New Approaches to the Management of Adult Acute Lymphoblastic Leukemia Renato Bassan, Jean-Pierre Bourquin, Daniel J

Total Page:16

File Type:pdf, Size:1020Kb

New Approaches to the Management of Adult Acute Lymphoblastic Leukemia Renato Bassan, Jean-Pierre Bourquin, Daniel J VOLUME 36 • NUMBER 35 • DECEMBER 10, 2018 JOURNAL OF CLINICAL ONCOLOGY REVIEW ARTICLE New Approaches to the Management of Adult Acute Lymphoblastic Leukemia Renato Bassan, Jean-Pierre Bourquin, Daniel J. DeAngelo, and Sabina Chiaretti Author affiliations and support information (if applicable) appear at the end of this ABSTRACT article. Traditional treatment regimens for adult acute lymphoblastic leukemia, including allogeneic Published at jco.org on September 21, fi 2018. hematopoietic cell transplantation, result in an overall survival of approximately 40%, a gure hardly comparable with the extraordinary 80% to 90% cure rate currently reported in children. Corresponding author: Renato Bassan, MD, Hematology Unit, Ospedale When translated to the adult setting, modern pediatric-type regimens improve the survival to dell’Angelo, Via Paccagnella 11, 30174 approximately 60% in young adults. The addition of tyrosine kinase inhibitors for patients with Mestre, Venezia, Italy; e-mail: Renato. Philadelphia chromosome–positive disease and the measurement of minimal residual disease to [email protected]. guide risk stratification and postremission approaches has led to additional improvements in © 2018 by American Society of Clinical outcomes. Relapsed disease and treatment toxicity—sparing no patient but representing a major Oncology concern especially in the elderly—are the most critical current issues awaiting further therapeutic 0732-183X/18/3635w-3504w/$20.00 advancement. Recently, there has been considerable progress in understanding the disease biology, specifically the Philadelphia-like signature, as well as other high-risk subgroups. In ad- dition, there are several new agents that will undoubtedly contribute to additional improvement in the current outcomes. The most promising agents are monoclonal antibodies, immunomodula- tors, and chimeric antigen receptor T cells, and, to a lesser extent, several new drugs targeting key molecular pathways involved in leukemic cell growth and proliferation. This review examines the evidence supporting the increasing role of the new therapeutic tools and treatment options in different disease subgroups, including frontline and relapsed or refractory disease. It is now possible to define the best individual approach on the basis of the emerging concepts of precision medicine. J Clin Oncol 36:3504-3519. © 2018 by American Society of Clinical Oncology INTRODUCTION RECENT ADVANCES USING PEDIATRIC REGIMENS IN ADULTS In Western countries, new cases of adult acute lymphoblastic leukemia (ALL) occur at an an- The results in adult ALL, unfortunately, have nual rate of approximately one per 100,000, with not kept pace with those in pediatric ALL, with 9 a bimodal distribution decreasing at age 45 to 54 OS rates , 45% despite the addition of CNS years and increasing again in people older than prophylaxis, late intensification with prolonged 55 years, totaling approximately 2,300 new cases maintenance chemotherapy, and an extensive use per year for patients older than 15 years (n = of HCT in high-risk (HR) subsets. Currently, 1,750 between ages 15 and 55 years) in the pediatric-inspired regimens are being adminis- United States.1,2 Over the past decade, we have tered in young adult patients, leading to im- witnessed an incredible therapeutic improve- provements in event-free survival (EFS) and OS ment. Currently, pediatric patients have an es- rates as compared with historical controls.10-13 timated 5-year overall survival (OS) approaching This approach, initially reserved for adolescents 90%.3-5 Modern pediatric programs thrive on an and young adults (AYA; , 40 years old)10,14,15 and intensified use of corticosteroids (mainly dexa- later applied to patients up to 50 to 60 years of 11,12,16 ASSOCIATED CONTENT methasone), antimetabolites (especially metho- age, has increased the 5-year OS rate trexate and 6-mercaptopurine) and L-asparaginase/ to $ 50%, and up to 70% to 80% in favorable Appendix DOI: https://doi.org/10.1200/JCO. pegylated-asparaginase, and rely on minimal re- subsets (ie, AYA, standard risk, MRD negative; 17 2017.77.3648 sidual disease (MRD) analysis for additional dose Appendix Table A1, online only), but not in fi DOI: https://doi.org/10.1200/JCO.2017. intensi cation or allogeneic hematopoietic cell older patients, whose survival decreases pro- 6-8 2-4 77.3648 transplantation (HCT). gressively to , 20%. Finally, allogeneic HCT is 3504 © 2018 by American Society of Clinical Oncology Downloaded from ascopubs.org by Journals Press Access on December 10, 2018 from 162.234.150.177 Copyright © 2018 American Society of Clinical Oncology. All rights reserved. jco.org Table 1. Summary of Clinical Evidence of Antibody Therapy in Acute Lymphoblastic Leukemia in Selected Clinical Trials Clinical Trials Target Antigen Agents Class Patients No. Regimen Study Results 2 CD19 Blinatumomab BiTE (CD19 3 CD3) MRD positive (. 10 4) 21 Blinatumomab IVCI 3 Phase II: 61% RFS rate at antibody 4 weeks median follow-up of 33 months35 2 MRD positive (. 10 3) 116 Blinatumomab IVCI 3 Phase II: complete MRD 4 weeks (HCT after response, 80% (78% at response) cycle 1); median OS, 38.9 months; and RFS, 23.6 months in MRD responders (P 5 .002 v nonresponders)36 Relapsed/refractory 36 Blinatumomab IVCI 3 Phase I/II: 69% CR/CRi with 4 weeks 88% MRD negative37 189 Blinatumomab IVCI 3 Phase II: 43% CR/CRi with 4 weeks 82% MRD negative; median OS of responders, 6.1 months v nonresponders, 3.5 months38 Relapsed/ refractory (Ph2) 376 Blinatumomab IVCI 3 Phase III v SOC: Improved CR/ New Treatments for Adult ALL 4 weeks CRi 44 v 25%; MRD negative rate 76% v 48%; OS 7.7 v 4.0 months39 (P =.01) Relapsed/ refractory (Ph+) 45 Blinatumomab IVCI 3 36% CR/CRi (40% with 4 weeks T315I), with 88% MRD negative; median RFS, 6.7 months40 SGN19a (denintuzumab mafodotin) Immunoconjugate Relapsed/ refractory 59 Weekly (days 1 and 8) Phase I: 19% CR/CRi weekly (monomethyl or day 1 every arm and 35% in the every- auristatin F) 3 weeks 3-week arm41 SAR3419 (coltuximab ravtansine) Immunconjugate 36 Monotherapy Study discontinued because (maytansine weekly of toxicity; overall response DM4) (escalating dose rate, 25.5%42 and selected dose in expansion cohort) CD19/22 Combotox Immunotoxin (ricin Relapsed/refractory 17 Maximum tolerated Phase I: one patient achieved A chain) dose, 7 mg/m2 partial remission43 © 2018 by American Society of Clinical Oncology CD20 Rituximab Naked antibody Newly diagnosed 282 Rituximab + hyper- Phase II: Improved CMR, CVAD RFS, and OS in patients , 60 years old44 263 Rituximab + Phase II: improved rate of chemotherapy negative MRD, CRD, and 3-year OS45 209 Rituximab + Phase III: improved rate of chemotherapy 2-year EFS (65% v 52%, P 5 .04)13 Ofatumumab Naked antibody Newly diagnosed 55 Ofatumumab + Phase II: CR 98% and MRD hyper-CVAD negativity 93%; 3-year CRD rate, 78%; and OS, 68%46 (continued on following page) 3505 Downloaded from ascopubs.org by Journals Press Access on December 10, 2018 from 162.234.150.177 Copyright © 2018 American Society of Clinical Oncology. All rights reserved. 3506 Table 1. Summary of Clinical Evidence of Antibody Therapy in Acute Lymphoblastic Leukemia in Selected Clinical Trials (continued) © 2018 by American Society of Clinical Oncology Clinical Trials Target Antigen Agents Class Patients No. Regimen Study Results CD22 Epratuzumab Naked antibody Relapsed/refractory 15 Epratuzumab + Phase I: 60% CR, 40% MRD chemotherapy negative47 Relapsed (first) 114 Epratuzumab + Phase II: 65% and 66% CR chemotherapy (two rates, 42% MRD negative schedules of rate (higher than historical epratuzumab) controls)48 Relapsed/refractory 32 Epratuzumab + Phase II: 52% CR/CRi rate; clofarabine + median OS, 5 months49 cytarabine 20 Epratuzumab + hyper- Phase II:CR/CRi, 33%; CVAD median OS, 3 months50 Radioconjugate Relapsed/refractory 17 90Y-Epratuzumab Phase I: well tolerated, with (90Y-labeled) days 1 and 8, dose three CRs; recommended level 1-4 dose for phase II study (2 3 10.0 mCi/m2)51 Inotuzumab Immunconjugate Relapsed/refractory 90 Inotuzumab every 3 Phase I/II: CR/CRi rate 58%, (calicheamicin) to 4 weeks (n = 49 and 72% MRD negative patients) or weekly rate52 (n = 41 patients) 72 Inotuzumab weekly Phase I/II; multicenter trial with CR/CRi rate of 68% and 84% MRD negative; median OS, 7.4 months53 Bassan et al 326 Inotuzumab weekly Phase III v SOC: Improved CR rate 81% v 33%; MRD negative rate 78% v 28%; OS 7.7 v 6.7 months (P 5 .04)54,99 59 Inotuzumab weekly + Phase II: CR/CRi rate of 78%, mini–hyper-CVD with 82% MRD negative; median RFS and OS, 8 and 11 months, respectively; 1-year RFS in first salvage, 77%55 Newly diagnosed, older age (. 48 Inotuzumab weekly + Phase II: 98% CR/CRi rate 60 years) mini–hyper-CVD with 76% MRD negative; 2-year PFS, 52%; OS, 66% (v historical OS 36% (P,.05)56,108 BL22 and moxetumomab Immunotoxin Relapsed/refractory (children) 47 BL22 and Phase I: 32% objective response pasudotox (Pseudomonas moxetumomab with 23% CR (n = 11, with 5 exotoxin) pasudotox every MRD negative)57 other day 3 6 Relapsed/refractory 16 BL22 and Phase I: overall response rate moxetumomab 13%, 2 CR/CRi; safe at pasudotox every higher dose level58 other day 3 6 CD52 Alemtuzumab Naked antibody Newly diagnosed 24 Postremission in Phase I: median OS, fourth treatment 55 months; 1-log MRD J module reduction; immune OURNAL OF suppression/toxicity led to study discontinuation59 fi C Abbreviations: BiTE, bispeci c T-cell engaging; CMR, complete molecular remission; CR, complete remission; CRD, complete remission duration; CRi, complete remission with incomplete neutrophil and/or platelet LINICAL count recovery/; HCT, hematopoietic cell transplantation; hyper-CVAD, hyperfractionated cyclophosphamide, vincristine, doxorubicin, dexamethasone; hyper-CVD, cyclophosphamide, vincristine, dexamethasone; ICVI, intravenous continuous infusion; MRD, minimal residual disease; OS, overall survival; PFS, progression free-survival; Ph, Philadelphia chromosome; RFS, relapse-free survival; SOC, standard of care.
Recommended publications
  • Predictive QSAR Tools to Aid in Early Process Development of Monoclonal Antibodies
    Predictive QSAR tools to aid in early process development of monoclonal antibodies John Micael Andreas Karlberg Published work submitted to Newcastle University for the degree of Doctor of Philosophy in the School of Engineering November 2019 Abstract Monoclonal antibodies (mAbs) have become one of the fastest growing markets for diagnostic and therapeutic treatments over the last 30 years with a global sales revenue around $89 billion reported in 2017. A popular framework widely used in pharmaceutical industries for designing manufacturing processes for mAbs is Quality by Design (QbD) due to providing a structured and systematic approach in investigation and screening process parameters that might influence the product quality. However, due to the large number of product quality attributes (CQAs) and process parameters that exist in an mAb process platform, extensive investigation is needed to characterise their impact on the product quality which makes the process development costly and time consuming. There is thus an urgent need for methods and tools that can be used for early risk-based selection of critical product properties and process factors to reduce the number of potential factors that have to be investigated, thereby aiding in speeding up the process development and reduce costs. In this study, a framework for predictive model development based on Quantitative Structure- Activity Relationship (QSAR) modelling was developed to link structural features and properties of mAbs to Hydrophobic Interaction Chromatography (HIC) retention times and expressed mAb yield from HEK cells. Model development was based on a structured approach for incremental model refinement and evaluation that aided in increasing model performance until becoming acceptable in accordance to the OECD guidelines for QSAR models.
