SS18-SSX–Dependent YAP/TAZ Signaling in Synovial Sarcoma

Total Page:16

File Type:pdf, Size:1020Kb

SS18-SSX–Dependent YAP/TAZ Signaling in Synovial Sarcoma Published OnlineFirst February 27, 2019; DOI: 10.1158/1078-0432.CCR-17-3553 Translational Cancer Mechanisms and Therapy Clinical Cancer Research SS18-SSX–Dependent YAP/TAZ Signaling in Synovial Sarcoma Ilka Isfort1,2, Magdalene Cyra1,2, Sandra Elges2, Sareetha Kailayangiri3, Bianca Altvater3, Claudia Rossig3,4, Konrad Steinestel2,5, Inga Grunewald€ 1,2, Sebastian Huss2, Eva Eßeling6, Jan-Henrik Mikesch6, Susanne Hafner7, Thomas Simmet7, Agnieszka Wozniak8,9, Patrick Schoffski€ 8,9, Olle Larsson10, Eva Wardelmann2, Marcel Trautmann1,2, and Wolfgang Hartmann1,2 Abstract Purpose: Synovial sarcoma is a soft tissue malignancy Results: Asignificant subset of synovial sarcoma characterized by a reciprocal t(X;18) translocation. The chi- showed nuclear positivity for YAP/TAZ and their tran- meric SS18-SSX fusion protein acts as a transcriptional dysre- scriptional targets FOXM1 and PLK1. In synovial sarco- gulator representing the major driver of the disease; however, ma cells, RNAi-mediated knockdown of SS18-SSX led to the signaling pathways activated by SS18-SSX remain to be significant reduction of YAP/TAZ-TEAD transcriptional elucidated to define innovative therapeutic strategies. activity. Conversely, SS18-SSX overexpression in SCP-1 Experimental Design: Immunohistochemical evaluation cells induced aberrant YAP/TAZ-dependent signals, mech- of the Hippo signaling pathway effectors YAP/TAZ was per- anistically mediated by an IGF-II/IGF-IR signaling loop formed in a large cohort of synovial sarcoma tissue specimens. leading to dysregulation of the Hippo effectors LATS1 SS18-SSX dependency and biological function of the YAP/TAZ and MOB1. Modulation of YAP/TAZ-TEAD–mediated Hippo signaling cascade were analyzed in five synovial sarco- transcriptional activity by RNAi or verteporfintreatment ma cell lines and a mesenchymal stem cell model in vitro. YAP/ resulted in significant growth inhibitory effects in vitro TAZ-TEAD–mediated transcriptional activity was modulated and in vivo. by RNAi-mediated knockdown and the small-molecule inhib- Conclusions: Our preclinical study identifies an elementary itor verteporfin. The effects of verteporfin were finally tested in role of SS18-SSX–driven YAP/TAZ signals, highlights the com- vivo in synovial sarcoma cell line-based avian chorioallantoic plex network of oncogenic signaling pathways in synovial membrane and murine xenograft models as well as a patient- sarcoma pathogenesis, and provides evidence for innovative derived xenograft. therapeutic approaches. 1Division of Translational Pathology, Gerhard-Domagk-Institute of Pathology, Munster€ University Hospital, Munster,€ Germany. 2Gerhard-Domagk-Institute of Pathology, Munster€ University Hospital, Munster,€ Germany. 3Department of Introduction € Pediatric Hematology and Oncology, University Children's Hospital Munster, Synovial sarcoma (SySa) is an aggressive malignancy com- Munster,€ Germany. 4Cells-in-Motion Cluster of Excellence (EXC 1003 – CiM), prising approximately 2% of all sarcomas with a predomi- University of Munster,€ Munster,€ Germany. 5Institute of Pathology and Molecular Pathology, Bundeswehrkrankenhaus Ulm, Ulm, Germany. 6Department of Med- nance in adolescents and young adults (1, 2). Wide surgical icine A, Hematology, Oncology and Respiratory Medicine, University Hospital resection, radiotherapy, and chemotherapy with ifosfamide Munster,€ Munster,€ Germany. 7Institute of Pharmacology of Natural Products & and doxorubicin represent established therapeutic options; Clinical Pharmacology, Ulm University, Ulm, Germany. 