Design of Spacecraft Missions to Remove Multiple Orbital Debris Objects
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
United States Patent (19) 11 Patent Number: 5,716,029 Spitzer Et Al
I US005716029A United States Patent (19) 11 Patent Number: 5,716,029 Spitzer et al. 45 Date of Patent: Feb. 10, 1998 54 CONSTANTSUN ANGLE TRANSFER ORBIT Meserole, J., "Launch Costs to GEO Using Solar Powered SEQUENCE AND METHOD USING Orbit Transfer Vehicles". American Institute of Aeronautics ELECTRIC PROPULSION and Astronautic (AIAA) Paper 93-2219. AIAAJSAE (75) Inventors: Arnon Spitzer, Los Angeles, Calif.; ASME/ASEE 29th Joint Propulsion Conference and Solomon A. De Picciotto, Aurora, Colo. Exhibit. Jun. 28-30, 1993. 73 Assignee: Hughes Electronics, Los Angeles, Free, B. "High Altitude Orbit Raising With On-Board Calif. Electric Power", International Electric Propulsion Confer ence Paper 93-205, American Institute Of Aeronautics and (21) Appl. No.: 558,572 Astronautics AIAA/AIDAVDGLA/JSASS 23rd International 22 Filed: Oct. 31, 1995 Electric Propulsion Conference. Sep. 13–16, 1993. Related U.S. Application Data Primary Examiner-Galen L. Barefoot 63 Continuation-in-part of Ser. No. 217,791, Mar. 25, 1994, Attorney, Agent, or Firm-Elizabeth E. Leitereg; Terje Pat No. 5,595,360. Gudmestad; Wanda K. Denson-Low (51) Int. Cl. ... ... B64G 1/10 52 U.S.C. ................................................... 244/158 R 57 ABSTRACT 58) Field of Search ................................ 244/158 R, 164, 244/168, 169, 172 An apparatus and method for translating a spacecraft (102. 108) from an injection orbit (114) about a central body (100) 56) References Cited to synchronous orbit (122) in a time efficient manner. The U.S. PATENT DOCUMENTS spacecraft (102, 108) includes propulsion thrusters (50) 4,943,014 7/1990 Harwood et al. ....................... 244/169 which are fired in predetermined timing sequences con trolled by a controller (64) in relation to the apogee (118) FOREIGN PATENT DOCUMENTS and perigee (120) of the injection orbit (114) and successive 0 047 211 3/1982 European Pat. -
The Aerospace Update
The Aerospace Update First Light from a Gravitational-Wave Event Oct. 17, 2017 Video Credit: NASA's Goddard Space Flight Center/CI Lab First Light from a Gravitational-Wave Event For the first time ever, scientists have spotted both gravitational waves and light coming from the same cosmic event — in this case, the cataclysmic merger of two super dense stellar corpses known as neutron stars. The landmark discovery initiates the field of "multi-messenger astrophysics," which promises to reveal exciting new insights about the cosmos, researchers said. The find also provides the first solid evidence that neutron-star smashups are the source of much of the universe's gold, platinum and other heavy elements. Source: Mike Wall, Space.com Image Credit: Robin Dienel, Carnegie Institution for Science ATLAS 5 Launches Classified NROL 52 Satellite A covert communications relay station to route spy satellite data directly to users was successfully launched by a million-pound Atlas 5 rocket overnight. The United Launch Alliance rocket left Cape Canaveral under the cover of darkness on Sunday, Oct. 15th, dodging rain showers while speeding through decks of clouds, for a trek to geosynchronous transfer orbit to deploy the NROL-52 spacecraft. The fifth launch attempt proved to be the charm for NROL-52 after four thwarted tries over the past week, mainly due to bad weather. Video courtesy of United Launch Alliance Source: Justin Ray @ SpaceFlightNow.com SpaceX Launches Third Pre-Flown Rocket with EchoStar-SES Satellite, Lands Booster Maintaining a brisk flight rate three days after its last launch, SpaceX sent a Falcon 9 booster powered by a reused first stage into orbit on Wednesday evening, Oct 11th from Florida with an Airbus-built communications satellite for SES and EchoStar. -
Cislunar Tether Transport System
