Minimum Time Orbit Raising of Geostationary Spacecraft by Optimizing Feedback Gain of Steering Law

Total Page:16

File Type:pdf, Size:1020Kb

Minimum Time Orbit Raising of Geostationary Spacecraft by Optimizing Feedback Gain of Steering Law Trans. JSASS Aerospace Tech. Japan Vol. 17, No. 3, pp. 363-370, 2019 DOI: 10.2322/tastj.17.363 Minimum Time Orbit Raising of Geostationary Spacecraft by Optimizing Feedback Gain of Steering Law By Kenji KITAMURA,1) Katsuhiko YAMADA,2) and Takeya SHIMA1) 1) Advanced Technology R&D Center, Mitsubishi Electric Corporation, Amagasaki, Japan 2) Graduate School of Engineering, Osaka University, Osaka, Japan (Received June 23rd, 2017) This study considers the minimum time orbit-raising problem of geostationary spacecraft with low-propulsion thrusters. This problem is equivalent to determining an appropriate thrust direction during orbit raising. This study proposes a closed- loop thruster steering law that determines the thrust direction based on the optimal feedback gains and control errors of each orbital element. The feedback gains of the steering law are assumed to be the functions of orbital elements and are optimized by a meta-heuristic method. The orbital semi-major axis, eccentricity, and inclination are considered as independent variables for expressing the gains. Numerical simulations show that whichever orbital elements is selected as an independent variable, the same performances are obtained. Therefore, regardless of the initial orbital elements, by selecting the independent variable appropriately, the proposed method can always solve the minimum time orbit-transfer problem. Key Words: Orbit Raising, Geostationary Orbit, Low-Propulsion Thruster, Optimal Control Nomenclature Subscripts 0 : initial : semi-major axis : final : eccentric anomaly : normal direction in Local Vertical Local � : eccentricity � Horizontal (LVLH) coordinates � : eccentricity vector � : radial direction in LVLH coordinates � : magnitude of thruster force : transversal direction in LVLH coordinates ������� � g : gravitational acceleration of Earth at sea � � � level 1. Introduction : orbit angular momentum : specific impulse of thruster In recent years, low-propulsion thrusters, such as ion thruster � �� ��� : inclination � and hall thrusters, have become hopeful propulsion systems for ��� : inclination vector spacecraft transferring from a low Earth orbit (LEO), a � : true longitude geostationary transfer orbit (GTO), or a supersynchronous orbit ������� 1-3) : spacecraft mass (SSTO) to a geostationary orbit (GEO). Conventionally, a � ��Ω����� geostationary spacecraft is placed in a GTO by a launcher. : mean angular motion � However, to complete the orbit transfer, the spacecraft employs : semi-latus rectum � � �� ���� � an on-board high-chemical propulsion thruster, called the : equatorial radius of Earth � � �� ����� �� apogee kick motor, at the apogee of the GTO so that the semi- : distance from center of Earth to spacecraft �� major axis, eccentricity, and inclination of the orbit correspond : orbital period 4) � with those of the GEO. Although GEO insertion by a chemical : time � �� ������ propulsion thruster is completed in a short period (generally x : vector, consisting of slow less than one week, including initial check-out operation time), � equinoctial elements and mass the low specific impulse of the thruster results in significant ��� fuel consumption (approximately half of the wet mass is : in-plane thruster steering angle� ��� �� �� �� � occupied by the fuel). To overcome this disadvantage, a spiral : ou��t-of-plane� thruster steering �angle� � orbit raising using a low-propulsion electric thruster, which has : gravitational constant of Earth � a specific impulse almost ten times larger than that of a : true anomaly � chemical propulsion thruster, is attracting attention as an : right ascension of ascending node alternative orbit transfer method.5) In