The Lunar Economy - Years 1-25 Dec 1986 - Nov 2011

Total Page:16

File Type:pdf, Size:1020Kb

The Lunar Economy - Years 1-25 Dec 1986 - Nov 2011 MMM Theme Issues: The Lunar Economy - Years 1-25 Dec 1986 - Nov 2011 The Moon Would Seem to be a Tough Nut to Crack Until we look Closer At first we may not be able to produce “first choice” alloys and other building and manufacturing materials, but what we can produce early on will be adequate to substitute for enough products that the gross tonnage of imports from Earth can be cut to a fraction. Power Generation is essential. Better, as we point out in Foundation 2 above, the Moon has the real estate advantage of “location, location, location.” As a result, anything produced on the Moon could be shipped to space facilities in Low Earth Orbit (LEO) and Geosynchronous Orbit (GEO) at a cost advantage of equivalent products manufactured on Earth. Thus the cost of importing to the Moon those things that cannot yet be manufactured there, could be ofset by exports of Lunar manufactured goods and materials to markets in LEO and GEO. Production of consumer goods will be important and enterprise will be a key factor. It will take time, but financial break-even is possible in time. The obstacles are great. But once you look closely at the options, these obstacles fall in the ranks of those that faced MMM Theme Issues: The Lunar Economy - Years 1-25 Dec 1986 - Nov 2011 pioneers of other frontiers on Earth in eras gone by. Establishing and then elaborating the roots and possibilities of a lunar economy sufcient to support permanent pioneer frontier settlements are there, and treating them one by one has been a major theme of Moon Miners’ Manifesto through the years. MMM PUBLICATION SEQUENCE INDEX MMM THEMES: THE LUNAR ECONOMY MMM # 2 “M is for Market” MMM # 3 Moon Mall MMM # 4 Paper Chase II MMM # 5 Lunar Architecture MMM # 6 “M is for Missing Volatiles;” “M is for Methane & ‘Mmonia;” “M is for Minimizing the cost of importing Methane, Ammonia, and Hydrogen MMM # 16 Glass-Glass Composites & “Spin-Up” MMM # 18 A Strategy For Following Up Lunar Soil-Processing With Industrial M.U.S.-c.l.e. MMM # 22 1st Exports MMM # 23 Helium-3 MMM # 24 Gas Scavenging MMM # 32 Import Export Equation; Diversification Subsidies; Not In My Back Yard (NIMBY): The Import/Export Sleeper; Gross Imports that Could Count as Net Exports MMM # 34 Recycling; The “4th R” MMM # 38 Primage: Key to Lunar Industrial-Agricultural Success; How an Earth-Moon-Mars Economy Might Work MMM # 65 Lunar Industrialization: Substitutions Game; Fast Road to Lunar Industrial “MUS/cle;” Stowaway Imports MMM # 69 Producing for Export: Bringing Home the Bacon and Brass;” Tourist Earnings; Cosmotive Inc. (Scavenging and reconditioning Orbital “Debris”) MMM # 77 Homestead Furnishings and Decor as a Cottage Industry MMM # 88 Profits from Entertainment Ventures; Prize Lunar Real Estate MMM # 91 MMM Dictionary Entry “Commercial Space;” Commercial Moonbase Workshop MMM # 116 Uranium and Thorium and a Lunar Nuclear Fuels Industry MMM # 123 Thorium the Key to Opening Up Mars MMM # 126 “Potentiation” - Getting Through the Nightspan on the Moon’s Own Terms MMM # 128 Justification for Early Operation of a Lunar Mining Facility MMM # 129 Self Sufciency Tests and Goals; Balance of Trade Questions MMM # 132 “Spinning-up” Frontier Enterprise Profitable for both Earth & Space MMM # 135 Cast Basalt: Startup Industry With Two Great Tricks MMM # 144 Stay-at-home Shadow Settlers Brains & Skills “Tele-Participate” to reduce labor costs on the Moon; Moongas: as the Moon Burps MMM # 149 Homestead Gardens as Early Cottage Industries MMM # 155 “As Long as We’re Here” Secondary Profit Generators for Moon and Mars Bases MMM # 165 Deep Pocket Heroes to the Rescue of the Space Frontier? MMM # 168 Working