principle published by Newton in his Principia Mathematica in the summer of 1687. It was the answer to astronomer Edmond Halley'S question as to the nature of force that causes the movement and orbit of planets around the sun. This link to gravitation will be crucial when examining very advanced propulsion concepts in the last chapter of this book. However, rockets were built and flown well before Newton provided his mathematical principles. Feng Jishen, a Chinese who lived around 970 AD, is credited with the invention of the "Fire Arrow", a bamboo tube with a small hole in one end filled with gunpowder. It was used for amusement as a firework. The application as a weapon was soon realized and used against Japanese invaders in 1275. Mongolian and
Recommended publications
  • Cislunar Tether Transport System
    FINAL REPORT on NIAC Phase I Contract 07600-011 with NASA Institute for Advanced Concepts, Universities Space Research Association CISLUNAR TETHER TRANSPORT SYSTEM Report submitted by: TETHERS UNLIMITED, INC. 8114 Pebble Ct., Clinton WA 98236-9240 Phone: (206) 306-0400 Fax: -0537 email: [email protected] www.tethers.com Report dated: May 30, 1999 Period of Performance: November 1, 1998 to April 30, 1999 PROJECT SUMMARY PHASE I CONTRACT NUMBER NIAC-07600-011 TITLE OF PROJECT CISLUNAR TETHER TRANSPORT SYSTEM NAME AND ADDRESS OF PERFORMING ORGANIZATION (Firm Name, Mail Address, City/State/Zip Tethers Unlimited, Inc. 8114 Pebble Ct., Clinton WA 98236-9240 [email protected] PRINCIPAL INVESTIGATOR Robert P. Hoyt, Ph.D. ABSTRACT The Phase I effort developed a design for a space systems architecture for repeatedly transporting payloads between low Earth orbit and the surface of the moon without significant use of propellant. This architecture consists of one rotating tether in elliptical, equatorial Earth orbit and a second rotating tether in a circular low lunar orbit. The Earth-orbit tether picks up a payload from a circular low Earth orbit and tosses it into a minimal-energy lunar transfer orbit. When the payload arrives at the Moon, the lunar tether catches it and deposits it on the surface of the Moon. Simultaneously, the lunar tether picks up a lunar payload to be sent down to the Earth orbit tether. By transporting equal masses to and from the Moon, the orbital energy and momentum of the system can be conserved, eliminating the need for transfer propellant. Using currently available high-strength tether materials, this system could be built with a total mass of less than 28 times the mass of the payloads it can transport.
    [Show full text]
  • 9Th Annual & Final Report 2006 2007
    NASA Institute for Advanced Concepts 9th Annual & 2006 Final Report 2007 Performance Period July 12, 2006 - August 31, 2007 NASA Institute for Advanced Concepts 75 5th Street NW, Suite 318 Atlanta, GA 30308 404-347-9633 www.niac.usra.edu USRA is a non-profit corpora- ANSER is a not-for-profit pub- tion under the auspices of the lic service research corpora- National Academy of Sciences, tion, serving the national inter- with an institutional membership est since 1958.To learn more of 100. For more information about ANSER, see its website about USRA, see its website at at www.ANSER.org. www.usra.edu. NASA Institute for Advanced Concepts 9 t h A N N U A L & F I N A L R E P O R T Performance Period July 12, 2006 - August 31, 2007 T A B L E O F C O N T E N T S 7 7 MESSAGE FROM THE DIRECTOR 8 NIAC STAFF 9 NIAC EXECUTIVE SUMMARY 10 THE LEGACY OF NIAC 14 ACCOMPLISHMENTS 14 Summary 14 Call for Proposals CP 05-02 (Phase II) 15 Call for Proposals CP 06-01 (Phase I) 17 Call for Proposals CP 06-02 (Phase II) 18 Call for Proposals CP 07-01 (Phase I) 18 Call for Proposals CP 07-02 (Phase II) 18 Financial Performance 18 NIAC Student Fellows Prize Call for Proposals 2006-2007 19 NIAC Student Fellows Prize Call for Proposals 2007-2008 20 Release and Publicity of Calls for Proposals 20 Peer Reviewer Recruitment 21 NIAC Eighth Annual Meeting 22 NIAC Fellows Meeting 24 NIAC Science Council Meetings 24 Coordination With NASA 27 Publicity, Inspiration and Outreach 29 Survey of Technologies to Enable NIAC Concepts 32 DESCRIPTION OF THE NIAC 32 NIAC Mission 33 Organization 34 Facilities 35 Virtual Institute 36 The NIAC Process 37 Grand Visions 37 Solicitation 38 NIAC Calls for Proposals 39 Peer Review 40 NASA Concurrence 40 Awards 40 Management of Awards 41 Infusion of Advanced Concepts 4 T A B L E O F C O N T E N T S 7 LIST OF TABLES 14 Table 1.