the case of spiral orbit � : argument of perigee raising, several months are required to complete the orbit Ω transfer, yet it can save a considerable amount of fuel. � In the past, many studies aiming to optimize orbit transfers Copyright© 2019 by the Japan Society for Aeronautical and Space Sciences and ISTS. All rights reserved. J-STAGE Advance published date: January 31st, 2019 363 Trans. JSASS Aerospace Tech. Japan Vol. 17, No. 3 (2019) with low propulsion have been conducted. The methods can be swarm optimization (PSO). As independent variables for categorized into three types: analytical methods, numerical expressing the gains, the orbital semi-major axis, eccentricity, methods, and a combination of the two. or inclination are chosen. Numerical simulations show that In the analytical approach, the optimal control theory and the whichever orbital elements are selected as the independent averaging method are often used. Edelbaum6) and Kechichain7) variable, almost identical performances are obtained. solved the minimum-time transfer problem between inclined circular orbits. Bonnard et al.8) derived the explicit form of the 2. Dynamics of Osculating and Mean Orbital Elements Hamiltonian for the minimum energy transfer problem between coplanar orbits. Although the analytical solutions are very In this study, the equinoctial orbital elements defined by Eqs. powerful and useful for trajectory design, the application of the (1) – (5) are utilized for describing the orbital motion:21) analytical approach is limited to specific trajectories, and it is (1) difficult to obtain the minimum-time or minimum-propellant � solutions for the problem with general boundary conditions. � � � cos�Ω � ��, (2) In the numerical approach, direct or indirect optimization �� � � sin�Ω � �� , (3) methods are widely used. Sackett et al.9) utilized the averaging � (4) method and solved the problem using classical indirect � � ��n���2� cos Ω , optimization. Kluever et al.10) solved the optimal control �� � ��n���2� sin Ω , (5) problem using a direct optimization approach, where the where ( ( and , are the eccentricity vector, � � Ω � � � �, costate variables or the weighting variables were the inclination� vector,� �and� true longitude, respectively. optimization variables of the nonlinear programming problem. 2.1. Dynamics� ,� �, of� ,�osculating�, � equinoctial elements Graham et al.13) proposed a minimum-time trajectory The equinoctial elements are singularity-free. The equations optimization method as a multiple-phase optimal control of motion are written as follows: problem and solved it by utilizing a pseudo-spectral method. In general, numerical optimization explores the search space by (6) using the gradient information of the objective function and �� 2 � � � �� sin � �� � ���, there is a possibility of converging to the local optima. �� �√��� � Moreover, the computational cost and difficulty increases as ��� � (7) � � sin � �� � ������ cos � � ����� the number of revolutions becomes larger. �� � �� The combination of analytical and numerical methods is � ����, � another effective approach that can obtain a sub-optimal � (8) 14- �� � solution with an affordable computational cost. Petropoulos � �� cos � �� � ������ sin � � ����� 16) proposed a Lyapunov feedback control method, called Q- �� � �� � � law, where the instant thrust direction is determined so that the � � � , (9) � � time derivative of the Lyapunov function (Q function) was � �� �� minimized. In their work, the multi-objective evolutionary � cos � ��, �� 2� (10) algorithm was utilized to optimize the control parameters and � � find the Pareto-front of the transfer time versus propellant mass. �� �� � 17) � sin � � , Varga et al. modified the Q-law with equinoctial orbital �� 2� � (11) elements to avoid the singularities. As another combining �� � �� � 18) where � ��� � �are� defined� , as follows: method, Ruggiero et al. proposed