Vacations: Change of Pace and Scenery for Lunan Pioneers MMM # 174 Modular Container Factories to Industrialize Early Settlements MMM # 181 Human-Robot Synergies MMM # 188 Zero-Mass Products & Services as a Major Part of a Lunar Frontier Economy MMM # 190 CO-OPs as Enterprise Accelerators MMM # 191 First Lunar Manufacturing Industries, before we start building habitat modules MMM Theme Issues: The Lunar Economy - Years 1-25 Dec 1986 - Nov 2011 MMM # 196 Scientific-Industrial Utilization of the “Lunar-Unique” Environment: Marius Hills MMM # 198 Outpost Trap: Technologies Needed to Break Free: I. Transportation Technologies; II. Expansion-friendly Modular Outpost Architectural Language, Construction/Assembly Systems Design; III. Locate for local, regional, and global expansion options; Teleoperation for Maximum Productivity MMM # 199 Outpost Trap: IV: ISRU, In Situ Resource Utilization; V Industrial Diversification Enablers; VI The Entrepreneurs; VII Moonbase Personnel MMM #200 The Outpost Trap: VIII: Strategies for Organizations tasked with making it happen; IX: A Lunar Analog Station Program can pave the way, if well-focused MMM # 207 A Spartan 11-Step Industrialization Scenario for a Lunar Mining Base: Magnesium: Workhorse Metal for the Lunar Frontier MMM # 208 Service Hooks for a Commercial Moonbase MMM # 209 Thinking Outside the Mass-Fraction Box; NASA’s Lunar Architecture Design Goals are not what we need to maximize lunar presence investment MMM # 210 Thinking Outside the Mass-Fraction Box: ii. Improving NASA’s Design Goals MMM # 211 Thinking Outside the Mass-Fraction Box: iiI. Power of Leveraging Concurrent Space Developments to deliver much more to the Moon; Hewn Basalt Products MMM # 216 Shadow Pioneers; KREEP Deposits MMM # 221 Investing in Fuel Tank Infrastructure in the Architecture of Lunar Exploration; Paradigm Shift (in Fuel Tank Infrastructure); Raw Glass Products MMM # 224 An International Lunar Research Park; Research & Development Priorities List: 1-5 Magnesium and Iron: Lunar Workhorse Metals MMM # 229 Resources of Mare Imbrium and Oceanus Procellarum; Lunar Industrialization: Defining the Lunar Industrial Seed: What Comes Before and How? MMM # 230 Lunar Industrialization: Defining Lunar Industrial Seed: What Comes Before How?; Defining the Lunar Industrial Seed: Manufacturing MMM # 231 Lunar Industrial Seed: The “cle” part of Industrial Development MUS/cle Strategy; A Basalt Fibers Industry MMM # 234 Lunar Basalt: What, Where, Critical Role for Lunar Industrialization & Settlement MMM # 235 Successful Opening of a Lunar Frontier Will Require More Than One Settlement MMM # 237 Research & Development Projects For an International Lunar Research Park MMM # 238 “In This Decade:” 3 words which won us the Moon Race but lost us the Moon; For the Sake of Science, Science should not be in the Lunar Exploration Driver’s Seat MMM # 239 Could the Best Place to Mine Asteroids be on the Moon?: An Avatar Moonbase? MMM # 242 Telepresence-operated “Robonauts” will revise all “Scenarios;” Role of Robonauts & Robots on the Moon once Humans have settled in to stay; O’Nell’s High Frontier Updated and Modifies; New Space Age of Human-Robot Synergy MMM # 244 Could the “Space Experience” Sector Open the Moon Faster, for Less? MMM # 246 Could Some Lunar Lavatubes be Hiding Valuable Resources? - Speculation MMM # 247 Moon Mining Machines: A Materials Challenge; Lunar Iron and Alloys of Iron MMM # 248 10 Billion Dollars to Industrialize the Space?; Postscript to the preceding article; Diferences between this and former Visions MMM # 249 A Prelude to Space Industrialization; The Moon: What’s in it for Earth? Part II: Lunar Materials to Grow Earth’s Economy MMM #259 Lunar Toll Roads: Taming the Magnificent Desolation of the “Out-Vac” Comment: As you can see