    [Show full text]
  • The Lunar Economy - Years 1-25 Dec 1986 - Nov 2011
    MMM Theme Issues: The Lunar Economy - Years 1-25 Dec 1986 - Nov 2011 The Moon Would Seem to be a Tough Nut to Crack Until we look Closer At first we may not be able to produce “first choice” alloys and other building and manufacturing materials, but what we can produce early on will be adequate to substitute for enough products that the gross tonnage of imports from Earth can be cut to a fraction. Power Generation is essential. Better, as we point out in Foundation 2 above, the Moon has the real estate advantage of “location, location, location.” As a result, anything produced on the Moon could be shipped to space facilities in Low Earth Orbit (LEO) and Geosynchronous Orbit (GEO) at a cost advantage of equivalent products manufactured on Earth. Thus the cost of importing to the Moon those things that cannot yet be manufactured there, could be ofset by exports of Lunar manufactured goods and materials to markets in LEO and GEO. Production of consumer goods will be important and enterprise will be a key factor. It will take time, but financial break-even is possible in time. The obstacles are great. But once you look closely at the options, these obstacles fall in the ranks of those that faced MMM Theme Issues: The Lunar Economy - Years 1-25 Dec 1986 - Nov 2011 pioneers of other frontiers on Earth in eras gone by. Establishing and then elaborating the roots and possibilities of a lunar economy sufcient to support permanent pioneer frontier settlements are there, and treating them one by one has been a major theme of Moon Miners’ Manifesto through the years.
    [Show full text]
  • FINAL PROGRAM Innovations in Propulsion and Energy Driving System Solutions
    2O16 25–27 JULY 2016 SALT LAKE CITY, UT Innovations in Propulsion and Energy Driving System Solutions FINAL PROGRAM www.aiaa-propulsionenergy.org #aiaaPropEnergy 16-1225 Real-Time Q&A and Polling during AIAA Propulsion NEW! and Energy 2016 withwith ConferenceConference IO!IO! During Plenary and Forum 360 Sessions, go to aiaa.cnf.io Getting Your Question Answered is as EASY as 1-2-3! 1. Click the “Ask” button to submit a question. 2. Check out the questions that other attendees are asking. 3. If you see a question that you want answered, click on the arrow on the left. The most popular questions automatically rise to the top. Participate in Session Polls 1. If Polls are available they will appear at the top of the page. Simply click/tap on a Poll to respond. 2. Choose your response(s) and hit “submit”. 3. After responding you will be able to see the results on your own device!* * Some Poll results may be hidden NO DOWNLOADING REQUIRED! Executive Steering Committee 2O16 AIAA Propulsion and Energy 2016 Welcome Welcome to Salt Lake City, Utah, and AIAA Propulsion and Energy 2016. We are excited to share the next few days with you as we explore the most pressing issues facing the future of propulsion and energy systems – the true heart of aerospace. With so many insightful and dynamic speakers and panelists, we are confident you will find the information presented here thought-provoking, impactful, and immediately useful to you in your work. Daniel “Dan” Michael Heil During the forum you will hear from thought leaders, learn about the latest technical Dumbacher Ohio Aerospace breakthroughs, and most importantly collaborate with other attendees from Purdue University Institute (Ret.) government, industry, and academia.