the closed loop steering law, �� � � (12) which determines the thrust direction by blending the optimal �, �, �, �n� � directions for maximizing the rate of change of each orbital (13) ������, element with the self-adaptive weights. In their work, the (14) ������ cos � � �� sin � , weights were obtained based on the difference between current (15) ���� sin � � �� cos � , orbital elements and targeted ones. In Eqs. (6) – �(11), � � represent the perturbing In this study, the third approach (combination of analytical � ����� ��� . acceleration of spacecraft� � expressed� in LVLH coordinate and numerical method) is utilized to solve the minimum time system, where the �-axis,� points, �n� � to the spacecraft from the orbit-transfer problem with low-propulsion thrusters. In center of the Earth, the -axis is perpendicular to the orbital general, the greatest demerit of the low-thrust orbit transfer is plane, and the -axis� is chosen to complete the right-hand its extra-long transfer time. To suppress this disadvantage, the system. The spacecraft mass� flow rate, owing to the thruster current study focuses on the minimum time problem. This operation, is expressed� as follows: problem is equivalent to determining the appropriate thrust direction during orbit raising. To obtain the optimal direction, (16) the closed-loop thruster steering law given in Ref. 18) is �� �� 2.2. Dynamics of mean�� equinoctial. elements improved, and the feedback gains for the steering law are �� Generally, orbit ��transfer ��by a low-propulsion thruster introduced. The feedback gains are expressed as functions of a requires several months. It requires a significant amount of time monotonically increasing or decreasing orbital element and are to numerically integrate the osculating equinoctial elements. optimized using a meta-heuristic method, such as the particle 364 Trans. JSASS Aerospace Tech. Japan Vol. 17, No. 3 (2019) This can lead
Recommended publications
  • United States Patent (19) 11 Patent Number: 5,716,029 Spitzer Et Al
    I US005716029A United States Patent (19) 11 Patent Number: 5,716,029 Spitzer et al. 45 Date of Patent: Feb. 10, 1998 54 CONSTANTSUN ANGLE TRANSFER ORBIT Meserole, J., "Launch Costs to GEO Using Solar Powered SEQUENCE AND METHOD USING Orbit Transfer Vehicles". American Institute of Aeronautics ELECTRIC PROPULSION and Astronautic (AIAA) Paper 93-2219. AIAAJSAE (75) Inventors: Arnon Spitzer, Los Angeles, Calif.; ASME/ASEE 29th Joint Propulsion Conference and Solomon A. De Picciotto, Aurora, Colo. Exhibit. Jun. 28-30, 1993. 73 Assignee: Hughes Electronics, Los Angeles, Free, B. "High Altitude Orbit Raising With On-Board Calif. Electric Power", International Electric Propulsion Confer ence Paper 93-205, American Institute Of Aeronautics and (21) Appl. No.: 558,572 Astronautics AIAA/AIDAVDGLA/JSASS 23rd International 22 Filed: Oct. 31, 1995 Electric Propulsion Conference. Sep. 13–16, 1993. Related U.S. Application Data Primary Examiner-Galen L. Barefoot 63 Continuation-in-part of Ser. No. 217,791, Mar. 25, 1994, Attorney, Agent, or Firm-Elizabeth E. Leitereg; Terje Pat No. 5,595,360. Gudmestad; Wanda K. Denson-Low (51) Int. Cl. ... ... B64G 1/10 52 U.S.C. ................................................... 244/158 R 57 ABSTRACT 58) Field of Search ................................ 244/158 R, 164, 244/168, 169, 172 An apparatus and method for translating a spacecraft (102. 108) from an injection orbit (114) about a central body (100) 56) References Cited to synchronous orbit (122) in a time efficient manner. The U.S. PATENT DOCUMENTS spacecraft (102, 108) includes propulsion thrusters (50) 4,943,014 7/1990 Harwood et al. ....................... 244/169 which are fired in predetermined timing sequences con trolled by a controller (64) in relation to the apogee (118) FOREIGN PATENT DOCUMENTS and perigee (120) of the injection orbit (114) and successive 0 047 211 3/1982 European Pat.
