GOES-R Series Data Book

Total Page:16

File Type:pdf, Size:1020Kb

GOES-R Series Data Book GOES-R Series Data Book Prepared for National Aeronautics and Space Administration GOES-R Series Program Office Goddard Space Flight Center Greenbelt, Maryland 20771 Pursuant to Contract NNG09HR00C Revision A May 2019 CDRL PM-14 This page left blank ii CONTENTS Foreword___________________________________________________________________ v Preface ___________________________________________________________________ vii Acknowledgements ________________________________________________________ ix 1. Mission Overview _____________________________________________________ 1-1 2. GOES Spacecraft Configuration ________________________________________ 2-1 3. Advanced Baseline Imager ___________________________________________ 3-1 4. Geostationary Lightning Mapper _______________________________________ 4-1 5. Space Environment In-Situ Suite _______________________________________ 5-1 6. Magnetometer _______________________________________________________ 6-1 7. The Extreme Ultraviolet and X-ray Irradiance Sensors Instrument _________ 7-1 8. Solar Ultraviolet Imager _______________________________________________ 8-1 9. GOES-R Communications Subsystem ___________________________________ 9-1 10. Command and Data Handling Subsystem ___________________________ 10-1 11. Electrical Power Subsystem _________________________________________ 11-1 12. Guidance Navigation & Control _____________________________________ 12-1 13. Propulsion Subsystem ______________________________________________ 13-1 14. Thermal Control Subsystem _________________________________________ 14-1 15. Mechanisms _______________________________________________________ 15-1 16. Ground System Architecture ________________________________________ 16-1 17. Spacecraft Mission Phases __________________________________________ 17-1 18. On-Orbit Mission Operations ________________________________________ 18-1 19. Technical Performance Summary ___________________________________ 19-1 20. Acronyms _________________________________________________________ 20-1 iii This page left blank iv Foreword The Geostationary Operational Environmental Satellite – R Series (GOES-R) is the next generation of U.S geostationary weather satellites and is a key element in National Oceanic and Atmospheric Administration (NOAA) operations. GOES weather imagery and advanced weather products have been a continuous and reliable stream of environmental information used to support weather forecasting, severe storm tracking, and meteorological research. Evolutionary improvements in the geostationary satellite system since 1974 (i.e., since the first Synchronous Meteorological Satellite, SMS-1) have been responsible for making the GOES system a mainstay of weather forecasts and environmental monitoring. The GOES-R series (GOES R, S, T, and U) represents the first major technological advancement in geostationary observations since 1994 and will extend the availability of the GOES system through 2036. The GOES-R series provides critical atmospheric, hydrologic, oceanic, climatic, solar and space data, significantly improving the detection and observation of environmental phenomena that directly affect public safety, protection of property, and our nation’s economic health and prosperity. Designed to operate in geosynchronous orbit, 35,786 km (22,236 statute miles) above the equator, thereby remaining stationary relative to the Earth’s surface, the advanced GOES-R series spacecraft continuously views the contiguous United States, neighboring environs of the Pacific and Atlantic Oceans, and Central and South America. The GOES-R series spacecraft bus is three-axis stabilized and designed for 10 years of on-orbit operation preceded by up to five years of on-orbit storage. Two GOES satellites remain operational at all times while an on-orbit spare is maintained to permit rapid recovery from a failure of either of the operational satellites. The Advanced Baseline Imager (ABI) is the primary instrument on the GOES-R series spacecraft for imaging Earth’s weather, oceans and environment. ABI views the Earth with 16 different spectral bands (compared to five on the previous GOES series), including two visible channels, four near-infrared channels, and ten infrared channels. ABI’s data enables meteorologists to pinpoint and track developing storms in much greater detail. The Geostationary Lightning Mapper (GLM) is the first operational lightning mapper flown in geostationary orbit. GLM detects and maps total lightning (in-cloud and cloud-to-ground) activity continuously over the Americas and adjacent ocean regions. Used in combination with radar, data from the ABI instrument, and surface observations, GLM data has great potential to increase lead time for severe thunderstorm and tornado warnings. GOES-R series spacecraft