    [Show full text]
  • Motorised Momentum Exchange Space Tethers: the Dynamics of Asymmetrical Tethers, and Some Recent New Applications
    MATEC Web of Conferences 148, 01001 (2018) https://doi.org/10.1051/matecconf/201814801001 ICoEV 2017 Motorised momentum exchange space tethers: the dynamics of asymmetrical tethers, and some recent new applications Matthew Cartmell1,2,*, Olga Ganilova1,2, Eoin Lennon1, and Gavin Shuttleworth1 1Department of Mechanical & Aerospace Engineering, University of Strathclyde, Glasgow, G1 1XJ, Scotland, UK 2Strathclyde Space Institute, University of Strathclyde, Glasgow, G1 1XJ, Scotland, UK Abstract. This paper reports on a first attempt to model the dynamics of an asymmetrical motorised momentum exchange tether for spacecraft payload propulsion, and it also provides some interesting summary results for two novel applications for motorised momentum exchange tethers. The asymmetrical tether analysis is very important because it represents the problematic scenario when payload mass unbalance intrudes, due to unexpected payload loss or failure to retrieve. Mass symmetry is highly desirable both dynamically and logistically, but it is shown in this paper that there is still realistic potential for mission rescue should an asymmetry condition arise. Conceptual designs for tethered payload release from LEO and lunar tether delivery and retrieval are also presented as options for future development. 1 Introduction Momentum exchange tether dynamics have been extensively studied in recent years, and are of current considerable interest internationally as a technology for cost effective and environmentally clean propulsion of payload mass from Low Earth Orbit (LEO). A conceptual design for a motorised momentum exchange tether is given in Figure 1 where the central facility motor drive shaft attaches to the propulsion sub-spans by mean of a gantry, mounted so that it can be rotated by the shaft.
    [Show full text]
  • Design of Spacecraft Missions to Remove Multiple Orbital Debris Objects
    AAS 12-017 Design of Spacecraft Missions to Remove Multiple Orbital Debris Objects Brent W. Barbee*, Salvatore Alfano†, Elfego Piñon‡, Kenn Gold‡, and David Gaylor‡ *NASA-GSFC, †CSSI, ‡Emergent Space Technologies, Inc. 35th ANNUAL AAS GUIDANCE AND CONTROL CONFERENCE February 3 - February 8, 2012 Sponsored by Breckenridge, Colorado Rocky Mountain Section AAS Publications Office, P.O. Box 28130 - San Diego, California 92198 AAS 12-017 DESIGN OF SPACECRAFT MISSIONS TO REMOVE MULTIPLE ORBITAL DEBRIS OBJECTS Brent W. Barbee,∗ Salvatore Alfano,y Elfego Pinon˜ ,z Kenn Gold,x and David Gaylor{ The amount of hazardous debris in Earth orbit has been increasing, posing an ever- greater danger to space assets and human missions. In January of 2007, a Chinese ASAT test produced approximately 2600 pieces of orbital debris. In February of 2009, Iridium 33 collided with an inactive Russian satellite, yielding approx- imately 1300 pieces of debris. These recent disastrous events and the sheer size of the Earth orbiting population make clear the necessity of removing orbital de- bris. In fact, experts from both NASA and ESA have stated that 10 to 20 pieces of orbital debris need to be removed per year to stabilize the orbital debris environ- ment. However, no spacecraft trajectories have yet been designed for removing multiple debris objects and the size of the debris population makes the design of such trajectories a daunting task. Designing an efficient spacecraft trajectory to rendezvous with each of a large number of orbital debris pieces is akin to the fa- mous Traveling Salesman problem, an NP-complete combinatorial optimization problem in which a number of cities are to be visited in turn.
    [Show full text]
  • Pushing Boundaries Through Innovative Design and Technology
    10–12 JULY 2017 ATLANTA, GA Pushing Boundaries Through Innovative Design and Technology propulsionenergy.aiaa.org #aiaaPropEnergy 17-1835 The engine of change will come from the company that can build it. GE is bringing together best-in-class analytics and deep domain expertise to help our customers solve their toughest challenges. See how we’re changing the way we y at geaviation.com. 85064_GEAV_DI_Print Ad_P+E.indd 1 7/5/16 3:55 PM Contents Organizing Committee 4 Welcome 5 Sponsors 6 Forum Schedule 7 On-Site Wi Fi Information Pre-Forum Activities 9 Network Name: AIAA Password: PE2017 Plenary Sessions 10 Forum 360 Sessions 11 Conferences i/o: aiaa1.cnf.io Complex Aerospace Systems Exchange 13 www.twitter.com/aiaa Aircraft Electric Propulsion & Power Focus Area 14 www.facebook.com/AIAAfan ITAR Restricted Sessions 16 www.youtube.com/AIAATV Technical Sessions at a Glance 17 www.linkedin.com/companies/aiaa Program Detail 22 www.flickr.com/aiaaevents Rising Leaders in Aerospace 59 www.instagram.com/aiaaerospace Recognition and Lectures 60 livestream.com/AIAAvideo/PropEnergy2017 Networking Events 62 Exposition 63 Photography or the video or audio recording Exhibitors 65 of sessions or exhibits, as well as the unauthorized sale of AIAA-copyrighted General Information 70 material, is prohibited. Author and Session Chair Information 72 Committee Meetings 73 www.aiaa.org Author and Session Chair Index 74 propulsionenergy.aiaa.org Venue Map Back Cover propulsionenergy.aiaa.org 3 #aiaaPropEnergy IntroOrganizing Committee Organizing Committee Energy Storage Technologies Solid Rockets Joe Troutman, ABSL Space Products Barbara Leary, Johns Hopkins University Forum General Chair Applied Physics Laboratory Mike J.