FINAL REPORT on NIAC Phase I Contract 07600-011 with NASA Institute for Advanced Concepts, Universities Space Research Association CISLUNAR TETHER TRANSPORT SYSTEM Report submitted by: TETHERS UNLIMITED, INC. 8114 Pebble Ct., Clinton WA 98236-9240 Phone: (206) 306-0400 Fax: -0537 email: [email protected] www.tethers.com Report dated: May 30, 1999 Period of Performance: November 1, 1998 to April 30, 1999 PROJECT SUMMARY PHASE I CONTRACT NUMBER NIAC-07600-011 TITLE OF PROJECT CISLUNAR TETHER TRANSPORT SYSTEM NAME AND ADDRESS OF PERFORMING ORGANIZATION (Firm Name, Mail Address, City/State/Zip Tethers Unlimited, Inc. 8114 Pebble Ct., Clinton WA 98236-9240 [email protected] PRINCIPAL INVESTIGATOR Robert P. Hoyt, Ph.D. ABSTRACT The Phase I effort developed a design for a space systems architecture for repeatedly transporting payloads between low Earth orbit and the surface of the moon without significant use of propellant. This architecture consists of one rotating tether in elliptical, equatorial Earth orbit and a second rotating tether in a circular low lunar orbit. The Earth-orbit tether picks up a payload from a circular low Earth orbit and tosses it into a minimal-energy lunar transfer orbit. When the payload arrives at the Moon, the lunar tether catches it and deposits it on the surface of the Moon. Simultaneously, the lunar tether picks up a lunar payload to be sent down to the Earth orbit tether. By transporting equal masses to and from the Moon, the orbital energy and momentum of the system can be conserved, eliminating the need for transfer propellant. Using currently available high-strength tether materials, this system could be built with a total mass of less than 28 times the mass of the payloads it can transport. -
III III || US005595360A United States Patent (19) 11 Patent Number: 5,595,360 Spitzer 45) Date of Patent: Jan
III III || US005595360A United States Patent (19) 11 Patent Number: 5,595,360 Spitzer 45) Date of Patent: Jan. 21, 1997 54) OPTIMAL TRANSFER ORBIT TRAJECTORY Meserole, J., "Launch Costs To GEO Using Solar Powered USENGELECTRIC PROPULSION Orbit Transfer Vehicles', American Institute of Aeronautics and Astronautic (AIAA) Paper 93-2219, AIAA/SAE/ 75) Inventor: Arnon Spitzer, Los Angeles, Calif. ASME/ASEE 29th Joint Propulsion Conference and Exhibit, Jun. 28-30, 1993. (73) Assignee: Hughes Aircraft Company, Los Free, B. "High Altitude Orbit Raising With On-Board Angeles, Calif. Electric Power”, International Electric Propulsion Confer ence Paper 93-205, American Institute Of Aeronautics and (21) Appl. No.: 217,791 Astronautics AIAA/AIDA/DGLA/JSASS 23rd International (22 Filed: Mar 25, 1994 Electric Propulsion Conference, Sep. 13-16, 1993. Parkhash, "Electric Propulsion for Space Missions' Electri (51) int. Cl. ................ B64G 1/10 cal India vol. 19, No. 7, pp. 5-18., Apr. 1979. (52 U.S. C. ........................................................ 244/158 R Davison, "orbit Expansion by Microthrust” Royal Aircraft 58 Field of Search ................................ 244/158 R, 164, Est. Tech Report 67249 Sep. 1967. 244/172, 168, 169 Primary Examiner-Galen L. Barefoot 56 References Cited Attorney, Agent, or Firm-Elizabeth E. Leitereg; Terje Gud U.S. PATENT DOCUMENTS mestad; Wanda K. Denson-Low 4,943,014 7/1990 Harwood et al. ....................... 244/169 57) ABSTRACT FOREIGN PATENT DOCUMENTS An apparatus and method for translating a spacecraft (10) from an injection orbit (16) about a central body (10) to 0047211 3/1982 European Pat. Off. ............... 244/169 geosynchronous orbit (18) in a time efficient manner. -
9Th Annual & Final Report 2006 2007
NASA Institute for Advanced Concepts 9th Annual & 2006 Final Report 2007 Performance Period July 12, 2006 - August 31, 2007 NASA Institute for Advanced Concepts 75 5th Street NW, Suite 318 Atlanta, GA 30308 404-347-9633 www.niac.usra.edu USRA is a non-profit corpora- ANSER is a not-for-profit pub- tion under the auspices of the lic service research corpora- National Academy of Sciences, tion, serving the national inter- with an institutional membership est since 1958.To learn more of 100. For more information about ANSER, see its website about USRA, see its website at at www.ANSER.org. www.usra.edu. NASA Institute for Advanced Concepts 9 t h A N N U A L & F I N A L R E P O R T Performance Period July 12, 2006 - August 31, 2007 T A B L E O F C O N T E N T S 7 7 MESSAGE FROM THE DIRECTOR 8 NIAC STAFF 9 NIAC EXECUTIVE SUMMARY 10 THE LEGACY OF NIAC 14 ACCOMPLISHMENTS 14 Summary 14 Call for Proposals CP 05-02 (Phase II) 15 Call for Proposals CP 06-01 (Phase I) 17 Call for Proposals CP 06-02 (Phase II) 18 Call for Proposals CP 07-01 (Phase I) 18 Call for Proposals CP 07-02 (Phase II) 18 Financial Performance 18 NIAC