also carry a suite of instruments to significantly improve detection of approaching space weather hazards. The satellites provide advanced imaging of the sun and detection of solar eruptions for earlier warning of disruption to power utilities and communication and navigation systems. The satellites also more accurately monitor energetic particles and the magnetic field variations that are associated with space weather for better assessment of radiation hazards and mitigation of damage to orbiting satellites, communications, and power grids. v Ground support is critical to the GOES-R series mission. To support the large increase in spatial, spectral, and temporal resolution of the ABI and other instruments, the raw data rate increased to 75Mbps, over 30 times the previous rate. NOAA has developed a state-of-the-art ground system to receive data from the GOES-R series spacecraft and generate real-time data products. The ground system operates from two primary locations: the National Satellite Operations Facility (NSOF) in Suitland, Maryland, and the Wallops Command and Data Acquisition Center (WCDAS) at Wallops, Virginia. A third operations facility in Fairmont, West Virginia, serves as the Consolidated Backup (CBU) in case of a systems or communications failure at either or both NSOF and WCDAS. Those desiring further information about the GOES system should contact the NOAA National Environmental Satellite, Data and Information Service (NESDIS) and/or search the following internet addresses: https://www.goes-r.gov/ http://www.noaa.gov/ https://www.nesdis.noaa.gov/ https://www.weather.gov/ https://www.ncei.noaa.gov/ https://www.swpc.noaa.gov/ vi Preface To further enhance the utility of the GOES system, this reference presents a summary and technical overview of the GOES-R series system, its satellites, subsystems, sensor suite, and associated ground communication and data handling subsystems. The reference is intended to serve as a convenient and comprehensive technical reference for people working on or associated with the GOES-R series mission as well as general information suitable for public distribution. Sufficient technical information and performance data are presented to enable the reader to understand the importance of the GOES-R series mission, the system’s capabilities, and how it meets the needs of the users. Certain performance data presented herein, e.g., instrument performance, were predicted using pre-launch analyses and ground testing. As the satellites undergo on-orbit operations and actual data are obtained, such technical information in this reference may not necessarily reflect current capabilities. Furthermore, this reference is not meant to be a technical specification with absolute worst case performance numbers but rather a general document which informs the reader of nominal and typical GOES system performance and operational capabilities. The GOES-R series program is a collaborative development and acquisition effort between NOAA and the National Aeronautics and Space Administration (NASA). Program activities occur at the co-located program and project offices at Goddard Space Flight Center in Greenbelt, Maryland. The GOES-R series program collaborates with industry partners across the United States to fulfill the GOES-R series mission. Lockheed Martin is the principal space system contractor, with associate contractors providing individual instruments to Lockheed for integration, and Harris is the prime ground system contractor. Each system has numerous supporting subcontractors. vii This page left blank viii Acknowledgements This Data Book had major contributions from the following authors at Lockheed Martin (LM): Alexis Benz (lead), Jim Chapel, Anthony Dimercurio Jr., Bonnie Birckenstaedt, Clemens Tillier, William Nilsson III, Jesus Colon, Robert Dence, David Hansen Jr, and Pamela Campbell. Our special thanks for their efforts. We would also like to thank the many instrument authors and NASA/NOAA personnel that provided inputs and reviews of the data book content, including Dennis Chesters, Ruth Cholvibul, Jonathan Chow, Gustave Comeyne, Lauren Gaches, Craig Keeler, Michael Kimberling, William Lebair, Marc Rafal, Chris Rollins, Michelle Smith, and the GOES-R Algorithm Working Group (AWG) Imagery Team. We would also like to thank Michael Ames for the front and back cover artwork. Lastly, we would like to acknowledge Ashton Armstrong for her leadership in integrating the first draft of this book, and Diana Schuler for taking over as book manager, providing the final review and edits, and seeing the data book to completion and publishing. ix This page left blank x 1. Mission Overview Mission Goals The goals for the Geostationary Operational Environmental Satellite (GOES)
Recommended publications
  • A Revised View of the Canis Major Stellar Overdensity with Decam And