from this list of topics, we have tried to approach the subject of a many-faceted Lunar Economy invigorating the greater Cis-Lunar Earth-Moon Economy. We MMM Theme Issues: The Lunar Economy - Years 1-25 Dec 1986 - Nov 2011 believe that the prospects are greater than any of us can imagine from our current position in history. We have tried to illuminate many of the potential roots of this economy, going well beyond mainstream current speculation, but grounded in real potential, given the Moon’s makeup and key position on the shoulder of Earth’s Gravity Well. Enjoy! Peter Kokh, Dave Dietzler, Dave Dunlop and others THEME THREADS INDEX - THE LUNAR ECONOMY !PRELUDE MMM # 16 Glass-Glass Composites & “Spin-Up” MMM # 18 A Strategy For Following Up Lunar Soil-Processing With Industrial M.U.S.-c.l.e. MMM # 22 1st Exports MMM # 132 “Spinning-up” Frontier Enterprise Profitable for both Earth & Space MMM # 144 Stay-at-home Shadow Settlers Brains & Skills “Tele-Participate” to reduce labor costs on the Moon MMM # 155 “As Long as We’re Here” Secondary Profit Generators for Moon and Mars Bases MMM # 165 Deep Pocket Heroes to the Rescue of the Space Frontier? MMM # 176 Tele-Crafted Art Objects MMM # 181 Human-Robot Synergies MMM # 188 Zero-Mass Products & Services as a Major Part of a Lunar Frontier Economy MMM # 198 Outpost Trap: Technologies Needed to Break Free: I. Transportation Technologies; II. Expansion-friendly Modular Outpost Architectural Language, Construction/Assembly Systems Design; III. Locate for local, regional, and global expansion options; Teleoperation for Maximum Productivity MMM # 199 Outpost Trap: IV: ISRU, In Situ Resource Utilization; V Industrial Diversification Enablers; VI The Entrepreneurs; VII Moonbase Personnel MMM #200 The Outpost Trap: VIII: Strategies for Organizations tasked with making it happen; IX: A Lunar Analog Station Program can pave the way, if well-focused MMM # 208 Service Hooks for a Commercial Moonbase MMM # 209 Thinking Outside the Mass-Fraction Box; NASA’s LunaR Architecture Design Goals are not what we need to maximize lunar presence investment MMM #
Recommended publications
  • Geologic Structure of Shallow Maria
    NASA CR. Photo Data Analysis S-221 NASA Contract NAS 9-13196 GEOLOGIC STRUCTURE OF SHALLOW MARIA Rene' A. De Hon, Principal Investigator John A. Waskom, Co-Investigator (NASA-CR-lq7qoo GEOLOGIC STahJCTUnF OF N76-17001 ISBALOW M1BIA-'(Arkansas Uni.v., mHiticelio.) ­ 96 p BC $5.00' CSCL O3B Unclas G3/91, 09970- University of Arkansas at Monticello Monticello, Arkansas December 1975 Photo Data Analysis S-221 NASA Contract NAS 9-13196 GEOLOGIC STRUCTURE OF SHALLOW MARIA Rene' A. De Hon, Principal Investigator I John A. Waskom, Co-Investigator Un-iversity-of Arkansas-:at-.Monticl o Monticello, Arkansas December 1975 ABSTRACT Isopach maps and structural contour maps of the 0 0 eastern mare basins (30 N to 30 OS; 00 to 100 E) are constructed from measurements of partially buried craters. The data, which are sufficiently scattered to yield gross thickness variations, are restricted to shallow maria with less than 1500-2000 m of mare basalts. The average thickness of b-asalt in the irregular maria is between 200 and 400 m. Multiringed mascon basins are filled to various levels. The Serenitatis and Crisium basins have deeply flooded interiors and extensively flooded shelves. Mare basalts in the Nectaris basin fill only the innermost basin, and mare basalts in the Smythii basin occupy a small portion of the basin floor. Sinus Amoris, Mare Spumans, and Mare Undarum are partially filled troughs concentric to large circular basins. The Tranquillitatis and Fecunditatis are composite depressions containing basalts which flood degraded circular basins and adjacent terrain modified by the formation of nearby cir­ cular basins.