    [Show full text]
  • The Aerospace Update
    The Aerospace Update First Light from a Gravitational-Wave Event Oct. 17, 2017 Video Credit: NASA's Goddard Space Flight Center/CI Lab First Light from a Gravitational-Wave Event For the first time ever, scientists have spotted both gravitational waves and light coming from the same cosmic event — in this case, the cataclysmic merger of two super dense stellar corpses known as neutron stars. The landmark discovery initiates the field of "multi-messenger astrophysics," which promises to reveal exciting new insights about the cosmos, researchers said. The find also provides the first solid evidence that neutron-star smashups are the source of much of the universe's gold, platinum and other heavy elements. Source: Mike Wall, Space.com Image Credit: Robin Dienel, Carnegie Institution for Science ATLAS 5 Launches Classified NROL 52 Satellite A covert communications relay station to route spy satellite data directly to users was successfully launched by a million-pound Atlas 5 rocket overnight. The United Launch Alliance rocket left Cape Canaveral under the cover of darkness on Sunday, Oct. 15th, dodging rain showers while speeding through decks of clouds, for a trek to geosynchronous transfer orbit to deploy the NROL-52 spacecraft. The fifth launch attempt proved to be the charm for NROL-52 after four thwarted tries over the past week, mainly due to bad weather. Video courtesy of United Launch Alliance Source: Justin Ray @ SpaceFlightNow.com SpaceX Launches Third Pre-Flown Rocket with EchoStar-SES Satellite, Lands Booster Maintaining a brisk flight rate three days after its last launch, SpaceX sent a Falcon 9 booster powered by a reused first stage into orbit on Wednesday evening, Oct 11th from Florida with an Airbus-built communications satellite for SES and EchoStar.
    [Show full text]
  • III III || US005595360A United States Patent (19) 11 Patent Number: 5,595,360 Spitzer 45) Date of Patent: Jan
    III III || US005595360A United States Patent (19) 11 Patent Number: 5,595,360 Spitzer 45) Date of Patent: Jan. 21, 1997 54) OPTIMAL TRANSFER ORBIT TRAJECTORY Meserole, J., "Launch Costs To GEO Using Solar Powered USENGELECTRIC PROPULSION Orbit Transfer Vehicles', American Institute of Aeronautics and Astronautic (AIAA) Paper 93-2219, AIAA/SAE/ 75) Inventor: Arnon Spitzer, Los Angeles, Calif. ASME/ASEE 29th Joint Propulsion Conference and Exhibit, Jun. 28-30, 1993. (73) Assignee: Hughes Aircraft Company, Los Free, B. "High Altitude Orbit Raising With On-Board Angeles, Calif. Electric Power”, International Electric Propulsion Confer ence Paper 93-205, American Institute Of Aeronautics and (21) Appl. No.: 217,791 Astronautics AIAA/AIDA/DGLA/JSASS 23rd International (22 Filed: Mar 25, 1994 Electric Propulsion Conference, Sep. 13-16, 1993. Parkhash, "Electric Propulsion for Space Missions' Electri (51) int. Cl. ................ B64G 1/10 cal India vol. 19, No. 7, pp. 5-18., Apr. 1979. (52 U.S. C. ........................................................ 244/158 R Davison, "orbit Expansion by Microthrust” Royal Aircraft 58 Field of Search ................................ 244/158 R, 164, Est. Tech Report 67249 Sep. 1967. 244/172, 168, 169 Primary Examiner-Galen L. Barefoot 56 References Cited Attorney, Agent, or Firm-Elizabeth E. Leitereg; Terje Gud U.S. PATENT DOCUMENTS mestad; Wanda K. Denson-Low 4,943,014 7/1990 Harwood et al. ....................... 244/169 57) ABSTRACT FOREIGN PATENT DOCUMENTS An apparatus and method for translating a spacecraft (10) from an injection orbit (16) about a central body (10) to 0047211 3/1982 European Pat. Off. ............... 244/169 geosynchronous orbit (18) in a time efficient manner.