    MNRAS 501, 1690–1700 (2021) doi:10.1093/mnras/staa2655 Advance Access publication 2020 October 14 A revised view of the Canis Major stellar overdensity with DECam and Gaia: new evidence of a stellar warp of blue stars Downloaded from https://academic.oup.com/mnras/article/501/2/1690/5923573 by Consejo Superior de Investigaciones Cientificas (CSIC) user on 15 March 2021 Julio A. Carballo-Bello ,1‹ David Mart´ınez-Delgado,2 Jesus´ M. Corral-Santana ,3 Emilio J. Alfaro,2 Camila Navarrete,3,4 A. Katherina Vivas 5 and Marcio´ Catelan 4,6 1Instituto de Alta Investigacion,´ Universidad de Tarapaca,´ Casilla 7D, Arica, Chile 2Instituto de Astrof´ısica de Andaluc´ıa, CSIC, E-18080 Granada, Spain 3European Southern Observatory, Alonso de Cordova´ 3107, Casilla 19001, Santiago, Chile 4Millennium Institute of Astrophysics, Santiago, Chile 5Cerro Tololo Inter-American Observatory, NSF’s National Optical-Infrared Astronomy Research Laboratory, Casilla 603, La Serena, Chile 6Instituto de Astrof´ısica, Facultad de F´ısica, Pontificia Universidad Catolica´ de Chile, Av. Vicuna˜ Mackenna 4860, 782-0436 Macul, Santiago, Chile Accepted 2020 August 27. Received 2020 July 16; in original form 2020 February 24 ABSTRACT We present the Dark Energy Camera (DECam) imaging combined with Gaia Data Release 2 (DR2) data to study the Canis Major overdensity. The presence of the so-called Blue Plume stars in a low-pollution area of the colour–magnitude diagram allows us to derive the distance and proper motions of this stellar feature along the line of sight of its hypothetical core. The stellar overdensity extends on a large area of the sky at low Galactic latitudes, below the plane, and in the range 230◦ <<255◦.
    [Show full text]
  • Request for Contract Update
    DocuSign Envelope ID: 0E48A6C9-4184-4355-B75C-D9F791DFB905 Request for Contract Update Pursuant to the terms of contract number________________R142201 for _________________________ Office Furniture and Installation Contractor must notify and receive approval from Region 4 ESC when there is an update in the contract. No request will be officially approved without the prior authorization of Region 4 ESC. Region 4 ESC reserves the right to accept or reject any request. Allsteel Inc. hereby provides notice of the following update on (Contractor) this date April 17, 2019 . Instructions: Contractor must check all that may apply and shall provide supporting documentation. Requests received without supporting documentation will be returned. This form is not intended for use if there is a material change in operations, such as assignment, bankruptcy, change of ownership, merger, etc. Material changes must be submitted on a “Notice of Material Change to Vendor Contract” form. Authorized Distributors/Dealers Price Update Addition Supporting Documentation Deletion Supporting Documentation Discontinued Products/Services X Products/Services Supporting Documentation X New Addition Update Only X Supporting Documentation Other States/Territories Supporting Documentation Supporting Documentation Notes: Contractor may include other notes regarding the contract update here: (attach another page if necessary). Attached is Allsteel's request to add the following new product lines: Park, Recharge, and Townhall Collection along with the respective price
    [Show full text]
  • The Geometry of Nim Arxiv:1109.6712V1 [Math.CO] 30
    The Geometry of Nim Kevin Gibbons Abstract We relate the Sierpinski triangle and the game of Nim. We begin by defining both a new high-dimensional analog of the Sierpinski triangle and a natural geometric interpretation of the losing positions in Nim, and then, in a new result, show that these are equivalent in each finite dimension. 0 Introduction The Sierpinski triangle (fig. 1) is one of the most recognizable figures in mathematics, and with good reason. It appears in everything from Pascal's Triangle to Conway's Game of Life. In fact, it has already been seen to be connected with the game of Nim, albeit in a very different manner than the one presented here [3]. A number of analogs have been discovered, such as the Menger sponge (fig. 2) and a three-dimensional version called a tetrix. We present, in the first section, a generalization in higher dimensions differing from the more typical simplex generalization. Rather, we define a discrete Sierpinski demihypercube, which in three dimensions coincides with the simplex generalization. In the second section, we briefly review Nim and the theory behind optimal play. As in all impartial games (games in which the possible moves depend only on the state of the game, and not on which of the two players is moving), all possible positions can be divided into two classes - those in which the next player to move can force a win, called N-positions, and those in which regardless of what the next player does the other player can force a win, called P -positions.