    [Show full text]
  • Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography on the Occasion of the 50Th Anniversary of Apollo 11 Moon Landing
    Special Catalogue Milestones of Lunar Mapping and Photography Four Centuries of Selenography On the occasion of the 50th anniversary of Apollo 11 moon landing Please note: A specific item in this catalogue may be sold or is on hold if the provided link to our online inventory (by clicking on the blue-highlighted author name) doesn't work! Milestones of Science Books phone +49 (0) 177 – 2 41 0006 www.milestone-books.de [email protected] Member of ILAB and VDA Catalogue 07-2019 Copyright © 2019 Milestones of Science Books. All rights reserved Page 2 of 71 Authors in Chronological Order Author Year No. Author Year No. BIRT, William 1869 7 SCHEINER, Christoph 1614 72 PROCTOR, Richard 1873 66 WILKINS, John 1640 87 NASMYTH, James 1874 58, 59, 60, 61 SCHYRLEUS DE RHEITA, Anton 1645 77 NEISON, Edmund 1876 62, 63 HEVELIUS, Johannes 1647 29 LOHRMANN, Wilhelm 1878 42, 43, 44 RICCIOLI, Giambattista 1651 67 SCHMIDT, Johann 1878 75 GALILEI, Galileo 1653 22 WEINEK, Ladislaus 1885 84 KIRCHER, Athanasius 1660 31 PRINZ, Wilhelm 1894 65 CHERUBIN D'ORLEANS, Capuchin 1671 8 ELGER, Thomas Gwyn 1895 15 EIMMART, Georg Christoph 1696 14 FAUTH, Philipp 1895 17 KEILL, John 1718 30 KRIEGER, Johann 1898 33 BIANCHINI, Francesco 1728 6 LOEWY, Maurice 1899 39, 40 DOPPELMAYR, Johann Gabriel 1730 11 FRANZ, Julius Heinrich 1901 21 MAUPERTUIS, Pierre Louis 1741 50 PICKERING, William 1904 64 WOLFF, Christian von 1747 88 FAUTH, Philipp 1907 18 CLAIRAUT, Alexis-Claude 1765 9 GOODACRE, Walter 1910 23 MAYER, Johann Tobias 1770 51 KRIEGER, Johann 1912 34 SAVOY, Gaspare 1770 71 LE MORVAN, Charles 1914 37 EULER, Leonhard 1772 16 WEGENER, Alfred 1921 83 MAYER, Johann Tobias 1775 52 GOODACRE, Walter 1931 24 SCHRÖTER, Johann Hieronymus 1791 76 FAUTH, Philipp 1932 19 GRUITHUISEN, Franz von Paula 1825 25 WILKINS, Hugh Percy 1937 86 LOHRMANN, Wilhelm Gotthelf 1824 41 USSR ACADEMY 1959 1 BEER, Wilhelm 1834 4 ARTHUR, David 1960 3 BEER, Wilhelm 1837 5 HACKMAN, Robert 1960 27 MÄDLER, Johann Heinrich 1837 49 KUIPER Gerard P.