    [Show full text]
  • Ground Observations of Falcon-9 Second Stage
    GROUND OBSERVATIONS OF FALCON-9 SECOND STAGE ORBITAL VENTING/THRUSTING AS AID FOR INTERPRETING UNUSUAL VISUAL FEATURES OF MYSTERIOUS ‘ZUMA’ LAUNCH FINAL DRAFT March 20, 2018 James Oberg [email protected] PROBLEM AND APPROACH • 1 Classified payload Zuma launched, results not disclosed • 2 Accidental imaging of second stage venting by MANY observers • 3 SpaceX disclosure of ‘normal’ venting procedure is scanty • 4 However, some past launches had similar venting imagery • 5 Detailed study of images and descriptions can possibly help characterize spacecraft activities including anomalies • 6. Random nature of rare enabling conditions will always make such opportunities for insights rare and unpredictable • 7. All the more motivation to jump on such literally heaven-sent serendipitous opportunities whenever they are discovered • 6. Assessment of witness misperceptions [based on a known visual stimulus] helps understand reliability of other sky observations • 7 Two more stage2 burn/dump observations occurred the following month and those events are incorporated into this overview report • 8. All five ‘analogous plumes’ have detailed focused reports to be examined 2 Launch sequence of events & rumors • LAUNCH • Mission event discussion: https://forum.nasaspaceflight.com/index.php?topic=44175.0 • Mission results analysis https://forum.nasaspaceflight.com/index.php?topic=43976.0 • Launch video https://youtu.be/iS644RQYKTw • S2 debris warning zone https://forum.nasaspaceflight.com/assets/43976.0/1468540.jpg 3 The double-spiral “Khartoum Clue”
    [Show full text]
  • Design of Spacecraft Missions to Remove Multiple Orbital Debris Objects
    AAS 12-017 Design of Spacecraft Missions to Remove Multiple Orbital Debris Objects Brent W. Barbee*, Salvatore Alfano†, Elfego Piñon‡, Kenn Gold‡, and David Gaylor‡ *NASA-GSFC, †CSSI, ‡Emergent Space Technologies, Inc. 35th ANNUAL AAS GUIDANCE AND CONTROL CONFERENCE February 3 - February 8, 2012 Sponsored by Breckenridge, Colorado Rocky Mountain Section AAS Publications Office, P.O. Box 28130 - San Diego, California 92198 AAS 12-017 DESIGN OF SPACECRAFT MISSIONS TO REMOVE MULTIPLE ORBITAL DEBRIS OBJECTS Brent W. Barbee,∗ Salvatore Alfano,y Elfego Pinon˜ ,z Kenn Gold,x and David Gaylor{ The amount of hazardous debris in Earth orbit has been increasing, posing an ever- greater danger to space assets and human missions. In January of 2007, a Chinese ASAT test produced approximately 2600 pieces of orbital debris. In February of 2009, Iridium 33 collided with an inactive Russian satellite, yielding approx- imately 1300 pieces of debris. These recent disastrous events and the sheer size of the Earth orbiting population make clear the necessity of removing orbital de- bris. In fact, experts from both NASA and ESA have stated that 10 to 20 pieces of orbital debris need to be removed per year to stabilize the orbital debris environ- ment. However, no spacecraft trajectories have yet been designed for removing multiple debris objects and the size of the debris population makes the design of such trajectories a daunting task. Designing an efficient spacecraft trajectory to rendezvous with each of a large number of orbital debris pieces is akin to the fa- mous Traveling Salesman problem, an NP-complete combinatorial optimization problem in which a number of cities are to be visited in turn.
    [Show full text]
  • Open Research Online Oro.Open.Ac.Uk
    Open Research Online The Open University’s repository of research publications and other research outputs Mars Phobos and Deimos Survey (M-PADS) – A Martian Moons Orbiter and Phobos Lander Journal Item How to cite: Ball, Andrew J.; Price, Michael E.; Walker, Roger J.; Dando, Glyn C.; Wells, Nigel S. and Zarnecki, John C. (2009). Mars Phobos and Deimos Survey (M-PADS) – A Martian Moons Orbiter and Phobos Lander. Advances in Space Research, 43(1) pp. 120–127. For guidance on citations see FAQs. c 2008 COSPAR. Published by Elsevier Ltd. Version: [not recorded] Link(s) to article on publisher’s website: http://dx.doi.org/doi:10.1016/j.asr.2008.04.007 Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies page. oro.open.ac.uk Mars Phobos and Deimos Survey (M-PADS)—A Martian Moons Orbiter and Phobos Lander Andrew J. Balla, Michael E. Priceb, Roger J. Walkerb,†, Glyn C. Dandob, Nigel S. Wellsb, and John C. Zarneckia aPlanetary and Space Sciences Research Institute, Centre for Earth, Planetary, Space & Astronomical Research, The Open University, Walton Hall, Milton Keynes, Buckinghamshire MK7 6AA, UK. Email: [email protected] bSpace Department, QinetiQ, Cody Technology Park, Farnborough, Hampshire GU14 0LX, UK †Now at ESA ESTEC, Noordwijk, Netherlands Abstract We describe a Mars ‘Micro Mission’ for detailed study of the martian satellites Phobos and Deimos. The mission involves two ~330 kg spacecraft equipped with solar electric propulsion to reach Mars orbit.