    [Show full text]
  • AFSPC-CO TERMINOLOGY Revised: 12 Jan 2019
    AFSPC-CO TERMINOLOGY Revised: 12 Jan 2019 Term Description AEHF Advanced Extremely High Frequency AFB / AFS Air Force Base / Air Force Station AOC Air Operations Center AOI Area of Interest The point in the orbit of a heavenly body, specifically the moon, or of a man-made satellite Apogee at which it is farthest from the earth. Even CAP rockets experience apogee. Either of two points in an eccentric orbit, one (higher apsis) farthest from the center of Apsis attraction, the other (lower apsis) nearest to the center of attraction Argument of Perigee the angle in a satellites' orbit plane that is measured from the Ascending Node to the (ω) perigee along the satellite direction of travel CGO Company Grade Officer CLV Calculated Load Value, Crew Launch Vehicle COP Common Operating Picture DCO Defensive Cyber Operations DHS Department of Homeland Security DoD Department of Defense DOP Dilution of Precision Defense Satellite Communications Systems - wideband communications spacecraft for DSCS the USAF DSP Defense Satellite Program or Defense Support Program - "Eyes in the Sky" EHF Extremely High Frequency (30-300 GHz; 1mm-1cm) ELF Extremely Low Frequency (3-30 Hz; 100,000km-10,000km) EMS Electromagnetic Spectrum Equitorial Plane the plane passing through the equator EWR Early Warning Radar and Electromagnetic Wave Resistivity GBR Ground-Based Radar and Global Broadband Roaming GBS Global Broadcast Service GEO Geosynchronous Earth Orbit or Geostationary Orbit ( ~22,300 miles above Earth) GEODSS Ground-Based Electro-Optical Deep Space Surveillance
    [Show full text]
  • The Kinematics of Warm Ionized Gas in the Fourth Galactic Quadrant Martin C
    The Kinematics of Warm Ionized Gas in the Fourth Galactic Quadrant Martin C. Gostisha, Robert A. Benjamin (University of Wisconsin-Whitewater), L.M. Haffner (University of Wisconsin- Madison), Alex Hill (CSIRO), and Kat Barger (University of Notre Dame) Abstract: We present an preliminary analysis oF an on-going Wisconsin H-Alpha Mapper (WHAM) survey oF the Fourth quadrant oF the Galac>c plane in diffuse emission From [S II] 6716 A, covering the Fourth galac>c quadrant (Galac>c longitude = 270-360 degrees) and Galac>c latude |b| < 12 degrees. Because oF the high atomic mass and narrow thermal line widths oF sulFur (as compared to hydrogen or nitrogen, this emission line serves as the best tracer oF the kinemacs oF the warm ionized medium in the mid plane oF the Galaxy. We detect extensive emission at veloci>es as negave as -100 km/s indicang that we are seeing much Further into the center oF the Milky Way than was Found For the first quadrant. We discuss constraints on the velocity and ver>cal density structure oF this gas, and compare this distribu>on with what is observed in CO and HI surveys. This work was par>ally supported by the Naonal Science Foundaon’s REU program through NSF award AST-1004881. [SII] provides beNer velocity resolu3on than H-Alpha V The equaon, __________ LSR 40 30 30 gives us a physical value For the line widths oF both H-Alpha and [SII], varying only by the mass oF the individual atoms. Assuming that the gas is at a temperature oF 4 10 T=10 K, the velocity widths oF H-Alpha and [SII], respec>vely, are 20 0 km s-1 10 -10 Figure 2.