    [Show full text]
  • The FSC National Forest Stewardship Standard of Romania
    Forest Stewardship Council® The FSC National Forest Stewardship Standard of Romania Cover photos: James Morgan/WWF; Doru Oprisan; Radu Grigore Vlad FSC International Center GmbH · ic.f sc.org · FSC® F000100 Adenauer Allee 134 · 53113 Bonn · Germany T +49 (0) 228 367 66 0 · F +49 (0) 228 367 66 30 Geschäf tsf ührer | Chief Policy Officer: Dr. Hans-Joachim Droste Handelsregister | Commercial Register: Bonn HRB12589 Forest Stewardship Council® Title: The FSC National Forest Stewardship Standard of Romania Document reference code: FSC-STD-ROU-01-2017 EN Status: Approved Geographical Scope: National Forest Scope: All forest types Approval body: Policy and Standards Committee Submission date: 15 January 2017 Approval date: 12 July 2017 Effectiveness date: 15 April 2019 Validity Period: Five years after the effectiveness date Marius Turtica Asociatia pentru Certificare Forestiera Country Contact: E-mail: [email protected] [email protected] Mobile: 0040 740 300 616 FSC International Center - Performance and Standards Unit - Adenauer Allee 134 FSC Performance and Stand- 53113 Bonn, Germany ards Unit Contact: +49-(0)228-36766-0 +49-(0)228-36766-30 [email protected] A.C. All rights reserved. No part of this work covered by the publisher’s copyright may be reproduced or copied in any form or by any means (graphic, electronic or mechanical, including photocopying, recording, recording taping, or information retrieval systems) without the written permission of the publish- er. The Forest Stewardship Council® (FSC) is an independent, not for profit, non-government organisation established to support environmentally appropriate, socially beneficial, and eco- nomically viable management of the world's forests.
    [Show full text]
  • Cislunar Tether Transport System
    FINAL REPORT on NIAC Phase I Contract 07600-011 with NASA Institute for Advanced Concepts, Universities Space Research Association CISLUNAR TETHER TRANSPORT SYSTEM Report submitted by: TETHERS UNLIMITED, INC. 8114 Pebble Ct., Clinton WA 98236-9240 Phone: (206) 306-0400 Fax: -0537 email: [email protected] www.tethers.com Report dated: May 30, 1999 Period of Performance: November 1, 1998 to April 30, 1999 PROJECT SUMMARY PHASE I CONTRACT NUMBER NIAC-07600-011 TITLE OF PROJECT CISLUNAR TETHER TRANSPORT SYSTEM NAME AND ADDRESS OF PERFORMING ORGANIZATION (Firm Name, Mail Address, City/State/Zip Tethers Unlimited, Inc. 8114 Pebble Ct., Clinton WA 98236-9240 [email protected] PRINCIPAL INVESTIGATOR Robert P. Hoyt, Ph.D. ABSTRACT The Phase I effort developed a design for a space systems architecture for repeatedly transporting payloads between low Earth orbit and the surface of the moon without significant use of propellant. This architecture consists of one rotating tether in elliptical, equatorial Earth orbit and a second rotating tether in a circular low lunar orbit. The Earth-orbit tether picks up a payload from a circular low Earth orbit and tosses it into a minimal-energy lunar transfer orbit. When the payload arrives at the Moon, the lunar tether catches it and deposits it on the surface of the Moon. Simultaneously, the lunar tether picks up a lunar payload to be sent down to the Earth orbit tether. By transporting equal masses to and from the Moon, the orbital energy and momentum of the system can be conserved, eliminating the need for transfer propellant. Using currently available high-strength tether materials, this system could be built with a total mass of less than 28 times the mass of the payloads it can transport.
    [Show full text]
  • Master Gardener Newsletter
    Master Gardener Newsletter S EPTEMBER 2020 C OWLITZ C OUNTY 1946 3 RD A VE. L ONGVIEW , WA 98632 WSU Extension Office Gary Fredricks Phone: 360-577-3014 Gary Fredricks, WSU I have a plan? Cowlitz County "A year from now, you will wish you had started today." ~ Karen Lamb Extension Director, 360-577-3014 Extension 3 October marks a showcase of fall colors with all the trees changing to different E-mail: [email protected] shades of gold and red. It also means elections are drawing near. Political speeches fill the airways with promises of a better way of doing things. Speech- Carlee Dowell, es in the past were about saving the taxpayers money, but now because budgets Administrative Secretary have been cut, it has become more about accountability. There are promises to 360-577-3014 Extension 0 eliminate wasteful spending and be more efficient in how your dollars are spent. We all should expect that our tax dollars are being used effectively, but how do E-mail: we know? [email protected] As public supported organization, it is expected that WSU Extension is ac- countable for the funds it uses. That means we need to demonstrate that as an WSU Gardening Websites organization we can show our programs have improved the quality of life for mastergardener.wsu.edu/ the general public. WSU Extension has the responsibility to make sure our pro- gardening.wsu.edu grams are relevant and impact Cowlitz County citizens. As MG volunteers, cowlitz.wsu.edu partners with our office, the goal remains the same for you.