    [Show full text]
  • Minimum Time Orbit Raising of Geostationary Spacecraft by Optimizing Feedback Gain of Steering-Law Kenji KITAMURA1*, Katsuhiko
    Minimum Time Orbit Raising of Geostationary Spacecraft by Optimizing Feedback Gain of Steering-law Kenji KITAMURA1*, Katsuhiko YAMADA2 and Takeya SHIMA1 1) Advanced Technology R&D Center, Mitsubishi Electric Corporation, Amagasaki, Japan 2) Graduate School of Engineering, Osaka University, Osaka, Japan [email protected] Keyword : Orbit raising, geostationary orbit, low propulsion thruster, optimal control In recent years, low propulsion thruster such as ion-thruster or hall thruster is becoming a hopeful propulsion system for a spacecraft transferring from a low earth orbit (LEO), a geostationary transfer orbit (GTO), or a supersynchronous orbit (SSTO) to a geostationary orbit (GEO). Conventionally, geostationary spacecraft is just putted in the GTO by a launcher and in order to complete the orbit transfer, the spacecraft employs an on-board high chemical propulsion thruster called apogee kick motor at the apogee of GTO so that the orbit semi-major axis, eccentricity, and inclination correspond with those of GEO. Although GEO insertion by the chemical propulsion thruster completes in a short period of time (less than one week), low specific impulse of the thruster results in much fuel consumption (almost half of the wet mass is occupied by the fuel). In order to overcome this disadvantage, a spiral orbit raising by the low propulsion electric thruster, which has almost ten times larger specific impulse than the chemical propulsion, is getting a lot of attention as an alternative transfer orbit. In case of the spiral orbit raising, it takes several months to complete the orbit transfer but it can save a lot of fuel. In this study, the minimum time orbit transfer problem by the low propulsion thrusters is considered.
    [Show full text]
  • Space Weather and Launch Vehicles Who Am I?
    Space Weather and Launch Vehicles Who am I? ❑ Ben Griffiths • 10 Years with United Launch Alliance • Currently at Ball Aerospace • Radiation Effects / Systems Engineer at both companies ❑ Standard Disclaimer • I am speaking from personal knowledge of this subject and my views do not represent any company that I currently or have previously worked for. 2 Launch Vehicle Picture ❑ “Expanded” View 3 The Three Main Issues With Space Weather ❑ Three main issues arise (or will soon) with Launch Vehicle electronics because of the space environment • Single Event Effects (SEE) • Disruption or destruction caused by the passage of a single heavy ion through sensitive regions of electronic piece parts • Total Ionizing Dose (TID) • Caused by energy deposited by ionization process in the target material • Displacement Damage Dose (DDD) • Displacement of atoms from the lattice of the target material ❑ What causes the above issues? Solar Weather • Van Allen Belts • Galactic Cosmic Rays • Atmospheric Neutrons • Electron Belts • Solar Flares 4 Orbital Types Low Earth Orbits (LEO) Weather LEO Satellites (~800 km) MetOp NOAA DMSP S-NPP Aqua/Terra LandSat Orbital Types Medium Earth Orbits (MEO) MEO Satellites (1000-30,000 km) GPS Orbital Types GeosynChronous Earth Orbits (GEO) GEO Weather (~36,000 km) GOES (AmeriCas) MSG (Europe) Himawari (Japan) Ground trace is stationary: Satellite orbits at same rate as earth turns (24-hr orbit) Orbital Types And where is the Moon? LEO (<1000 km) GEO Moon (~36,000 km) (384,000 km) MEO Supersynchronous orbit (1,000-10,000