    [Show full text]
  • Generation of GOES-16 True Color Imagery Without a Green Band
    Confidential manuscript submitted to Earth and Space Science 1 Generation of GOES-16 True Color Imagery without a Green Band 2 M.K. Bah1, M. M. Gunshor1, T. J. Schmit2 3 1 Cooperative Institute for Meteorological Satellite Studies (CIMSS), 1225 West Dayton Street, 4 Madison, University of Wisconsin-Madison, Madison, Wisconsin, USA 5 2 NOAA/NESDIS Center for Satellite Applications and Research, Advanced Satellite Products 6 Branch (ASPB), Madison, Wisconsin, USA 7 8 Corresponding Author: Kaba Bah: ([email protected]) 9 Key Points: 10 • The Advanced Baseline Imager (ABI) is the latest generation Geostationary Operational 11 Environmental Satellite (GOES) imagers operated by the U.S. The ABI is improved in 12 many ways over preceding GOES imagers. 13 • There are a number of approaches to generating true color images; all approaches that use 14 the GOES-16 ABI need to first generate the visible “green” spectral band. 15 • Comparisons are shown between different methods for generating true color images from 16 the ABI observations and those from the Earth Polychromatic Imaging Camera (EPIC) on 17 Deep Space Climate Observatory (DSCOVR). 18 Confidential manuscript submitted to Earth and Space Science 19 Abstract 20 A number of approaches have been developed to generate true color images from the Advanced 21 Baseline Imager (ABI) on the Geostationary Operational Environmental Satellite (GOES)-16. 22 GOES-16 is the first of a series of four spacecraft with the ABI onboard. These approaches are 23 complicated since the ABI does not have a “green” (0.55 µm) spectral band. Despite this 24 limitation, representative true color images can be built.
    [Show full text]
  • United States Patent (19) 11 Patent Number: 5,716,029 Spitzer Et Al
    I US005716029A United States Patent (19) 11 Patent Number: 5,716,029 Spitzer et al. 45 Date of Patent: Feb. 10, 1998 54 CONSTANTSUN ANGLE TRANSFER ORBIT Meserole, J., "Launch Costs to GEO Using Solar Powered SEQUENCE AND METHOD USING Orbit Transfer Vehicles". American Institute of Aeronautics ELECTRIC PROPULSION and Astronautic (AIAA) Paper 93-2219. AIAAJSAE (75) Inventors: Arnon Spitzer, Los Angeles, Calif.; ASME/ASEE 29th Joint Propulsion Conference and Solomon A. De Picciotto, Aurora, Colo. Exhibit. Jun. 28-30, 1993. 73 Assignee: Hughes Electronics, Los Angeles, Free, B. "High Altitude Orbit Raising With On-Board Calif. Electric Power", International Electric Propulsion Confer ence Paper 93-205, American Institute Of Aeronautics and (21) Appl. No.: 558,572 Astronautics AIAA/AIDAVDGLA/JSASS 23rd International 22 Filed: Oct. 31, 1995 Electric Propulsion Conference. Sep. 13–16, 1993. Related U.S. Application Data Primary Examiner-Galen L. Barefoot 63 Continuation-in-part of Ser. No. 217,791, Mar. 25, 1994, Attorney, Agent, or Firm-Elizabeth E. Leitereg; Terje Pat No. 5,595,360. Gudmestad; Wanda K. Denson-Low (51) Int. Cl. ... ... B64G 1/10 52 U.S.C. ................................................... 244/158 R 57 ABSTRACT 58) Field of Search ................................ 244/158 R, 164, 244/168, 169, 172 An apparatus and method for translating a spacecraft (102. 108) from an injection orbit (114) about a central body (100) 56) References Cited to synchronous orbit (122) in a time efficient manner. The U.S. PATENT DOCUMENTS spacecraft (102, 108) includes propulsion thrusters (50) 4,943,014 7/1990 Harwood et al. ....................... 244/169 which are fired in predetermined timing sequences con trolled by a controller (64) in relation to the apogee (118) FOREIGN PATENT DOCUMENTS and perigee (120) of the injection orbit (114) and successive 0 047 211 3/1982 European Pat.