    [Show full text]
  • SEDIMENTATION of the BARUN GOYOT FORMATION (Plates XXXIV-XLII )
    RYSZARD GRADZINSKI & TOMASZ JERZYKIEWICZ SEDIMENTATION OF THE BARUN GOYOT FORMATION (Plates XXXIV-XLII ) Contents C ontents Pa ge Introduction . 112 Geological setting 112 Stratigraphy . .. 114 Previous work .. .. ... .. 114 Redefinition of the lithostratigraphic divisions. 115 Barun Goyot Formation ... 116 Nemegt Formation. .. .. 116 Relation between the observed profiles . 117 Petrographic description . .. 118 Clay and silt-grade sediments 119 Sand-grade sediments . .. 119 Intraformational gravels . 124 Exotic gravels . 124 Principal sediment types . 125 Flat-bedded sandstone units. 125 Mega cross-stratified units . 127 Massive, "structureless" sandstones. 134 Diversely stratified sandstones . 134 Alternating claystones and sandstones 136 Sedimentological interpretation 136 Occurrence of organic remains 140 Depositional environment . 141 Conclusions 143 Appen dix . 143 References . 144 Abstract. - The Barun Goyot Formation (previously termed Lower Nemegt Beds) is composed of clastic continental sediments of red-beds type; it is probably of Campanian age. The thickness of the formation exceeds 110 m. It is overlain by the Nemegt Formation (previously termed Upper Nemegt Beds), probably of Maast richtian age; the passage between the two format ions is gradual. A formal redefinition of the two Iithostra tigraphic divisions is presented in the paper. Five principal sediment types are distinguished in the Barun Goyot Formation, displaying sedimentary features indicative of various conditions of sedimentation. The lower part of the exposed profile of the Barun Goyot Formation is characterized by mega cross-stratified units, interpreted as dune deposits; they are intertonguing with water-deposited sediments laid in interdune areas. Chan nel deposits, attributed to intermittent streams are subordinate; massive sandstones, probably of various origin are predominating. The upper part of the profile of the formation is characterized by the predominance of flat-bedded sandstone units which were probabl y deposited in an intermittently flooded takyr-like area.
    [Show full text]
  • Water on the Moon, III. Volatiles & Activity
    Water on The Moon, III. Volatiles & Activity Arlin Crotts (Columbia University) For centuries some scientists have argued that there is activity on the Moon (or water, as recounted in Parts I & II), while others have thought the Moon is simply a dead, inactive world. [1] The question comes in several forms: is there a detectable atmosphere? Does the surface of the Moon change? What causes interior seismic activity? From a more modern viewpoint, we now know that as much carbon monoxide as water was excavated during the LCROSS impact, as detailed in Part I, and a comparable amount of other volatiles were found. At one time the Moon outgassed prodigious amounts of water and hydrogen in volcanic fire fountains, but released similar amounts of volatile sulfur (or SO2), and presumably large amounts of carbon dioxide or monoxide, if theory is to be believed. So water on the Moon is associated with other gases. Astronomers have agreed for centuries that there is no firm evidence for “weather” on the Moon visible from Earth, and little evidence of thick atmosphere. [2] How would one detect the Moon’s atmosphere from Earth? An obvious means is atmospheric refraction. As you watch the Sun set, its image is displaced by Earth’s atmospheric refraction at the horizon from the position it would have if there were no atmosphere, by roughly 0.6 degree (a bit more than the Sun’s angular diameter). On the Moon, any atmosphere would cause an analogous effect for a star passing behind the Moon during an occultation (multiplied by two since the light travels both into and out of the lunar atmosphere).