    [Show full text]
  • Us 8530498 B1 3
    USOO853 0498B1 (12) UnitedO States Patent (10) Patent No.: US 8,530,498 B1 Zeldis (45) Date of Patent: *Sep. 10, 2013 (54) METHODS FORTREATING MULTIPLE 5,639,476 A 6/1997 OShlack et al. MYELOMAWITH 5,674,533 A 10, 1997 Santus et al. 3-(4-AMINO-1-OXO-1,3-DIHYDROISOINDOL- 395 A 22 N. 2-YL)PIPERIDINE-2,6-DIONE 5,731,325 A 3/1998 Andrulis, Jr. et al. 5,733,566 A 3, 1998 Lewis (71) Applicant: Celgene Corporation, Summit, NJ (US) 5,798.368 A 8, 1998 Muller et al. 5,874.448 A 2f1999 Muller et al. (72) Inventor: Jerome B. Zeldis, Princeton, NJ (US) 5,877,200 A 3, 1999 Muller 5,929,117 A 7/1999 Muller et al. 5,955,476 A 9, 1999 Muller et al. (73) Assignee: Celgene Corporation, Summit, NJ (US) 6,020,358 A 2/2000 Muller et al. - 6,071,948 A 6/2000 D'Amato (*) Notice: Subject to any disclaimer, the term of this 6,114,355 A 9, 2000 D'Amato patent is extended or adjusted under 35 SS f 1939. All et al. U.S.C. 154(b) by 0 days. 6,235,756 B1 5/2001 D'Amatoreen et al. This patent is Subject to a terminal dis- 6,281.230 B1 8/2001 Muller et al. claimer 6,316,471 B1 1 1/2001 Muller et al. 6,326,388 B1 12/2001 Man et al. 6,335,349 B1 1/2002 Muller et al. (21) Appl. No.: 13/858,708 6,380.239 B1 4/2002 Muller et al.
    [Show full text]
  • Corneal Epithelial Findings in Patients with Multiple Myeloma Treated with Antibody–Drug Conjugate Belantamab Mafodotin in the Pivotal, Randomized, DREAMM-2 Study
    Ophthalmol Ther https://doi.org/10.1007/s40123-020-00280-8 ORIGINAL RESEARCH Corneal Epithelial Findings in Patients with Multiple Myeloma Treated with Antibody–Drug Conjugate Belantamab Mafodotin in the Pivotal, Randomized, DREAMM-2 Study Asim V. Farooq . Simona Degli Esposti . Rakesh Popat . Praneetha Thulasi . Sagar Lonial . Ajay K. Nooka . Andrzej Jakubowiak . Douglas Sborov . Brian E. Zaugg . Ashraf Z. Badros . Bennie H. Jeng . Natalie S. Callander . Joanna Opalinska . January Baron . Trisha Piontek . Julie Byrne . Ira Gupta . Kathryn Colby Received: April 21, 2020 Ó The Author(s) 2020, corrected publication 2020 ABSTRACT monomethyl auristatin F (MMAF), to myeloma cells. In the phase II DREAMM-2 study Introduction: Patients with relapsed or refrac- (NCT03525678), single-agent belamaf (2.5 mg/kg) tory multiple myeloma (RRMM) represent an demonstrated clinically meaningful anti-mye- unmet clinical need. Belantamab mafodotin loma activity (overall response rate 32%) in (belamaf; GSK2857916) is a first-in-class anti- patients with heavily pretreated disease. Micro- body–drug conjugate (ADC; or immunoconju- cyst-like epithelial changes (MECs) were com- gate) that delivers a cytotoxic payload, mon, consistent with reports from other MMAF- containing ADCs. Methods: Corneal examination findings from Digital Features To view digital features for this article patients in DREAMM-2 were reviewed, and the go to https://doi.org/10.6084/m9.figshare.12326546. clinical descriptions and accompanying images The original version of this article was revised based upon recent changes to the FDA label and guidance on D. Sborov the use of belamaf. Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA A. V. Farooq (&) Á A.