8Laboratory of Experi- however, prognosis in the metastatic situation is poor (3–5). mental Oncology, Department of Oncology, KU Leuven, Leuven, Belgium. fi 9 Speci c molecularly targeted therapeutic approaches are cur- Department of General Medical Oncology, University Hospitals Leuven, Leuven rently limited. Cancer Institute, Leuven, Belgium. 10Departments of Oncology and Pathology, Karolinska Institute, Stockholm, Sweden. The molecular hallmark of SySa is a pathognomonic reci- procal t(X;18)(p11;q11) translocation, leading to the fusion Note: Supplementary data for this article are available at Clinical Cancer of SS18 (SYT) and one of the homologues SSX genes Research Online (http://clincancerres.aacrjournals.org/). (most frequently SSX1 or SSX2,inrarecasesSSX4), generating M. Trautmann and W. Hartmann contributed equally to this article. chimeric SS18-SSX fusion proteins (6–8). Although the SS18- Corresponding Authors: Wolfgang Hartmann and Marcel Trautmann, Division SSX protein is known to play a crucial role in SySa tumorigen- € of Translational Pathology, Gerhard-Domagk-Institute of Pathology, Munster esis, its specific biological function and its mechanism of þ University Hospital, Domagkstr. 17, 48149, Germany. Phone: 49 (0) 251-83- action remain to be elucidated. Neither SS18 and the SSX 58479 and -57623, Fax: þ49 (0) 251-83-57559. E-mail: [email protected] and [email protected] proteins, nor the chimeric SS18-SSX oncoproteins feature known DNA-binding motifs; however, they have been reported Clin Cancer Res 2019;25:3718–31 to contribute to the dysregulation of gene expression through doi: 10.1158/1078-0432.CCR-17-3553 association with SWI/SNF and Polycomb chromatin remodel- Ó2019 American Association for Cancer Research. ing complexes (8–12). 3718 Clin Cancer Res; 25(12) June 15, 2019 Downloaded from clincancerres.aacrjournals.org on October 1, 2021. © 2019 American Association for Cancer Research. Published OnlineFirst February 27, 2019; DOI: 10.1158/1078-0432.CCR-17-3553 YAP/TAZ Signals in Synovial Sarcoma Translational Relevance Materials and Methods Tumor specimens and tissue microarray Acting as a powerful transcriptional dysregulator, the chi- SySa tissue microarrays (TMA, containing two representative meric SS18-SSX fusion protein constitutes the major onco- 1-mm cores) were prepared from formalin- fixed, paraffin- genic driver of synovial sarcoma. Given the notorious diffi- embedded tumor specimens selected from the archive of the culty to target the fusion protein itself, functional insights into Gerhard-Domagk-Institute of Pathology, Muenster University SS18-SSX–shaped tumor biology are essential to decipher Hospital, essentially as described previously (19). Two areas druggable tumor vulnerabilities. We here describe a molecu- within each tumor were selected by experienced pathologists larly based mechanism of YAP/TAZ activation in synovial (E. Wardelmann, W. Hartmann) to represent potential heteroge- sarcoma effected by the SS18-SSX fusion protein that involves neity. Necrobiotic areas and their neighborhood were excluded an IGF-II/IGF-IR signaling loop, leading to dysregulation of from TMA sampling to avoid the detection of secondary (e.g., the Hippo effectors LATS1 and MOB1 and provide evidence of hypoxia-induced) alterations. All diagnoses were reviewed by high efficacy of a YAP/TAZ–directed therapeutic approach in three experienced pathologists (S. Huss, S. Elges and W. Hart- synovial sarcoma in vitro and in vivo. Our study highlights the mann) according to the current WHO classification of tumours of complex network of oncogenic signaling pathways in synovial Soft Tissue and Bone (2), based on morphologic and immuno- sarcoma pathogenesis and refines the concept of biologically histochemical criteria, FISH or RT-PCR analysis. In total, 65 SySa founded molecular strategies to inhibit SS18-SSX–driven tissue specimens were included in the study (30/46.2% female, tumorigenesis. 