    [Show full text]
  • Apollo Over the Moon: a View from Orbit (Nasa Sp-362)
    chl APOLLO OVER THE MOON: A VIEW FROM ORBIT (NASA SP-362) Chapter 1 - Introduction Harold Masursky, Farouk El-Baz, Frederick J. Doyle, and Leon J. Kosofsky [For a high resolution picture- click here] Objectives [1] Photography of the lunar surface was considered an important goal of the Apollo program by the National Aeronautics and Space Administration. The important objectives of Apollo photography were (1) to gather data pertaining to the topography and specific landmarks along the approach paths to the early Apollo landing sites; (2) to obtain high-resolution photographs of the landing sites and surrounding areas to plan lunar surface exploration, and to provide a basis for extrapolating the concentrated observations at the landing sites to nearby areas; and (3) to obtain photographs suitable for regional studies of the lunar geologic environment and the processes that act upon it. Through study of the photographs and all other arrays of information gathered by the Apollo and earlier lunar programs, we may develop an understanding of the evolution of the lunar crust. In this introductory chapter we describe how the Apollo photographic systems were selected and used; how the photographic mission plans were formulated and conducted; how part of the great mass of data is being analyzed and published; and, finally, we describe some of the scientific results. Historically most lunar atlases have used photointerpretive techniques to discuss the possible origins of the Moon's crust and its surface features. The ideas presented in this volume also rely on photointerpretation. However, many ideas are substantiated or expanded by information obtained from the huge arrays of supporting data gathered by Earth-based and orbital sensors, from experiments deployed on the lunar surface, and from studies made of the returned samples.
    [Show full text]
  • 9Th Annual & Final Report 2006 2007
    NASA Institute for Advanced Concepts 9th Annual & 2006 Final Report 2007 Performance Period July 12, 2006 - August 31, 2007 NASA Institute for Advanced Concepts 75 5th Street NW, Suite 318 Atlanta, GA 30308 404-347-9633 www.niac.usra.edu USRA is a non-profit corpora- ANSER is a not-for-profit pub- tion under the auspices of the lic service research corpora- National Academy of Sciences, tion, serving the national inter- with an institutional membership est since 1958.To learn more of 100. For more information about ANSER, see its website about USRA, see its website at at www.ANSER.org. www.usra.edu. NASA Institute for Advanced Concepts 9 t h A N N U A L & F I N A L R E P O R T Performance Period July 12, 2006 - August 31, 2007 T A B L E O F C O N T E N T S 7 7 MESSAGE FROM THE DIRECTOR 8 NIAC STAFF 9 NIAC EXECUTIVE SUMMARY 10 THE LEGACY OF NIAC 14 ACCOMPLISHMENTS 14 Summary 14 Call for Proposals CP 05-02 (Phase II) 15 Call for Proposals CP 06-01 (Phase I) 17 Call for Proposals CP 06-02 (Phase II) 18 Call for Proposals CP 07-01 (Phase I) 18 Call for Proposals CP 07-02 (Phase II) 18 Financial Performance 18 NIAC Student Fellows Prize Call for Proposals 2006-2007 19 NIAC Student Fellows Prize Call for Proposals 2007-2008 20 Release and Publicity of Calls for Proposals 20 Peer Reviewer Recruitment 21 NIAC Eighth Annual Meeting 22 NIAC Fellows Meeting 24 NIAC Science Council Meetings 24 Coordination With NASA 27 Publicity, Inspiration and Outreach 29 Survey of Technologies to Enable NIAC Concepts 32 DESCRIPTION OF THE NIAC 32 NIAC Mission 33 Organization 34 Facilities 35 Virtual Institute 36 The NIAC Process 37 Grand Visions 37 Solicitation 38 NIAC Calls for Proposals 39 Peer Review 40 NASA Concurrence 40 Awards 40 Management of Awards 41 Infusion of Advanced Concepts 4 T A B L E O F C O N T E N T S 7 LIST OF TABLES 14 Table 1.