    [Show full text]
  • Tanibirumab (CUI C3490677) Add to Cart
    5/17/2018 NCI Metathesaurus Contains Exact Match Begins With Name Code Property Relationship Source ALL Advanced Search NCIm Version: 201706 Version 2.8 (using LexEVS 6.5) Home | NCIt Hierarchy | Sources | Help Suggest changes to this concept Tanibirumab (CUI C3490677) Add to Cart Table of Contents Terms & Properties Synonym Details Relationships By Source Terms & Properties Concept Unique Identifier (CUI): C3490677 NCI Thesaurus Code: C102877 (see NCI Thesaurus info) Semantic Type: Immunologic Factor Semantic Type: Amino Acid, Peptide, or Protein Semantic Type: Pharmacologic Substance NCIt Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor tyrosine kinase expressed by endothelial cells, while VEGF is overexpressed in many tumors and is correlated to tumor progression. PDQ Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor
    [Show full text]
  • 2017 Immuno-Oncology Medicines in Development
    2017 Immuno-Oncology Medicines in Development Adoptive Cell Therapies Drug Name Organization Indication Development Phase ACTR087 + rituximab Unum Therapeutics B-cell lymphoma Phase I (antibody-coupled T-cell receptor Cambridge, MA www.unumrx.com immunotherapy + rituximab) AFP TCR Adaptimmune liver Phase I (T-cell receptor cell therapy) Philadelphia, PA www.adaptimmune.com anti-BCMA CAR-T cell therapy Juno Therapeutics multiple myeloma Phase I Seattle, WA www.junotherapeutics.com Memorial Sloan Kettering New York, NY anti-CD19 "armored" CAR-T Juno Therapeutics recurrent/relapsed chronic Phase I cell therapy Seattle, WA lymphocytic leukemia (CLL) www.junotherapeutics.com Memorial Sloan Kettering New York, NY anti-CD19 CAR-T cell therapy Intrexon B-cell malignancies Phase I Germantown, MD www.dna.com ZIOPHARM Oncology www.ziopharm.com Boston, MA anti-CD19 CAR-T cell therapy Kite Pharma hematological malignancies Phase I (second generation) Santa Monica, CA www.kitepharma.com National Cancer Institute Bethesda, MD Medicines in Development: Immuno-Oncology 1 Adoptive Cell Therapies Drug Name Organization Indication Development Phase anti-CEA CAR-T therapy Sorrento Therapeutics liver metastases Phase I San Diego, CA www.sorrentotherapeutics.com TNK Therapeutics San Diego, CA anti-PSMA CAR-T cell therapy TNK Therapeutics cancer Phase I San Diego, CA www.sorrentotherapeutics.com Sorrento Therapeutics San Diego, CA ATA520 Atara Biotherapeutics multiple myeloma, Phase I (WT1-specific T lymphocyte South San Francisco, CA plasma cell leukemia www.atarabio.com
    [Show full text]
  • Aminolevulinic Acid (ALA) As a Prodrug in Photodynamic Therapy of Cancer
    Molecules 2011, 16, 4140-4164; doi:10.3390/molecules16054140 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Aminolevulinic Acid (ALA) as a Prodrug in Photodynamic Therapy of Cancer Małgorzata Wachowska 1, Angelika Muchowicz 1, Małgorzata Firczuk 1, Magdalena Gabrysiak 1, Magdalena Winiarska 1, Małgorzata Wańczyk 1, Kamil Bojarczuk 1 and Jakub Golab 1,2,* 1 Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Banacha 1A F Building, 02-097 Warsaw, Poland 2 Department III, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel. +48-22-5992199; Fax: +48-22-5992194. Received: 3 February 2011 / Accepted: 3 May 2011 / Published: 19 May 2011 Abstract: Aminolevulinic acid (ALA) is an endogenous metabolite normally formed in the mitochondria from succinyl-CoA and glycine. Conjugation of eight ALA molecules yields protoporphyrin IX (PpIX) and finally leads to formation of heme. Conversion of PpIX to its downstream substrates requires the activity of a rate-limiting enzyme ferrochelatase. When ALA is administered externally the abundantly produced PpIX cannot be quickly converted to its final product - heme by ferrochelatase and therefore accumulates within cells. Since PpIX is a potent photosensitizer this metabolic pathway can be exploited in photodynamic therapy (PDT). This is an already approved therapeutic strategy making ALA one of the most successful prodrugs used in cancer treatment. Key words: 5-aminolevulinic acid; photodynamic therapy; cancer; laser; singlet oxygen 1. Introduction Photodynamic therapy (PDT) is a minimally invasive therapeutic modality used in the management of various cancerous and pre-malignant diseases.