    [Show full text]
  • To Orbit and Back Again: How the Space Shuttle Flew in Space Free Download
    TO ORBIT AND BACK AGAIN: HOW THE SPACE SHUTTLE FLEW IN SPACE FREE DOWNLOAD Davide Sivolella | 524 pages | 09 Sep 2013 | Springer-Verlag New York Inc. | 9781461409823 | English | New York, NY, United States To Orbit and Back Again: How the Space Shuttle Flew in Space (Springer… Details of how anomalous events were dealt with on individual missions are also provided, as are the recollections of those who built and flew the Shuttle. He involves here few in photographers on: electoral antitrust exceptionalism; teriparatide and significant experience; concept and matters; and s Futurism. Orbiting skyhooks Skyhook Momentum exchange tether. Soviet X-planes. This passion for astronautics led to bacheklor's and master's degrees in Aerospace Engineering from the Polytechnic of Turin Italy. Archived from the original on 26 June Technical material has been obtained from NASA as well as from other forums and specialists. The Rockwell X National Aero-Space Plane NASPbegun in the s, was an attempt to build a scramjet vehicle capable of operating like an aircraft and achieving orbit like the shuttle. InNASA originally planned to have the Gemini spacecraft land on a runway [18] with a Rogallo wing airfoilrather than an ocean landing under parachutes. Namespaces Article Talk. The spaceplane was also intended to carry cargo, with both upmass and downmass capacity. Search icon An illustration of a magnifying glass. Orbital spaceplanes are more like spacecraft, while sub-orbital spaceplanes are more like fixed-wing aircraft. Our configurations are tall Bodies and genotypes on which to See your new nationality. Space Policy. Details of how anomalous events were dealt with on individual missions are also provided, as are the recollections of those who built and flew the Shuttle.
    [Show full text]
  • An Overview of Advanced Concepts for Launch 5B
    Form Approved REPORT DOCUMENTATION PAGE OMB No. 0704-0188 Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 2. REPORT TYPE 3. DATES COVERED (From - To) 09-02-2012 Briefing Charts 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER An Overview of Advanced Concepts for Launch 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER Marcus Young and Jason Mossman 5f. WORK UNIT NUMBER 50260542 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT NUMBER Air Force Research Laboratory (AFMC) AFRL/RZSA 10 E. Saturn Blvd. Edwards AFB CA 93524-7680 9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S) Air Force Research Laboratory (AFMC) AFRL/RZS 11. SPONSOR/MONITOR’S 5 Pollux Drive NUMBER(S) Edwards AFB CA 93524-7048 AFRL-RZ-ED-VG-2012-030 12.
    [Show full text]
  • Access to Space: the Future of U.S. Space Transportation Systems
    Access to Space: The Future of U.S. Space Transportation Systems April 1990 OTA-ISC-415 NTIS order #PB90-253154 Recommended Citation: U.S. Congress, Office of Technology Assessment, Access to Space: The Future of U.S. Space Transportation Systems, OTA-ISC-415 (Washington, DC: U.S. Government Printing Office, April 1990). Library of Congress Catalog Card Number 89-600710 For sale by the Superintendent of Documents U.S. Government Printing Office, Washington, DC 20402-9325 (order form can be found in the back of this report) Foreword The United States today possesses a capable fleet of cargo and crew-carrying launch systems, managed by the National Aeronautics and Space Administration, the Department of Defense, and the private sector. Emerging technologies offer the promise, by the turn of the century, of new launch systems that may reduce cost while increasing performance, reliability, and operability. Continued exploration and exploitation of space will depend on a fleet of versatile and reliable launch vehicles. Yet, uncertainty about the nature of U.S. space program goals and the schedule for achieving them, as well as the stubbornly high cost of space transportation, makes choosing among the many space transportation alternatives extremely difficult. Can existing and potential future systems meet the demand for launching payloads in a timely, reliable, and cost-effective manner? What investments should the Government make in future launch systems and when? What new crew-carrying and cargo launchers are needed? Can the Nation afford them? This special report explores these and many other questions. It is the final, summarizing report in a series of products from a broad assessment of space transportation technologies undertaken by OTA for the Senate Committee on Commerce, Science, and Transportation, and the House Committee on Science, Space, and Technology.