Student Fellows Prize Call for Proposals 2006-2007 19 NIAC Student Fellows Prize Call for Proposals 2007-2008 20 Release and Publicity of Calls for Proposals 20 Peer Reviewer Recruitment 21 NIAC Eighth Annual Meeting 22 NIAC Fellows Meeting 24 NIAC Science Council Meetings 24 Coordination With NASA 27 Publicity, Inspiration and Outreach 29 Survey of Technologies to Enable NIAC Concepts 32 DESCRIPTION OF THE NIAC 32 NIAC Mission 33 Organization 34 Facilities 35 Virtual Institute 36 The NIAC Process 37 Grand Visions 37 Solicitation 38 NIAC Calls for Proposals 39 Peer Review 40 NASA Concurrence 40 Awards 40 Management of Awards 41 Infusion of Advanced Concepts 4 T A B L E O F C O N T E N T S 7 LIST OF TABLES 14 Table 1. -
The Lunar Economy - Years 1-25 Dec 1986 - Nov 2011
MMM Theme Issues: The Lunar Economy - Years 1-25 Dec 1986 - Nov 2011 The Moon Would Seem to be a Tough Nut to Crack Until we look Closer At first we may not be able to produce “first choice” alloys and other building and manufacturing materials, but what we can produce early on will be adequate to substitute for enough products that the gross tonnage of imports from Earth can be cut to a fraction. Power Generation is essential. Better, as we point out in Foundation 2 above, the Moon has the real estate advantage of “location, location, location.” As a result, anything produced on the Moon could be shipped to space facilities in Low Earth Orbit (LEO) and Geosynchronous Orbit (GEO) at a cost advantage of equivalent products manufactured on Earth. Thus the cost of importing to the Moon those things that cannot yet be manufactured there, could be ofset by exports of Lunar manufactured goods and materials to markets in LEO and GEO. Production of consumer goods will be important and enterprise will be a key factor. It will take time, but financial break-even is possible in time. The obstacles are great. But once you look closely at the options, these obstacles fall in the ranks of those that faced MMM Theme Issues: The Lunar Economy - Years 1-25 Dec 1986 - Nov 2011 pioneers of other frontiers on Earth in eras gone by. Establishing and then elaborating the roots and possibilities of a lunar economy sufcient to support permanent pioneer frontier settlements are there, and treating them one by one has been a major theme of Moon Miners’ Manifesto through the years. -
Minimum Time Orbit Raising of Geostationary Spacecraft by Optimizing Feedback Gain of Steering Law
Trans. JSASS Aerospace Tech. Japan Vol. 17, No. 3, pp. 363-370, 2019 DOI: 10.2322/tastj.17.363 Minimum Time Orbit Raising of Geostationary Spacecraft by Optimizing Feedback Gain of Steering Law By Kenji KITAMURA,1) Katsuhiko YAMADA,2) and Takeya SHIMA1) 1) Advanced Technology R&D Center, Mitsubishi Electric Corporation, Amagasaki, Japan 2) Graduate School of Engineering, Osaka University, Osaka, Japan (Received June 23rd, 2017) This study considers the minimum time orbit-raising problem of geostationary spacecraft with low-propulsion thrusters. This problem is equivalent to determining an appropriate thrust direction during orbit raising. This study proposes a closed- loop thruster steering law that determines the thrust direction based on the optimal feedback gains and control errors of each orbital element. The feedback gains of the steering law are assumed to be the functions of orbital elements and are optimized by a meta-heuristic method. The orbital semi-major axis, eccentricity, and inclination are considered as independent variables for expressing the gains. Numerical simulations show that whichever orbital elements is selected as an independent variable, the same performances are obtained. Therefore, regardless of the initial orbital elements, by selecting the independent variable appropriately, the proposed method can always solve the minimum time orbit-transfer problem. Key Words: Orbit Raising, Geostationary Orbit, Low-Propulsion Thruster, Optimal Control Nomenclature Subscripts 0 : initial : semi-major axis : final : eccentric anomaly : normal direction in Local Vertical Local � : eccentricity � Horizontal (LVLH) coordinates � : eccentricity vector � : radial direction in LVLH coordinates � : magnitude of thruster force : transversal direction in LVLH coordinates ������� � g : gravitational acceleration of Earth at sea � � � level 1. -