35/53.8% male; median age at diagnosis was 45 years, range 8–78 years). Forty-eight tumors belong to the monophasic subtype, 14 to the biphasic subtype, and 3 tumors were classified as poorly differentiated SySa. Median tumor size was 5 cm (range 0.3–20 The YAP/TAZ Hippo signaling pathway is an evolutionarily cm). In all cases, FISH or RT-PCR analysis confirmed the diagnosis conserved pathway essential in the control of tissue homeostasis of SySa, revealing the pathognomonic t(X;18) translocation as and organ size through the regulation of cell proliferation, apo- described previously (20). Clinicopathologic characteristics of the ptosis, and stem cell self-renewal (13–15). The central component cohort are summarized in Table 1. The study was approved by the is a kinase module comprising the serine-threonine kinases Ethics Committee of the University of Munster€ (2015-548-f-S) MST1/2 and LATS1/2, complemented by the adaptor proteins SAV1 and MOB1 to control the transcriptional co-activators YAP and TAZ. While in their non-phosphorylated state YAP and TAZ translocate to the nucleus and interact with TEAD1-4 transcription Table 1. Clinicopathologic characteristics of the cohort of SySa patients (n ¼ 65) factors to induce expression of target genes such as CTGF, CYR61, Age (years) PLK1 and FOXM1, LATS1/2-mediated phosphorylation of YAP/ Mean (ÆSD) 41 (Æ17) – TAZ results in their cytoplasmic retention and proteasomal deg- Median (range) 45 (8 78) <41 28 (43.1%) radation (14, 16). 41 37 (59.9%) Although convincing data on the oncogenic function of YAP/ Type TAZ signals in several epithelial tumors are available (13), only Primary tumor 43 (66.2%) little is known about their role in malignant soft tissue tumors. Metastasis 9 (13.8%) First evidence for a function of YAP/TAZ in mesenchymal tumor- Recurrence 7 (10.8%) igenesis was gathered by St John and colleagues who demonstrat- ND 6 (9.2%) fi Histology ed that approximately 15% of LATS1/2-de cient mice develop Monophasic 48 (73.9%) metastasizing spindle-cell sarcomas
Recommended publications
  • Hidden Targets in RAF Signalling Pathways to Block Oncogenic RAS Signalling
    G C A T T A C G G C A T genes Review Hidden Targets in RAF Signalling Pathways to Block Oncogenic RAS Signalling Aoife A. Nolan 1, Nourhan K. Aboud 1, Walter Kolch 1,2,* and David Matallanas 1,* 1 Systems Biology Ireland, School of Medicine, University College Dublin, Belfield, Dublin 4, Ireland; [email protected] (A.A.N.); [email protected] (N.K.A.) 2 Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland * Correspondence: [email protected] (W.K.); [email protected] (D.M.) Abstract: Oncogenic RAS (Rat sarcoma) mutations drive more than half of human cancers, and RAS inhibition is the holy grail of oncology. Thirty years of relentless efforts and harsh disappointments have taught us about the intricacies of oncogenic RAS signalling that allow us to now get a pharma- cological grip on this elusive protein. The inhibition of effector pathways, such as the RAF-MEK-ERK pathway, has largely proven disappointing. Thus far, most of these efforts were aimed at blocking the activation of ERK. Here, we discuss RAF-dependent pathways that are regulated through RAF functions independent of catalytic activity and their potential role as targets to block oncogenic RAS signalling. We focus on the now well documented roles of RAF kinase-independent functions in apoptosis, cell cycle progression and cell migration. Keywords: RAF kinase-independent; RAS; MST2; ASK; PLK; RHO-α; apoptosis; cell cycle; cancer therapy Citation: Nolan, A.A.; Aboud, N.K.; Kolch, W.; Matallanas, D. Hidden Targets in RAF Signalling Pathways to Block Oncogenic RAS Signalling.