    [Show full text]
  • UK Registry of Outer Space Objects
    UK Registry of Outer Space Objects To comply with international obligations and section 7 of the Outer Space Act 1986 May 2021 Annex 1 3 Introduction 62 O3b M008 (O3b FM8) 4 Glossary of terms 63 O3b M009 (O3b FM9) 5 SKYNET-1A 64 O3b M010 (O3b FM10) 6 PROSPERO (formerly X3) 65 O3b M011 (O3b FM11) 7 BLACK ARROW (Rocket Booster) 66 O3b M012 (O3b FM12) 8 MIRANDA (formerly UK X4) 67 INMARSAT 5-F2 9 ARIEL V (formerly UK5) 68 Carbonite-1 (CBNT-1) 10 SKYNET-2B 69 DeorbitSail 11 ARIEL VI (formerly UK6) 70 Inmarsat-5 F3 12 UOSAT-1 (OSCAR 9) 71 DMC3-FM1 13 UOSAT 2 (OSCAR 11) 72 DMC3-FM2 14 AMPTE (UKS 1) 73 DMC3-FM3 15 SKYNET-4B 74 SES-9 16 SKYNET-4A 75 Inmarsat-5 F4 17 UOSAT 3 – OSCAR 14 76 ViaSat-2 18 UOSAT 4 – OSCAR 15 77 EchoStar 21 (EchoStar XXI) 19 SKYNET-4C 78 Red Diamond 20 UOSAT-5 79 Green Diamond 21 STRV-1A 80 Blue Diamond 22 STRV-1B 81 Carbonite-2 23 ORION-1 82 SES-15 24 SKYNET-4D 83 O3b M013 (O3b FM13) 25 SKYNET-4E 84 O3b M014 (O3b FM14) 26 UOSAT –12 85 O3b M015 (O3b FM15) 27 SNAP-1 86 O3b M016 (O3b FM16) 28 Europe*Star 1 87 Hylas-4 29 STRV-1C 88 NovaSar-1 30 STRV-1D 89 SSTL-300 S1-004 31 SKYNET-4F 90 SL0006 (OneWeb) 32 BNSCSat1 (UK-DMC) 91 SL0007 (OneWeb) 33 INMARSAT 4-F1 92 SL0008 (OneWeb) 34 TOPSAT 93 SL0010 (OneWeb) 35 INMARSAT 4-F2 94 SL0011 (OneWeb) 36 SKYNET 5A 95 SL0012 (OneWeb) 37 SKYNET 5B 96 IOD-1 GEMS 38 SKYNET 5C 97 Remove Debris 39 SES AMC 21 98 Remove Debris Net 40 INMARSAT 4F3 99 DoT-1 41 SES NSS9 100 Vesta-1 42 SSTL UK-DMC-2 101 O3b M017 (O3b FM17) 43 SES NSS12 102 O3b M018 (O3b FM18) 44 SES Astra-3B 103 O3b M019 (O3b
    [Show full text]
  • Orbiting Debris: a Space Environmental Problem
    Orbiting Debris: A Space Environmental Problem October 1990 OTA-BP-ISC-72 NTIS order #PB91-114272 Recommended Citation: U.S. Congress, Office of Technology Assessment, Orbiting Debris: A Space Environmental Problem-Background Paper, OTA-BP-ISC-72 (Washington, DC: U.S. Government Printing Office, September 1990). For sale by the Superintendent of Documents U.S. Government Printing Office, Washington, DC 20402-9325 (order form can be found in the back of this report) Foreword Man-made debris, now circulating in a multitude of orbits about Earth as the result of the exploration and use of the space environment, poses a growing hazard to future space operations. The 6,000 or so debris objects large enough to be cataloged by the U.S. Space Surveillance Network are only a small percentage of the total debris capable of damaging spacecraft. Unless nations reduce the amount of orbital debris they produce, future space activities could suffer loss of capability, destruction of spacecraft, and perhaps even loss of life as a result of collisions between spacecraft and debris. Better understanding of the extent and character of “space junk” will be crucial for planning future near-Earth missions, especially those projects involving humans in space. This OTA background paper summarizes the current state of knowlege about the causes and distribution of orbiting debris, and examines R&D needs for reducing the problem. As this background paper notes, addressing the problem will require the involvement of all nations active in space. The United States has taken the lead to increase international understanding of the issue but much work lies ahead.