    [Show full text]
  • AMC-14 MO Final.Qxp 2/29/2008 1:15 PM Page 1
    AMC-14 MO final.qxp 2/29/2008 1:15 PM Page 1 THE VEHICLE THE SATELLITE PROTON HISTORY PROTON www.ilslaunch.com Lead designer was Vladimir Chelomei, DESCRIPTION who designed it with the intention of creating a powerful rocket for both TOTAL HEIGHT military payloads and as a high- 56.2 m (184 ft) performance ICBM. The program GROSS LIFTOFF was changed, and the rocket WEIGHT was developed exclusively for 691,272 kg launching spacecraft. (1,523,565 lbm) First named UR-500, but PROPELLANT UDMH and N O adopted the name 2 4 “Proton,” which also was INITIAL LAUNCH the name of the first July 16, 1965 three payloads Proton-1 Spacecraft launched. PAYLOAD FAIRINGS Proton launched Russian There are multiple payload fair- ing designs presently qualified for interplanetary missions to flight, including standard commer- the Moon, Venus, Mars, and cial payload fairings developed specif- Halley’s Comet. ically to meet the needs of our Western customers. Proton launched the Salyut space stations, the Mir BREEZE M UPPER STAGE SATELLITE OPERATOR core segment and both The Breeze M is powered by one pump-fed gim- SES AMERICOM baled main engine that develops thrust of 19.6 kN the Zarya and Zvezda www.ses-americom.com (4,400 lbf). The Breeze M is composed of a central core modules for today’s and a jettisonable additional propellant tank. Inert mass of the SATELLITE MANUFACTURER International Space stage at liftoff is approximately 2,370 kg (5,225 lbm). The quan- Lockheed Martin Commercial Space Systems Station. tity of propellant carried is dependent on specific mission require- www.lmcommercialspace.com ments and is varied to maximize mission performance.
    [Show full text]
  • The Aerospace Update
    The Aerospace Update First Light from a Gravitational-Wave Event Oct. 17, 2017 Video Credit: NASA's Goddard Space Flight Center/CI Lab First Light from a Gravitational-Wave Event For the first time ever, scientists have spotted both gravitational waves and light coming from the same cosmic event — in this case, the cataclysmic merger of two super dense stellar corpses known as neutron stars. The landmark discovery initiates the field of "multi-messenger astrophysics," which promises to reveal exciting new insights about the cosmos, researchers said. The find also provides the first solid evidence that neutron-star smashups are the source of much of the universe's gold, platinum and other heavy elements. Source: Mike Wall, Space.com Image Credit: Robin Dienel, Carnegie Institution for Science ATLAS 5 Launches Classified NROL 52 Satellite A covert communications relay station to route spy satellite data directly to users was successfully launched by a million-pound Atlas 5 rocket overnight. The United Launch Alliance rocket left Cape Canaveral under the cover of darkness on Sunday, Oct. 15th, dodging rain showers while speeding through decks of clouds, for a trek to geosynchronous transfer orbit to deploy the NROL-52 spacecraft. The fifth launch attempt proved to be the charm for NROL-52 after four thwarted tries over the past week, mainly due to bad weather. Video courtesy of United Launch Alliance Source: Justin Ray @ SpaceFlightNow.com SpaceX Launches Third Pre-Flown Rocket with EchoStar-SES Satellite, Lands Booster Maintaining a brisk flight rate three days after its last launch, SpaceX sent a Falcon 9 booster powered by a reused first stage into orbit on Wednesday evening, Oct 11th from Florida with an Airbus-built communications satellite for SES and EchoStar.
    [Show full text]
  • Multisatellite Determination of the Relativistic Electron Phase Space Density at Geosynchronous Orbit: Methodology and Results During Geomagnetically Quiet Times Y
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 110, A10210, doi:10.1029/2004JA010895, 2005 Multisatellite determination of the relativistic electron phase space density at geosynchronous orbit: Methodology and results during geomagnetically quiet times Y. Chen, R. H. W. Friedel, and G. D. Reeves Los Alamos National Laboratory, Los Alamos, New Mexico, USA T. G. Onsager NOAA, Boulder, Colorado, USA M. F. Thomsen Los Alamos National Laboratory, Los Alamos, New Mexico, USA Received 10 November 2004; revised 20 May 2005; accepted 8 July 2005; published 20 October 2005. [1] We develop and test a methodology to determine the relativistic electron phase space density distribution in the vicinity of geostationary orbit by making use of the pitch-angle resolved energetic electron data from three Los Alamos National Laboratory geosynchronous Synchronous Orbit Particle Analyzer instruments and magnetic field measurements from two GOES satellites. Owing to the Earth’s dipole tilt and drift shell splitting for different pitch angles, each satellite samples a different range of Roederer L* throughout its orbit. We use existing empirical magnetic field models and the measured pitch-angle resolved electron spectra to determine the phase space density as a function of the three adiabatic invariants at each spacecraft. Comparing all satellite measurements provides a determination of the global phase space density gradient over the range L* 6–7. We investigate the sensitivity of this method to the choice of the magnetic field model and the fidelity of the instrument intercalibration in order to both understand and mitigate possible error sources. Results for magnetically quiet periods show that the radial slopes of the density distribution at low energy are positive, while at high energy the slopes are negative, which confirms the results from some earlier studies of this type.