    [Show full text]
  • Us 8530498 B1 3
    USOO853 0498B1 (12) UnitedO States Patent (10) Patent No.: US 8,530,498 B1 Zeldis (45) Date of Patent: *Sep. 10, 2013 (54) METHODS FORTREATING MULTIPLE 5,639,476 A 6/1997 OShlack et al. MYELOMAWITH 5,674,533 A 10, 1997 Santus et al. 3-(4-AMINO-1-OXO-1,3-DIHYDROISOINDOL- 395 A 22 N. 2-YL)PIPERIDINE-2,6-DIONE 5,731,325 A 3/1998 Andrulis, Jr. et al. 5,733,566 A 3, 1998 Lewis (71) Applicant: Celgene Corporation, Summit, NJ (US) 5,798.368 A 8, 1998 Muller et al. 5,874.448 A 2f1999 Muller et al. (72) Inventor: Jerome B. Zeldis, Princeton, NJ (US) 5,877,200 A 3, 1999 Muller 5,929,117 A 7/1999 Muller et al. 5,955,476 A 9, 1999 Muller et al. (73) Assignee: Celgene Corporation, Summit, NJ (US) 6,020,358 A 2/2000 Muller et al. - 6,071,948 A 6/2000 D'Amato (*) Notice: Subject to any disclaimer, the term of this 6,114,355 A 9, 2000 D'Amato patent is extended or adjusted under 35 SS f 1939. All et al. U.S.C. 154(b) by 0 days. 6,235,756 B1 5/2001 D'Amatoreen et al. This patent is Subject to a terminal dis- 6,281.230 B1 8/2001 Muller et al. claimer 6,316,471 B1 1 1/2001 Muller et al. 6,326,388 B1 12/2001 Man et al. 6,335,349 B1 1/2002 Muller et al. (21) Appl. No.: 13/858,708 6,380.239 B1 4/2002 Muller et al.
    [Show full text]
  • 1 Tumor Suppressor PLK2 May Serve As a Biomarker in Triple-Negative Breast Cancer for Improved Response to PLK1 Therapeutics
    bioRxiv preprint doi: https://doi.org/10.1101/2021.06.16.448722; this version posted June 16, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Tumor suppressor PLK2 may serve as a biomarker in triple-negative breast cancer for improved response to PLK1 therapeutics Yang Gao1, 2, 3, Elena B. Kabotyanski1, 2, Elizabeth Villegas7, Jonathan H. Shepherd8, Deanna Acosta1, 2, Clark Hamor1, 2, Tingting Sun2,4,5, Celina Montmeyor-Garcia9, Xiaping He8, Lacey E. Dobrolecki1, 2, 3, Thomas F. Westbrook2, 4, 5, Michael T. Lewis1, 2, 3, Susan G. Hilsenbeck2, 3, Xiang H.-F. Zhang1, 2, 3, 6, Charles M. Perou8 and Jeffrey M. Rosen1, 2 1Department of Molecular and Cellular Biology 2Dan L. Duncan Cancer Center 3Lester and Sue Smith Breast Center 4Department of Molecular and Human Genetics 5Verna & Marrs McLean Department of Biochemistry and Molecular Biology 6McNair Medical Institute Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA 7University of Houston-Downtown, Houston, TX 77002, USA 8The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA 9 Canadian Blood Services, Toronto, ON M5G 2M1, Canada Correspondence to Jeffrey M. Rosen (Mail Stop: BCM130, Room: BCM-M638a, Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030. Office: 713-798-6210. Fax: 713-898-8012. Email: [email protected]) 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.06.16.448722; this version posted June 16, 2021.