    [Show full text]
  • Antibody-Directed Phototherapy (ADP)
    Antibodies 2013, 2, 270-305; doi:10.3390/antib2020270 OPEN ACCESS antibodies ISSN 2073-4468 www.mdpi.com/journal/antibodies Review Antibody-Directed Phototherapy (ADP) Hayley Pye 1,3, Ioanna Stamati 1, Gokhan Yahioglu 1,2, M. Adil Butt 3 and Mahendra Deonarain 1,2,* 1 Faculty of Natural Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK 2 PhotoBiotics Ltd, Montague House, Chancery Lane, Thrapston, Northamptonshire, NN14 4LN, UK 3 National Medical Laser Centre, Charles Bell House, 67-73 Riding House Street, London, W1W 7EJ, UK * Author to whom correspondence should be addressed; E-Mail: [email protected]. Received: 25 February 2013; in revised form: 3 April 2013 / Accepted: 4 April 2013 / Published: 25 April 2013 Abstract: Photodynamic therapy (PDT) is a clinically-approved but rather under-exploited treatment modality for cancer and pre-cancerous superficial lesions. It utilises a cold laser or LED to activate a photochemical reaction between a light activated drug (photosensitiser-drug) and oxygen to generate cytotoxic oxygen species. These free radical species damage cellular components leading to cell death. Despite its benefits, the complexity, limited potency and side effects of PDT have led to poor general usage. However, the research area is very active with an increasing understanding of PDT-related cell biology, photophysics and significant progress in molecular targeting of disease. Monoclonal antibody therapy is maturing and the next wave of antibody therapies includes antibody-drug conjugates (ADCs), which promise to be more potent and curable. These developments could lift antibody-directed phototherapy (ADP) to success. ADP promises to increase specificity and potency and improve drug pharmacokinetics, thus delivering better PDT drugs whilst retaining its other benefits.
    [Show full text]
  • Hippo Pathway Mediates Resistance to Cytotoxic Drugs PNAS PLUS
    Hippo pathway mediates resistance to cytotoxic drugs PNAS PLUS Taranjit S. Gujrala,1 and Marc W. Kirschnera,2 aDepartment of Systems Biology, Harvard Medical School, Boston, MA 02115 Contributed by Marc W. Kirschner, March 23, 2017 (sent for review December 22, 2016; reviewed by Xuelian Luo, Craig J. Thomas, and Robert A. Weinberg) Chemotherapy is widely used for cancer treatment, but its effec- the resistance was not due to a preexisting or acquired genetic tiveness is limited by drug resistance. Here, we report a mecha- alteration, and this led us to describe a physiological means of nism by which cell density activates the Hippo pathway, which in drug resistance. The basis for this resistance turns out to be the turn inactivates YAP, leading to changes in the regulation of genes activation of the Yes-associated protein (YAP) pathway, and this that control the intracellular concentrations of gemcitabine and occurs by means of the down-regulation of several multidrug several other US Food and Drug Administration (FDA)-approved transporters and cytidine deaminase (CDA) (a key enzyme that oncology drugs. Hippo inactivation sensitizes a diverse panel of metabolizes gemcitabine following its uptake). Overall, these cell lines and human tumors to gemcitabine in 3D spheroid, mouse findings highlight a cell-physiologic mechanism of drug resistance. xenografts, and patient-derived xenograft models. Nuclear YAP “Switching off” the Hippo signaling pathway and thus activating enhances gemcitabine effectiveness by down-regulating multi- YAP could present a strategy to overcome drug resistance in drug transporters as well by converting gemcitabine to a less ac- pancreatic cancer and other cancers.