Ground Observations of Falcon-9 Second Stage
GROUND OBSERVATIONS OF FALCON-9 SECOND STAGE ORBITAL VENTING/THRUSTING AS AID FOR INTERPRETING UNUSUAL VISUAL FEATURES OF MYSTERIOUS ‘ZUMA’ LAUNCH FINAL DRAFT March 20, 2018 James Oberg [email protected] PROBLEM AND APPROACH • 1 Classified payload Zuma launched, results not disclosed • 2 Accidental imaging of second stage venting by MANY observers • 3 SpaceX disclosure of ‘normal’ venting procedure is scanty • 4 However, some past launches had similar venting imagery • 5 Detailed study of images and descriptions can possibly help characterize spacecraft activities including anomalies • 6. Random nature of rare enabling conditions will always make such opportunities for insights rare and unpredictable • 7. All the more motivation to jump on such literally heaven-sent serendipitous opportunities whenever they are discovered • 6. Assessment of witness misperceptions [based on a known visual stimulus] helps understand reliability of other sky observations • 7 Two more stage2 burn/dump observations occurred the following month and those events are incorporated into this overview report • 8. All five ‘analogous plumes’ have detailed focused reports to be examined 2 Launch sequence of events & rumors • LAUNCH • Mission event discussion: https://forum.nasaspaceflight.com/index.php?topic=44175.0 • Mission results analysis https://forum.nasaspaceflight.com/index.php?topic=43976.0 • Launch video https://youtu.be/iS644RQYKTw • S2 debris warning zone https://forum.nasaspaceflight.com/assets/43976.0/1468540.jpg 3 The double-spiral “Khartoum Clue” -
Motorised Momentum Exchange Space Tethers: the Dynamics of Asymmetrical Tethers, and Some Recent New Applications
MATEC Web of Conferences 148, 01001 (2018) https://doi.org/10.1051/matecconf/201814801001 ICoEV 2017 Motorised momentum exchange space tethers: the dynamics of asymmetrical tethers, and some recent new applications Matthew Cartmell1,2,*, Olga Ganilova1,2, Eoin Lennon1, and Gavin Shuttleworth1 1Department of Mechanical & Aerospace Engineering, University of Strathclyde, Glasgow, G1 1XJ, Scotland, UK 2Strathclyde Space Institute, University of Strathclyde, Glasgow, G1 1XJ, Scotland, UK Abstract. This paper reports on a first attempt to model the dynamics of an asymmetrical motorised momentum exchange tether for spacecraft payload propulsion, and it also provides some interesting summary results for two novel applications for motorised momentum exchange tethers. The asymmetrical tether analysis is very important because it represents the problematic scenario when payload mass unbalance intrudes, due to unexpected payload loss or failure to retrieve. Mass symmetry is highly desirable both dynamically and logistically, but it is shown in this paper that there is still realistic potential for mission rescue should an asymmetry condition arise. Conceptual designs for tethered payload release from LEO and lunar tether delivery and retrieval are also presented as options for future development. 1 Introduction Momentum exchange tether dynamics have been extensively studied in recent years, and are of current considerable interest internationally as a technology for cost effective and environmentally clean propulsion of payload mass from Low Earth Orbit (LEO). A conceptual design for a motorised momentum exchange tether is given in Figure 1 where the central facility motor drive shaft attaches to the propulsion sub-spans by mean of a gantry, mounted so that it can be rotated by the shaft. -
To Orbit and Back Again: How the Space Shuttle Flew in Space Free Download
TO ORBIT AND BACK AGAIN: HOW THE SPACE SHUTTLE FLEW IN SPACE FREE DOWNLOAD Davide Sivolella | 524 pages | 09 Sep 2013 | Springer-Verlag New York Inc. | 9781461409823 | English | New York, NY, United States To Orbit and Back Again: How the Space Shuttle Flew in Space (Springer… Details of how anomalous events were dealt with on individual missions are also provided, as are the recollections of those who built and flew the Shuttle. He involves here few in photographers on: electoral antitrust exceptionalism; teriparatide and significant experience; concept and matters; and s Futurism. Orbiting skyhooks Skyhook Momentum exchange tether. Soviet X-planes. This passion for astronautics led to bacheklor's and master's degrees in Aerospace Engineering from the Polytechnic