    [Show full text]
  • Genome-Wide Association Study to Identify Genomic Regions And
    www.nature.com/scientificreports OPEN Genome‑wide association study to identify genomic regions and positional candidate genes associated with male fertility in beef cattle H. Sweett1, P. A. S. Fonseca1, A. Suárez‑Vega1, A. Livernois1,2, F. Miglior1 & A. Cánovas1* Fertility plays a key role in the success of calf production, but there is evidence that reproductive efciency in beef cattle has decreased during the past half‑century worldwide. Therefore, identifying animals with superior fertility could signifcantly impact cow‑calf production efciency. The objective of this research was to identify candidate regions afecting bull fertility in beef cattle and positional candidate genes annotated within these regions. A GWAS using a weighted single‑step genomic BLUP approach was performed on 265 crossbred beef bulls to identify markers associated with scrotal circumference (SC) and sperm motility (SM). Eight windows containing 32 positional candidate genes and fve windows containing 28 positional candidate genes explained more than 1% of the genetic variance for SC and SM, respectively. These windows were selected to perform gene annotation, QTL enrichment, and functional analyses. Functional candidate gene prioritization analysis revealed 14 prioritized candidate genes for SC of which MAP3K1 and VIP were previously found to play roles in male fertility. A diferent set of 14 prioritized genes were identifed for SM and fve were previously identifed as regulators of male fertility (SOD2, TCP1, PACRG, SPEF2, PRLR). Signifcant enrichment results were identifed for fertility and body conformation QTLs within the candidate windows. Gene ontology enrichment analysis including biological processes, molecular functions, and cellular components revealed signifcant GO terms associated with male fertility.
    [Show full text]
  • Identification of PIM1 Substrates Reveals a Role for NDRG1
    ARTICLE https://doi.org/10.1038/s42003-020-01528-6 OPEN Identification of PIM1 substrates reveals a role for NDRG1 phosphorylation in prostate cancer cellular migration and invasion Russell J. Ledet1,2,3,5, Sophie E. Ruff1,2,3,5, Yu Wang1,2, Shruti Nayak4, Jeffrey A. Schneider1,2,3, ✉ ✉ 1234567890():,; Beatrix Ueberheide1,4, Susan K. Logan1,2 & Michael J. Garabedian 2,3 PIM1 is a serine/threonine kinase that promotes and maintains prostate tumorigenesis. While PIM1 protein levels are elevated in prostate cancer relative to local disease, the mechanisms by which PIM1 contributes to oncogenesis have not been fully elucidated. Here, we performed a direct, unbiased chemical genetic screen to identify PIM1 substrates in prostate cancer cells. The PIM1 substrates we identified were involved in a variety of oncogenic processes, and included N-Myc Downstream-Regulated Gene 1 (NDRG1), which has reported roles in sup- pressing cancer cell invasion and metastasis. NDRG1 is phosphorylated by PIM1 at serine 330 (pS330), and the level of NDRG1 pS330 is associated higher grade prostate tumors. We have shown that PIM1 phosphorylation of NDRG1 at S330 reduced its stability, nuclear localization, and interaction with AR, resulting in enhanced cell migration and invasion. 1 Departments of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, NY 10016, USA. 2 Department of Urology, New York University School of Medicine, New York, NY 10016, USA. 3 Department of Microbiology, New York University School of Medicine, New York, NY 10016, USA. 4 Proteomics Laboratory, New York University School of Medicine, New York, NY 10016, USA.