    [Show full text]
  • Πανελλήνιο Αιματολογικό Συνέδριο 28 Annual Meeting of the Hellenic Society of Haematology Η Η Βαλκανική Ημερίδα 128 Balkan Day
    ΤΟΜΟΣ 8 - ΤΕΥΧΟΣ 3 ΟΚΤΩΒΡΙΟΣ - ΔΕΚΕΜΒΡΙΟΣ 2017 Αίμα 8 (3) Πρακτικά Εκπαιδευτικού Προγράμματος 28ου Πανελληνίου Αιματολογικού Συνεδρίου Αιματολογικού 28ου Πανελληνίου Προγράμματος Εκπαιδευτικού Πρακτικά ISSN: 1108-2682 Διευθυντής Σύνταξης: Καθηγητής Φώτης Ν. Μπερής Συνεκδότες: Καθηγήτρια Ελένη A. Παπαδάκη, Καθηγητής Κωνσταντίνος Τσαταλάς Aναπληρωτής Εκδότης: Επίκουρος Καθηγητής Θεόδωρος Π. Βασιλακόπουλος ΕΛΛΗΝΙΚΗ ΑΙΜΑΤΟΛΟΓΙΚΗ ΕΤΑΙΡΕΙΑ HELLENIC SOCIETY OF HAEMATOLOGY 0 Πανελλήνιο Αιματολογικό Συνέδριο 28 Annual meeting of the Hellenic Society of Haematology η η Βαλκανική Ημερίδα 128 Balkan Day 2-4 Nοεμβρίου 2017 Μέγαρο Διεθνές Συνεδριακό Κέντρο Αθηνών Νovember 2-4, 2017 Megaron, Athens International Conference Center ΟΚΤΩΒΡΙΟΣ - ΔΕΚΕΜΒΡΙΟΣ 2017 ΔΕΚΕΜΒΡΙΟΣ - ΟΚΤΩΒΡΙΟΣ Γραμματεία: Β. ΒΟΥΡΑΖΕΡΗΣ & ΣΙΑ O.Ε. Παπαδιαμαντοπούλου 4 & Βασ. Σοφίας, 115 28 Αθήνα, Τηλ.: 210 72 54 360, Fax: 210 72 54 363, e-mail: [email protected], website: www.vitacongress.gr ΠΡΑΚΤΙΚΑ ΕΚΠΑΙΔΕΥΤΙΚΟΥ ΠΡΟΓΡΑΜΜΑΤΟΣ 28ου Πανελληνίου Αιματολογικού Συνεδρίου HELLENIC SOCIETY OF HAEMATOLOGY ΕΛΛΗΝΙΚΗ ΑΙΜΑΤΟΛΟΓΙΚΗ ΕΤΑΙΡΕΙΑ The Journal Περιοδική Έκδοση της of the Hellenic Society of Ελληνικής ΑιμΑτολογικης HEMATOLOGY Εταιρείας HELLENIC SOCIETY OF HAEMATOLOGY ΕΛΛΗΝΙΚΗ ΑΙΜΑΤΟΛΟΓΙΚΗ ΕΤΑΙΡΕΙΑ BOARD OF THE HELLENIC ΔΙΟΙΚΗΤΙΚΟ ΣυΜΒΟυΛΙΟ SOCIETY OF HAEMATOLOGY ΤΗΣ ΕΛΛΗνΙΚΗΣ ΑΙΜΑΤΟΛΟΓΙΚΗΣ ΕΤΑΙΡΕΙΑΣ President: Panayiotis Panayiotidis Πρόεδρος: Παναγιώτης Παναγιωτίδης Vice Presidents: Elisavet Grouzi Αντιπρόεδροι: Ελισάβετ Γρουζή Evangelos Terpos Ευάγγελος Τέρπος Secretary General:
    [Show full text]
  • Repurposing of Drugs for Triple Negative Breast Cancer: an Overview
    Repurposing of drugs for triple negative breast cancer: an overview Andrea Spini1,2, Sandra Donnini3, Pan Pantziarka4, Sergio Crispino4,5 and Marina Ziche1 1Department of Medicine, Surgery and Neuroscience, University of Siena, Siena 53100, Italy 2Service de Pharmacologie Médicale, INSERM U1219, University of Bordeaux, Bordeaux 33000, France 3Department of Life Sciences, University of Siena, Siena 53100, Italy 4Anticancer Fund, Strombeek Bever 1853, Belgium 5ASSO, Siena, Italy Abstract Breast cancer (BC) is the most frequent cancer among women in the world and it remains a leading cause of cancer death in women globally. Among BCs, triple negative breast cancer (TNBC) is the most aggressive, and for its histochemical and molecular charac- teristics is also the one whose therapeutic opportunities are most limited. The REpur- posing Drugs in Oncology (ReDO) project investigates the potential use of off patent non-cancer drugs as sources of new cancer therapies. Repurposing of old non-cancer drugs, clinically approved, off patent and with known targets into oncological indications, Review offers potentially cheaper effective and safe drugs. In line with this project, this article describes a comprehensive overview of preclinical or clinical evidence of drugs included in the ReDO database and/or PubMed for repurposing as anticancer drugs into TNBC therapeutic treatments. Keywords: triple negative breast cancer, repositioning, non-cancer drug, preclinical studies, clinical studies Background Correspondence to: Marina Ziche Breast cancer (BC) is the most frequent cancer among women in the world. Triple nega- Email: [email protected] tive breast cancer (TNBC) is a type of BC that does not express oestrogen receptors, pro- 2020, :1071 gesterone receptors and epidermal growth factor receptors-2/Neu (HER2) and accounts ecancer 14 https://doi.org/10.3332/ecancer.2020.1071 for the 16% of BCs approximatively [1, 2].