of Turin Italy. Archived from the original on 26 June Technical material has been obtained from NASA as well as from other forums and specialists. The Rockwell X National Aero-Space Plane NASPbegun in the s, was an attempt to build a scramjet vehicle capable of operating like an aircraft and achieving orbit like the shuttle. InNASA originally planned to have the Gemini spacecraft land on a runway [18] with a Rogallo wing airfoilrather than an ocean landing under parachutes. Namespaces Article Talk. The spaceplane was also intended to carry cargo, with both upmass and downmass capacity. Search icon An illustration of a magnifying glass. Orbital spaceplanes are more like spacecraft, while sub-orbital spaceplanes are more like fixed-wing aircraft. Our configurations are tall Bodies and genotypes on which to See your new nationality. Space Policy. Details of how anomalous events were dealt with on individual missions are also provided, as are the recollections of those who built and flew the Shuttle. -
Open Research Online Oro.Open.Ac.Uk
Open Research Online The Open University’s repository of research publications and other research outputs Mars Phobos and Deimos Survey (M-PADS) – A Martian Moons Orbiter and Phobos Lander Journal Item How to cite: Ball, Andrew J.; Price, Michael E.; Walker, Roger J.; Dando, Glyn C.; Wells, Nigel S. and Zarnecki, John C. (2009). Mars Phobos and Deimos Survey (M-PADS) – A Martian Moons Orbiter and Phobos Lander. Advances in Space Research, 43(1) pp. 120–127. For guidance on citations see FAQs. c 2008 COSPAR. Published by Elsevier Ltd. Version: [not recorded] Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.1016/j.asr.2008.04.007 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk Mars Phobos and Deimos Survey (M-PADS)—A Martian Moons Orbiter and Phobos Lander Andrew J. Balla, Michael E. Priceb, Roger J. Walkerb,†, Glyn C. Dandob, Nigel S. Wellsb, and John C. Zarneckia aPlanetary and Space Sciences Research Institute, Centre for Earth, Planetary, Space & Astronomical Research, The Open University, Walton Hall, Milton Keynes, Buckinghamshire MK7 6AA, UK. Email: [email protected] bSpace Department, QinetiQ, Cody Technology Park, Farnborough, Hampshire GU14 0LX, UK †Now at ESA ESTEC, Noordwijk, Netherlands Abstract We describe a Mars ‘Micro Mission’ for detailed study of the martian satellites Phobos and Deimos. The mission involves two ~330 kg spacecraft equipped with solar electric propulsion to reach Mars orbit. -
Minimum Time Orbit Raising of Geostationary Spacecraft by Optimizing Feedback Gain of Steering-Law Kenji KITAMURA1*, Katsuhiko
Minimum Time Orbit Raising of Geostationary Spacecraft by Optimizing Feedback Gain of Steering-law Kenji KITAMURA1*, Katsuhiko YAMADA2 and Takeya SHIMA1 1) Advanced Technology R&D Center, Mitsubishi Electric Corporation, Amagasaki, Japan 2) Graduate School of Engineering, Osaka University, Osaka, Japan [email protected] Keyword : Orbit raising, geostationary orbit, low propulsion thruster, optimal control In recent years, low propulsion thruster such as ion-thruster or hall thruster is becoming a hopeful propulsion system for a spacecraft transferring from a low earth orbit (LEO), a geostationary transfer orbit (GTO), or a supersynchronous orbit (SSTO) to a geostationary orbit (GEO). Conventionally, geostationary spacecraft is just putted in the GTO by a launcher and in order to complete the orbit transfer, the spacecraft employs an on-board high chemical propulsion thruster called apogee kick motor at the apogee of GTO so that the orbit semi-major axis, eccentricity, and inclination correspond with those of GEO. Although GEO insertion by the chemical propulsion thruster completes in a short period of time (less than one week), low specific impulse of the thruster results in much fuel consumption (almost half of the wet mass is occupied by the fuel). In order to overcome this disadvantage, a spiral orbit raising by the low propulsion electric thruster, which has almost ten times larger specific impulse than the chemical propulsion, is getting a lot of attention as an alternative transfer orbit. In case of the spiral orbit raising, it takes several months to complete the orbit transfer but it can save a lot of fuel. In this study, the minimum time orbit transfer problem by the low propulsion thrusters is considered.