    [Show full text]
  • Establishment and Genomic Characterization of a Sporadic Malignant Peripheral Nerve Sheath Tumor Cell Line Jody Fromm Longo1, Stephanie N
    www.nature.com/scientificreports OPEN Establishment and genomic characterization of a sporadic malignant peripheral nerve sheath tumor cell line Jody Fromm Longo1, Stephanie N. Brosius3,5,7, Iya Znoyko1, Victoria A. Alers1, Dorea P. Jenkins1, Robert C. Wilson1,2, Andrew J. Carroll4, Daynna J. Wolf1, Kevin A. Roth6 & Steven L. Carroll1,2,3* Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive Schwann cell-derived neoplasms that occur sporadically or in patients with neurofbromatosis type 1 (NF1). Preclinical research on sporadic MPNSTs has been limited as few cell lines exist. We generated and characterized a new sporadic MPNST cell line, 2XSB, which shares the molecular and genomic features of the parent tumor. These cells have a highly complex karyotype with extensive chromothripsis. 2XSB cells show robust invasive 3-dimensional and clonogenic culture capability and form solid tumors when xenografted into immunodefcient mice. High-density single nucleotide polymorphism array and whole exome sequencing analyses indicate that, unlike NF1-associated MPNSTs, 2XSB cells have intact, functional NF1 alleles with no evidence of mutations in genes encoding components of Polycomb Repressor Complex 2. However, mutations in other genes implicated in MPNST pathogenesis were identifed in 2XSB cells including homozygous deletion of CDKN2A and mutations in TP53 and PTEN. We also identifed mutations in genes not previously associated with MPNSTs but associated with the pathogenesis of other human cancers. These include DNMT1, NUMA1, NTRK1, PDE11A, CSMD3, LRP5 and ACTL9. This sporadic MPNST-derived cell line provides a useful tool for investigating the biology and potential treatment regimens for sporadic MPNSTs. Malignant peripheral nerve sheath tumors (MPNSTs) are aggressive neoplasms derived from the Schwann cell lineage1,2.
    [Show full text]
  • Inhibition of Polo-Like Kinase 1 During the DNA Damage Response Is Mediated Through Loss of Aurora a Recruitment by Bora
    OPEN Oncogene (2017) 36, 1840–1848 www.nature.com/onc ORIGINAL ARTICLE Inhibition of Polo-like kinase 1 during the DNA damage response is mediated through loss of Aurora A recruitment by Bora W Bruinsma1,2,4,5, M Aprelia1,2,5, I García-Santisteban1,3, J Kool2,YJXu2 and RH Medema1,2 When cells in G2 phase are challenged with DNA damage, several key mitotic regulators such as Cdk1/Cyclin B, Aurora A and Plk1 are inhibited to prevent entry into mitosis. Here we have studied how inhibition of Plk1 is established after DNA damage. Using a Förster resonance energy transfer (FRET)-based biosensor for Plk1 activity, we show that inhibition of Plk1 after DNA damage occurs with relatively slow kinetics and is entirely dependent on loss of Plk1-T210 phosphorylation. As T210 is phosphorylated by the kinase Aurora A in conjunction with its co-factor Bora, we investigated how they are affected by DNA damage. Interestingly, we find that the interaction between Bora and Plk1 remains intact during the early phases of the DNA damage response (DDR), whereas Plk1 activity is already inhibited at this stage. Expression of an Aurora A mutant that is refractory to inhibition by the DDR failed to prevent inhibition of Plk1 and loss of T210 phosphorylation, suggesting that inhibition of Plk1 may be established by perturbing recruitment of Aurora A by Bora. Indeed, expression of a fusion in which Aurora A was directly coupled to Bora prevented DNA damage-induced inhibition of Plk1 activity, as well as inhibition of T210 phosphorylation. Taken together, these data demonstrate that DNA damage affects the function of Aurora A at multiple levels: both by direct inhibition of Aurora A activity, as well as by perturbing the interaction with its co-activator Bora.
    [Show full text]
  • Targeting the Hippo Pathway in Prostate Cancer: What's New?
    cancers Review Targeting the Hippo Pathway in Prostate Cancer: What’s New? Kelly Coffey Solid Tumour Target Discovery Laboratory, Translational and Clinical Research Institute, Newcastle University Centre for Cancer, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; [email protected] Simple Summary: Prostate cancer is the most commonly diagnosed cancer in men in the UK, accounting for the deaths of over 11,000 men per year. A major problem in this disease are tumours which no longer respond to available treatments. Understanding how this occurs will reveal new ways to treat these patients. In this review, the latest findings regarding a particular group of cellular factors which make up a signalling network called the Hippo pathway will be described. Accumulating evidence suggests that this network contributes to prostate cancer progression and resistance to current treatments. Identifying how this pathway can be targeted with drugs is a promising area of research to improve the treatment of prostate cancer. Abstract: Identifying novel therapeutic targets for the treatment of prostate cancer (PC) remains a key area of research. With the emergence of resistance to androgen receptor (AR)-targeting therapies, other signalling pathways which crosstalk with AR signalling are important. Over recent years, evidence has accumulated for targeting the Hippo signalling pathway. Discovered in Drosophila melanogasta, the Hippo pathway plays a role in the regulation of organ size, proliferation, migration and invasion. In response to a variety of stimuli, including cell–cell contact, nutrients and stress, a kinase cascade is activated, which includes STK4/3 and LATS1/2 to inhibit the effector proteins YAP and its paralogue TAZ.