    [Show full text]
  • MOBIUS: an Evolutionary Strategy for Lunar Tourism
    MOBIUS: An Evolutionary Strategy for Lunar Tourism M. Lali1 and M. Thangavelu2 University of Southern California, 854B Downey Way, RRB 225, Los Angeles, California 90089 The MOBIUS concept architecture presents an evolutionary methodology for lunar tourist missions. In the MOBIUS scenario, a quartet of spacecraft is suggested in a specific supersynchronous Earth orbit as a nominal trajectory for a cislunar, cycling vehicle system. Earth and lunar shuttlecraft service the cycler at Earth perigee and lunar proximal apogee of the selected supersynchronous orbit. ISS is suggested as the departure platform to lunar orbit, and eventually lunar lander shuttles will be used to service paying passengers to the lunar surface on a routine basis. A gradual and steady increment in complexity of mission vehicles and operations is proposed, allowing for evolutionary growth and a self-sustaining economic model. We believe that this strategy is optimal and has an enormous commercial potential for future space and lunar tourism. In particular, attention is paid to the viability of employing the International Space Station commercially beyond the currently proposed retirement date, extending the useful life of the $100B facility. The MOBIUS concept is modeled using state-of-the-art tools and proposes a viable profile that attempts to balance available technologies with entrepreneurial needs and capital to make commercial, self- sustaining lunar missions possible, maximizing existing assets and technologies as well as currently operating infrastructures, all in the earliest timeframe. MOBIUS architecture is promoted as an example of how government and private sector can partner to create a vibrant space activity in the 21st century that caters to the cultural needs of humanity as well as inspiring the new generation of explorers.
    [Show full text]
  • Secretariat Distr.: General 8 December 2010
    United Nations ST/SG/SER.E/594 Secretariat Distr.: General 8 December 2010 Original: English Committee on the Peaceful Uses of Outer Space Information furnished in conformity with the Convention on Registration of Objects Launched into Outer Space Note verbale dated 17 May 2010 from the Permanent Mission of the United Kingdom of Great Britain and Northern Ireland to the United Nations (Vienna) addressed to the Secretary-General The Permanent Mission of the United Kingdom of Great Britain and Northern Ireland to the United Nations (Vienna) presents its compliments to the Secretary-General of the United Nations and, in accordance with article IV of the Convention on Registration of Objects Launched into Outer Space (General Assembly resolution 3235 (XXIX), annex), has the honour to transmit registration data on space object NSS-12 (international designation 2009-058A) (annex I) and amendments to information on previously registered space objects (annex II). V.10-58314 (E) 130111 140111 *1058314* ST/SG/SER.E/594 2 Annex I Registration data on a space object launched by the United Kingdom of Great Britain and Northern Ireland* Basic orbital parameters Name of Orbital Registration space Date of position Nodal period Inclination Apogee Perigee General function of space number object launch Location of launch (degrees) (min) (degrees) (km) (km) object Additional information 2009-058A NSS- 29 Guiana Space 57 East 1 435.8- 0.05 35 820 35 752 Telecommunications United Kingdom authorized 12 October Centre, Kourou, 1 436.4 launch only. The Netherlands is 2009 French Guiana responsible for in-orbit operation. ______________ ∗ The registration data are reproduced in the form in which they were received.
    [Show full text]