    [Show full text]
  • Editorial for the Special Issue “Remote Sensing of Clouds”
    remote sensing Editorial Editorial for the Special Issue “Remote Sensing of Clouds” Filomena Romano Institute of Methodologies for Environmental Analysis, National Research Council (IMAA/CNR), 85100 Potenza, Italy; fi[email protected] Received: 7 December 2020; Accepted: 8 December 2020; Published: 14 December 2020 Keywords: clouds; satellite; ground-based; remote sensing; meteorology; microphysical cloud parameters Remote sensing of clouds is a subject of intensive study in modern atmospheric remote sensing. Cloud systems are important in weather, hydrological, and climate research, as well as in practical applications. Because they affect water transport and precipitation, clouds play an integral role in the Earth’s hydrological cycle. Moreover, they impact the Earth’s energy budget by interacting with incoming shortwave radiation and outgoing longwave radiation. Clouds can markedly affect the radiation budget, both in the solar and thermal spectral ranges, thereby playing a fundamental role in the Earth’s climatic state and affecting climate forcing. Global changes in surface temperature are highly sensitive to the amounts and types of clouds. Hence, it is not surprising that the largest uncertainty in model estimates of global warming is due to clouds. Their properties can change over time, leading to a planetary energy imbalance and effects on a global scale. Optical and thermal infrared remote sensing of clouds is a mature research field with a long history, and significant progress has been achieved using both ground-based and satellite instrumentation in the retrieval of microphysical cloud parameters. This Special Issue (SI) presents recent results in ground-based and satellite remote sensing of clouds, including innovative applications for meteorology and atmospheric physics, as well as the validation of retrievals based on independent measurements.
    [Show full text]
  • Doing Business with Wallops Flight Facility
    National Aeronautics and Space Administration Doing Business with NASA’s Wallops Flight Facility NASA’s Wallops Flight Facility (WFF) in Virginia provides agile, low-cost flight and launch range ser- vices to meet government and commercial sector needs for accessing flight regimes worldwide from the Earth’s surface to the moon and beyond. As a multi-user facility with operational launch range, spaceport, and airfield assets, Wallops is well-positioned to meet ongoing and emerging needs in the science, aerospace, defense, and commercial industries. WALLOPS RANGE The Wallops Range supports many of the mission activities around WFF and abroad. Project managers utlize the support of range services to provide a broad array of technical and instrumentation services, such as radar, optical tracking, telemetry, meteorological, command and control, surveillance and recovery, financial analysis and engineering services to support scientific research and technology development. WALLOPS MOBILE ASSETS Wallops has semi-permanent downrange instrumentation as well as mobile instrumentation to include radar, telemetry, command/control, and data systems that can be transported to offsite and remote locations. Campaigns have been conducted from the semi-permanent locations in Bermuda and North Carolina, as well as from the Arctic and Antarctic regions, South America, Africa, Europe, Australia and even at sea, with our mobile systems. WFF personnel have extensive experience in planning and conducting downrange support and mobile campaigns, developing equipment and systems to support these operations. Downrange and mobile systems include the following: C-band radar, meteorology, optical tracking, orbital tracking, flight termination, telemetry, timing, surveillance, and recovery. Keith Thompson, Wallops Advanced Projects Office | 757-824-1680 www.nasa.gov/wallops MID-ATLANTIC REGIONAL SPACEPORT Virginia’s Mid-Atlantic Regional Spaceport at Wallops supports two launch facilities, one medium-lift liquid-fueled pad and a medium-lift solid propellant pad.
    [Show full text]