    [Show full text]
  • Advanced Space Propulsion Systems Content
    Advanced Space Propulsion Systems Content • Propulsion Fundamentals Advanced Space Propulsion Systems • Chemical Propulsion Systems • Launch Assist Technologies Lecture 317.014 • Nuclear Propulsion Systems • Electric Propulsion Systems • Micropropulsion Dr. Martin Tajmar • Propellentless Propulsion Institute for Lightweight Structures and Aerospace Engineering Space Propulsion, ARC Seibersdorf research • Breakthrough Propulsion 2 History & Propulsion Fundamentals Propulsion Fundamentals – 1.1 History Isaac Newton’s • Feng Jishen invested Fire Arrow in 970 AD Principia Mathematia (1687) • Used against Japanese Invasion in 1275 • Mongolian and arab troups brought it to Europe • 1865 Jules Verne published Voyage from Earth Reaction Principle to the Moon Constantin Tsiolkovski (1857-1935) Robert Goddard (1882-1945) Hermann Oberth (1894-1989) • Self-educated mathematics teacher • Launched first liquid-fueled • Die Rakete zu den m rocket 1926 Planetenräumen (1923) ∆v = v ⋅ln 0 • The Investigation of Space by rocket 1926 Planetenräumen (1923) p m Means of Reactive Drives (1903) • Gyroscope guidance • Most influencial on Wernher • Liquid-Fuel Rockets, multi-staging, patens, etc. von Braun 3 4 artificial satellites 1.1 History 1.1 History Fritz von Opel – RAK 2 (1925) Saturn V Treaty of Versailles from World War I Wernher von Braun prohibits Germany from Long-Range Space Shuttle Fritz Lang – Die Frau im Mond (1912-1977) Artillery • Hermann Oberth contracted to built rocket for premiere showing Walter Dornberger recruits Wernher von • Rocket was
    [Show full text]
  • Moon-Tracking Orbits Using Motorized Tethers for Continuous Earth–Moon Payload Exchanges
    Murray, C., and Cartmell, M.P. (2013) Moon-tracking orbits using motorized tethers for continuous earth–moon payload exchanges. Journal of Guidance, Control and Dynamics, 36 (2). pp. 567-576. ISSN 0731-5090 Copyright © 2012 American Institute of Aeronautics and Astronautics A copy can be downloaded for personal non-commercial research or study, without prior permission or charge The content must not be changed in any way or reproduced in any format or medium without the formal permission of the copyright holder(s) When referring to this work, full bibliographic details must be given http://eprints.gla.ac.uk/79980/ Deposited on: 17 May 2013 Enlighten – Research publications by members of the University of Glasgow http://eprints.gla.ac.uk Moon-Tracking Orbits using Motorized Tethers for Continuous Earth-Moon Payload Exchanges Christopher Murray 1 and Matthew P. Cartmell 2 School of Engineering, University of Glasgow 3 For human colonization of the Moon to become reality an efficient and regular means of exchanging resources between the Earth and Moon must be established. One possibility is to pass and receive payloads at regular intervals between a symmetrically laden motorized momentum exchange tether orbiting about Earth and a second or- biting about the Moon. There are significant challenges associated with this method; amongst the greatest of which is the development of a system which incorporates the complex motion of the Moon into its operational architecture in addition to having the capability of conducting these exchanges on a per-lunar-orbit basis. One way of achieving this is a method by which a motorized tether orbiting Earth can track the nodes of the Moon’s orbit and allow payload exchanges to be undertaken periodically with the arrival of the Moon at either of these nodes.
    [Show full text]