    [Show full text]
  • Combined Inhibition of MEK and Plk1 Has Synergistic Anti-Tumor Activity in NRAS Mutant Melanoma
    Combined inhibition of MEK and Plk1 has synergistic anti-tumor activity in NRAS mutant melanoma The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Posch, C., B. Cholewa, I. Vujic, M. Sanlorenzo, J. Ma, S. Kim, S. Kleffel, et al. 2015. “Combined inhibition of MEK and Plk1 has synergistic anti-tumor activity in NRAS mutant melanoma.” The Journal of investigative dermatology 135 (10): 2475-2483. doi:10.1038/jid.2015.198. http://dx.doi.org/10.1038/jid.2015.198. Published Version doi:10.1038/jid.2015.198 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:26860102 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA HHS Public Access Author manuscript Author Manuscript Author ManuscriptJ Invest Author ManuscriptDermatol. Author Author Manuscript manuscript; available in PMC 2016 April 01. Published in final edited form as: J Invest Dermatol. 2015 October ; 135(10): 2475–2483. doi:10.1038/jid.2015.198. Combined inhibition of MEK and Plk1 has synergistic anti-tumor activity in NRAS mutant melanoma C Posch#1,2,3,*, BD Cholewa#4, I Vujic1,3, M Sanlorenzo1,5, J Ma1, ST Kim1, S Kleffel2, T Schatton2, K Rappersberger3, R Gutteridge4, N Ahmad4, and S Ortiz/Urda1 1 University of California San Francisco, Department of Dermatology, Mt. Zion Cancer Research
    [Show full text]
  • Aminolevulinic Acid (ALA) As a Prodrug in Photodynamic Therapy of Cancer
    Molecules 2011, 16, 4140-4164; doi:10.3390/molecules16054140 OPEN ACCESS molecules ISSN 1420-3049 www.mdpi.com/journal/molecules Review Aminolevulinic Acid (ALA) as a Prodrug in Photodynamic Therapy of Cancer Małgorzata Wachowska 1, Angelika Muchowicz 1, Małgorzata Firczuk 1, Magdalena Gabrysiak 1, Magdalena Winiarska 1, Małgorzata Wańczyk 1, Kamil Bojarczuk 1 and Jakub Golab 1,2,* 1 Department of Immunology, Centre of Biostructure Research, Medical University of Warsaw, Banacha 1A F Building, 02-097 Warsaw, Poland 2 Department III, Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warsaw, Poland * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel. +48-22-5992199; Fax: +48-22-5992194. Received: 3 February 2011 / Accepted: 3 May 2011 / Published: 19 May 2011 Abstract: Aminolevulinic acid (ALA) is an endogenous metabolite normally formed in the mitochondria from succinyl-CoA and glycine. Conjugation of eight ALA molecules yields protoporphyrin IX (PpIX) and finally leads to formation of heme. Conversion of PpIX to its downstream substrates requires the activity of a rate-limiting enzyme ferrochelatase. When ALA is administered externally the abundantly produced PpIX cannot be quickly converted to its final product - heme by ferrochelatase and therefore accumulates within cells. Since PpIX is a potent photosensitizer this metabolic pathway can be exploited in photodynamic therapy (PDT). This is an already approved therapeutic strategy making ALA one of the most successful prodrugs used in cancer treatment. Key words: 5-aminolevulinic acid; photodynamic therapy; cancer; laser; singlet oxygen 1. Introduction Photodynamic therapy (PDT) is a minimally invasive therapeutic modality used in the management of various cancerous and pre-malignant diseases.