    [Show full text]
  • The Use of Stems in the Selection of International Nonproprietary Names (INN) for Pharmaceutical Substances" WHO/EMP/RHT/TSN/2013.1
    INN Working Document 18.435 31/05/2018 Addendum1 to "The use of stems in the selection of International Nonproprietary names (INN) for pharmaceutical substances" WHO/EMP/RHT/TSN/2013.1 Programme on International Nonproprietary Names (INN) Technologies Standards and Norms (TSN) Regulation of Medicines and other health technologies (RHT) World Health Organization, Geneva © World Health Organization 2018 - All rights reserved. The contents of this document may not be reviewed, abstracted, quoted, referenced, reproduced, transmitted, distributed, translated or adapted, in part or in whole, in any form or by any means, without explicit prior authorization of the WHO INN Programme. This document contains the collective views of the INN Expert Group and does not necessarily represent the decisions or the stated policy of the World Health Organization. Addendum1 to "The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances" - WHO/EMP/RHT/TSN/2013.1 1 This addendum is a cumulative list of all new stems selected by the INN Expert Group since the publication of "The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances" 2013. ------------------------------------------------------------------------------------------------------------ -apt- aptamers, classical and mirror ones (a) avacincaptad pegol (113), egaptivon pegol (111), emapticap pegol (108), lexaptepid pegol (108), olaptesed pegol (109), pegaptanib (88) (b) -vaptan stem: balovaptan (116), conivaptan
    [Show full text]
  • SS18-SSX–Dependent YAP/TAZ Signaling in Synovial Sarcoma
    Published OnlineFirst February 27, 2019; DOI: 10.1158/1078-0432.CCR-17-3553 Translational Cancer Mechanisms and Therapy Clinical Cancer Research SS18-SSX–Dependent YAP/TAZ Signaling in Synovial Sarcoma Ilka Isfort1,2, Magdalene Cyra1,2, Sandra Elges2, Sareetha Kailayangiri3, Bianca Altvater3, Claudia Rossig3,4, Konrad Steinestel2,5, Inga Grunewald€ 1,2, Sebastian Huss2, Eva Eßeling6, Jan-Henrik Mikesch6, Susanne Hafner7, Thomas Simmet7, Agnieszka Wozniak8,9, Patrick Schoffski€ 8,9, Olle Larsson10, Eva Wardelmann2, Marcel Trautmann1,2, and Wolfgang Hartmann1,2 Abstract Purpose: Synovial sarcoma is a soft tissue malignancy Results: Asignificant subset of synovial sarcoma characterized by a reciprocal t(X;18) translocation. The chi- showed nuclear positivity for YAP/TAZ and their tran- meric SS18-SSX fusion protein acts as a transcriptional dysre- scriptional targets FOXM1 and PLK1. In synovial sarco- gulator representing the major driver of the disease; however, ma cells, RNAi-mediated knockdown of SS18-SSX led to the signaling pathways activated by SS18-SSX remain to be significant reduction of YAP/TAZ-TEAD transcriptional elucidated to define innovative therapeutic strategies. activity. Conversely, SS18-SSX overexpression in SCP-1 Experimental Design: Immunohistochemical evaluation cells induced aberrant YAP/TAZ-dependent signals, mech- of the Hippo signaling pathway effectors YAP/TAZ was per- anistically mediated by an IGF-II/IGF-IR signaling loop formed in a large cohort of synovial sarcoma tissue specimens. leading to dysregulation of the Hippo effectors LATS1 SS18-SSX dependency and biological function of the YAP/TAZ and MOB1. Modulation of YAP/TAZ-TEAD–mediated Hippo signaling cascade were analyzed in five synovial sarco- transcriptional activity by RNAi or verteporfintreatment ma cell lines and a mesenchymal stem cell model in vitro.
    [Show full text]