    [Show full text]
  • Dicionarioct.Pdf
    McGraw-Hill Dictionary of Earth Science Second Edition McGraw-Hill New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Copyright © 2003 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be repro- duced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. 0-07-141798-2 The material in this eBook also appears in the print version of this title: 0-07-141045-7 All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. For more information, please contact George Hoare, Special Sales, at [email protected] or (212) 904-4069. TERMS OF USE This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw- Hill”) and its licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decom- pile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent.
    [Show full text]
  • Issue #1 – 2012 October
    TTSIQ #1 page 1 OCTOBER 2012 Introducing a new free quarterly newsletter for space-interested and space-enthused people around the globe This free publication is especially dedicated to students and teachers interested in space NEWS SECTION pp. 3-22 p. 3 Earth Orbit and Mission to Planet Earth - 13 reports p. 8 Cislunar Space and the Moon - 5 reports p. 11 Mars and the Asteroids - 5 reports p. 15 Other Planets and Moons - 2 reports p. 17 Starbound - 4 reports, 1 article ---------------------------------------------------------------------------------------------------- ARTICLES, ESSAYS & MORE pp. 23-45 - 10 articles & essays (full list on last page) ---------------------------------------------------------------------------------------------------- STUDENTS & TEACHERS pp. 46-56 - 9 articles & essays (full list on last page) L: Remote sensing of Aerosol Optical Depth over India R: Curiosity finds rocks shaped by running water on Mars! L: China hopes to put lander on the Moon in 2013 R: First Square Kilometer Array telescopes online in Australia! 1 TTSIQ #1 page 2 OCTOBER 2012 TTSIQ Sponsor Organizations 1. About The National Space Society - http://www.nss.org/ The National Space Society was formed in March, 1987 by the merger of the former L5 Society and National Space institute. NSS has an extensive chapter network in the United States and a number of international chapters in Europe, Asia, and Australia. NSS hosts the annual International Space Development Conference in May each year at varying locations. NSS publishes Ad Astra magazine quarterly. NSS actively tries to influence US Space Policy. About The Moon Society - http://www.moonsociety.org The Moon Society was formed in 2000 and seeks to inspire and involve people everywhere in exploration of the Moon with the establishment of civilian settlements, using local resources through private enterprise both to support themselves and to help alleviate Earth's stubborn energy and environmental problems.
    [Show full text]
  • Facts & Features Lunar Surface Elevations Six Apollo Lunar
    Greek Mythology Quadrants Maria & Related Features Lunar Surface Elevations Facts & Features Selene is the Moon and 12 234 the goddess of the Moon, 32 Diameter: 2,160 miles which is 27.3% of Earth’s equatorial diameter of 7,926 miles 260 Lacus daughter of the titans 71 13 113 Mare Frigoris Mare Humboldtianum Volume: 2.03% of Earth’s volume; 49 Moons would fit inside Earth 51 103 Mortis Hyperion and Theia. Her 282 44 II I Sinus Iridum 167 125 321 Lacus Somniorum Near Side Mass: 1.62 x 1023 pounds; 1.23% of Earth’s mass sister Eos is the goddess 329 18 299 Sinus Roris Surface Area: 7.4% of Earth’s surface area of dawn and her brother 173 Mare Imbrium Mare Serenitatis 85 279 133 3 3 3 Helios is the Sun. Selene 291 Palus Mare Crisium Average Density: 3.34 gm/cm (water is 1.00 gm/cm ). Earth’s density is 5.52 gm/cm 55 270 112 is often pictured with a 156 Putredinis Color-coded elevation maps Gravity: 0.165 times the gravity of Earth 224 22 237 III IV cresent Moon on her head. 126 Mare Marginis of the Moon. The difference in 41 Mare Undarum Escape Velocity: 1.5 miles/sec; 5,369 miles/hour Selenology, the modern-day 229 Oceanus elevation from the lowest to 62 162 25 Procellarum Mare Smythii Distances from Earth (measured from the centers of both bodies): Average: 238,856 term used for the study 310 116 223 the highest point is 11 miles.
    [Show full text]