    [Show full text]
  • Photoreceptor Proliferation and Dysregulation of Cell Cycle Genes in Early Onset Inherited Retinal Degenerations
    University of Pennsylvania ScholarlyCommons Departmental Papers (Vet) School of Veterinary Medicine 3-11-2016 Photoreceptor Proliferation and Dysregulation of Cell Cycle Genes in Early Onset Inherited Retinal Degenerations Kristin L. Gardiner University of Pennsylvania Louise Downs University of Pennsylvania Agnes I. Berta-Antalics University of Pennsylvania Evelyn Santana University of Pennsylvania Gustavo D. Aguirre University of Pennsylvania, [email protected] See next page for additional authors Follow this and additional works at: https://repository.upenn.edu/vet_papers Part of the Veterinary Medicine Commons Recommended Citation Gardiner, K. L., Downs, L., Berta-Antalics, A. I., Santana, E., Aguirre, G. D., & Genini, S. (2016). Photoreceptor Proliferation and Dysregulation of Cell Cycle Genes in Early Onset Inherited Retinal Degenerations. BMC Genomics, 17 (221), http://dx.doi.org/10.1186/s12864-016-2477-9 This paper is posted at ScholarlyCommons. https://repository.upenn.edu/vet_papers/152 For more information, please contact [email protected]. Photoreceptor Proliferation and Dysregulation of Cell Cycle Genes in Early Onset Inherited Retinal Degenerations Abstract Background Mitotic terminally differentiated photoreceptors (PRs) are observed in early retinal degeneration (erd), an inherited canine retinal disease driven by mutations in the NDR kinase STK38L (NDR2). Results We demonstrate that a similar proliferative response, but of lower magnitude, occurs in two other early onset disease models, X-linked progressive retinal atrophy 2 (xlpra2) and rod cone dysplasia 1 (rcd1). Proliferating cells are rod PRs, and not microglia or Müller cells. Expression of the cell cycle related genes RB1 and E2F1 as well as CDK2,4,6 was up-regulated, but changes were mutation-specific.
    [Show full text]
  • Comprehensive Identification of Proteins in Hodgkin Lymphoma
    Laboratory Investigation (2007) 87, 1113–1124 & 2007 USCAP, Inc All rights reserved 0023-6837/07 $30.00 Comprehensive identification of proteins in Hodgkin lymphoma-derived Reed–Sternberg cells by LC-MS/MS Jeremy C Wallentine1, Ki Kwon Kim1, Charles E Seiler III1, Cecily P Vaughn2, David K Crockett2, Sheryl R Tripp2, Kojo SJ Elenitoba-Johnson1,2 and Megan S Lim1,2 Mass spectrometry-based proteomics in conjunction with liquid chromatography and bioinformatics analysis provides a highly sensitive and high-throughput approach for the identification of proteins. Hodgkin lymphoma is a form of malignant lymphoma characterized by the proliferation of Reed–Sternberg cells and background reactive lymphocytes. Comprehensive analysis of proteins expressed and released by Reed–Sternberg cells would assist in the discovery of potential biomarkers and improve our understanding of its pathogenesis. The subcellular proteome of the three cellular compartments from L428 and KMH2 Hodgkin lymphoma-derived cell lines were fractionated, and analyzed by reverse- phase liquid chromatography coupled with electrospray ionization tandem mass spectrometry. Additionally, proteins released by Hodgkin lymphoma-derived L428 cells were extracted from serum-free culture media and analyzed. Peptide spectra were analyzed using TurboSEQUESTs against the UniProt protein database (5.26.05; 188 712 entries). A subset of the identified proteins was validated by Western blot analysis, immunofluorescence microscopy and im- munohistochemistry. A total of 1945 proteins were identified with 785 from the cytosolic fraction, 305 from the membrane fraction, 441 from the nuclear fraction and 414 released proteins using a minimum of two peptide identi- fications per protein and an error rate of o5.0%.
    [Show full text]