Pollution Des Eaux Du Littoral Par Les Absorbeurs D'uv Issus De Crèmes Solaires, Générée Par Les Activités Estivales

Total Page:16

File Type:pdf, Size:1020Kb

Pollution Des Eaux Du Littoral Par Les Absorbeurs D'uv Issus De Crèmes Solaires, Générée Par Les Activités Estivales J. Labille - Projet OHM Littoral 2017 PLAGE-UV Pollution des eaux du Littoral par les Absorbeurs d’UV issus de crèmes solaires, Générée par les activités Estivales - Phase B PLAGE-UVB Centre Européen de Recherche et Enseignement en Géosciences de l'Environnement, UM 34 CEREGE J. Labille, D. Slomberg, R. Catalano, O. Radakovitch, C. de Garidel Laboratoire de Chimie de l’Environnement, UMR 7376 LCE J.-L. Boudenne Etude des Structures, des Procédures d’Adaptation et des Changements d’Espace, UMR 7300 ESPACE R. Bertholdo, J. Ribourdouille, S. Robert, M.-L. Tremelo Surfrider Foundation Europe S. Hatimi, B. Van Hoorebeke Séminaire OHM Littoral Méditerranéen – 27/03/19 Sites d’étude • Plage du Prophète, Marseille • Plage de Pointe Rouge, Marseille • Plage de la Lave, Le Rove J. Labille - Projet OHM Littoral 2017 PLAGE-UV Des molécules organiques comme absorbeur d’UV nano-TiO Filtres minéraux nano 2 < 25% Filtres organiques dioxybenzone oxybenzone avobenzone 2-éthylhexyl-4-méthoxycinnamate octocrylène • L’utilisation des filtres minéraux et organiques ensemble est la plus répandue pour une protection de plus large spectre. • Les filtres organiques synthétiques sont interdits en produits cosmétiques bio. Analyse chimique de l’eau – Quantification TiO2 Plage du Prophète Samedi 15 juillet 2017 TiO2 900 µg/L Ti concentration in seawater �g/L en surface 600 10-16 µg/L 500 à 40 cm �g/L 400 12 10 300 8 6 200 2 m 4 50 m 100 2 200 m 0 0 Labille et al., in prep. J. Labille - Projet OHM Littoral 2017 PLAGE-UV Mesure des filtres organiques Unités Pic de concentration à 16h, (ng/L) Prophète dist 2 m, prof 40 cm 35.0 distance 2m, profondeur 40 cm, 30.0 sur les 3 plages, pendant le bain. 25.0 20.0 OXY 15.0 OC 10.0 Pas d’effet à 200 m 5.0 0.0 OXY Prophète, prof 40 cm 11/07/2017 8h 15/7/17 8h 15/7/17 16h 16/7/17 8h 45.0 Corbière dist 2m, prof 40 cm 40.0 35.0 150.0 30.0 2 m 25.0 20.0 50 m 100.0 15.0 200 m OC 10.0 5.0 AVO 50.0 0.0 11/07/2017 8h 15/7/17 8h 15/7/17 16h 16/7/17 8h 0.0 OC Corbière prof 40 cm 11/07/2017 8h 15/07/2017 8h 15/07/17 16h 16/07/2017 8h 150.0 Pte Rouge dist 2m, prof 40 cm 150.0 100.0 2 m 100.0 OXY 50 m OC 50.0 200 m AVO 50.0 OMC 0.0 11/07/2017 8h 15/07/2017 8h 15/07/17 16h 16/07/2017 8h 0.0 11/07/2017 8h 15/7/17 8h 15/7/17 16h 16/07/2017 8h J. Labille - Projet OHM Littoral 2017 PLAGE-UV Enquête activités et pratiques Baignade et écran solaire Combien de fois mettez-vous de En mettez-vous avant la En mettez-vous après la la crème solaire ? baignade ? baignade ? 60% 60% 60% Moyenne : 2,7 40% 40% 40% 20% 20% 20% 0% 0% 0% 1 fois 2 à 4 fois 5 fois ou / Oui Non NA / Oui Non NA / plus Lave Pointe Rouge Prophète Lave Pointe Rouge Prophète Lave Pointe Rouge Prophète En mettez-vous sur … ? Pratiquez vous le bain? 60% 90% 80% 40% 70% 80% à chaque fois. 60% 20% 50% 40% 30% 0% 20% Tout le Haut du Visage NA / 10% corps corps 0% Lave Pointe Rouge Prophète Lave Pointe Rouge Prophète Types de produits solaires consommés Enquête sur les habitudes de consommation en crème solaire Garnier Ambre other brands < solaire. 14% 1.2%. 20% marques des crèmes solaires consommées Nuxe sun. 2% Mixa solaire. 2% Nivea Sun. 13% Soleil Biafine. 2% Lovea. 2% Corine de Farme. 2% Vichy. 3% Avène. 12% Yves Rocher. 3% Soleil noir. 3% ZnO (nano) ZnO L'Oréal. 6% La Roche Posay. Bioderma. 7% TiO2 (nano) occurrence des filtres 9% TiO2 Bisdisulizole disodium UV dans les crèmes Drometrizol trisiloxane solaires consommées Indices de protection MBBT (nano) Iscotrizinol nd no SPF SPF 4 - 10 Homosalate Diethylamino hydroxybenzoyl Ecamsule Ethylhexyl triazone Bisoctrizole Bemotrizinol SPF 50+ SPF 15 - 20 Ensulizole Oxybenzone Octisalate Octinoxate Padimate O SPF 30 Octocrylene Avobenzone SPF 50 no UV protection 0 10 20 30 40 50 60 70 80 90 occurence (%) Enquête activités et pratiques Baignade et écran solaire : source de pollution de l’eau? Estimation par l’enquête Quantité de crème : 15 / 07 /2017, Plage du Prophète : nb usagers x % consommateur x % baigneurs x nb utilisation x masse crème = 3000 x 70% x 80% X 2,7 X 15g = 68 kg de crème transitent dans l’eau Si 100% de crème relargués, la pollution de l’eau est estimée à 68 kg par jour, soit 476 kg /semaine, soit 1,9 t / mois, soit 5,7 tonnes / saison (pour une plage) Quantité de TiO2 : masse crème x % crème TiO2 x % massique = 68 x 10% x 5% = 340 g TiO2 / jour = 71 kg / mois Concentration TiO2 80m volume eau de plage : 2000 m3 + 580 m3 de renouvellement effet coup de froid : x 0,5 TiO2 : 66 µg/L La presse en parle Conclusions année 1 sur quantification TiO2 dans l’eau • 24% des nano consommées sont retrouvées en suspension dans l’eau. • Des patch hydrophobes très concentrés persistent en surface 340 g 16 µg/L 900 µg/L TiO2 TiO2 TiO2 2 m 20 m Conclusions année 1 sur quantification TiO2 dans l’eau • 24% des nano consommées sont retrouvées en suspension dans l’eau. • Des patch hydrophobes très concentrés TiO2 persistent en surface sédimenté ? Objectifs année 2 340 g 16 µg/L 900 µg/L TiO2 TiO2 TiO2 2 m 20 m Conclusions année 1 sur quantification TiO2 dans l’eau • 24% des nano consommées sont retrouvées en suspension dans l’eau. • Des patch hydrophobes très concentrés TiO2 persistent en surface sédimenté ? Objectifs année 2 340 g 16 µg/L 900 µg/L TiO2 TiO2 TiO2 2 m 20 m Perspectives: 1 publication en prep. Collaborations industrielles éco-conception crème (Beiersdorf Nivéa) Collaboration industrielle campagne plage (Sisley Paris) Montage plateforme analytique régionale NEC PLAGE UVB 2018-2019 • Tâche 1 : Campagne de terrain 18 juillet 2018, plage du Prophète • Échantillonnage d’eau reconduit • Carottage du sable à 2 m et 20 m. • Quantification du TiO2 dans les échantillons • Tâche 2 : Perception du risque lié aux produits solaires chez le consommateur et impact sur le type de consommation Perception des risques des nanoparticules dans la crème solaire Crème solaire – source de protection ou préoccupation ? Variables mesurées : • Comportements et croyances sur l’exposition au soleil • Connaissances et croyances sur les nanoparticules • Croyances sur le cancer de la peau • Usage des crèmes solaires • Croyances en la science (modèle de science) Perception des risques des nanoparticules dans la crème solaire Crème solaire – source de protection ou préoccupation ? Variables mesurées : • Comportements et croyances sur l’exposition au soleil • Connaissances et croyances sur les nanoparticules • Croyances sur le cancer de la peau • Usage des crèmes solaires • Croyances en la science (modèle de science) Approche expérimentale T1 Perception des risques liés aux nanoparticules / crèmes solaires Perception des risques des nanoparticules dans la crème solaire Crème solaire – source de protection ou préoccupation ? Variables mesurées : • Comportements et croyances sur l’exposition au soleil • Connaissances et croyances sur les nanoparticules • Croyances sur le cancer de la peau • Usage des crèmes solaires • Croyances en la science (modèle de science) Approche expérimentale T1 C1 ALARMISTE Perception des risques liés aux C2 SENSIBILISATION nanoparticules / crèmes solaires Perception des risques des nanoparticules dans la crème solaire Crème solaire – source de protection ou préoccupation ? Variables mesurées : • Comportements et croyances sur l’exposition au soleil • Connaissances et croyances sur les nanoparticules • Croyances sur le cancer de la peau • Usage des crèmes solaires • Croyances en la science (modèle de science) Approche expérimentale T2 T1 C1 ALARMISTE Perception des risques liés Perception des risques liés aux C2 SENSIBILISATION aux nanoparticules / nanoparticules / crèmes solaires crèmes solaires Perception des risques des nanoparticules dans la crème solaire Crème solaire – source de protection ou préoccupation ? Variables mesurées : • Comportements et croyances sur l’exposition au soleil • Connaissances et croyances sur les nanoparticules • Croyances sur le cancer de la peau • Usage des crèmes solaires • Croyances en la science (modèle de science) Approche expérimentale Science binaire vs complexe ? T2 T1 C1 ALARMISTE Perception des risques liés Perception des risques liés aux C2 SENSIBILISATION aux nanoparticules / nanoparticules / crèmes solaires crèmes solaires Perception des risques des nanoparticules dans la crème solaire Analyse des données et résultats escomptés • Modélisation du comportement d’utilisation des crèmes solaires • Modélisation de la perception des risques associés aux (1) nano et (2) soleil Perception des risques des nanoparticules dans la crème solaire Analyse des données et résultats escomptés • Modélisation du comportement d’utilisation des crèmes solaires • Modélisation de la perception des risques associés aux (1) nano et (2) soleil • Influence de l’information de sensibilisation vs. alarmiste sur la perception des risques • Influence du modèle de science? .
Recommended publications
  • May 23, 2007 Office of Pesticide Programs
    May 23, 2007 Office of Pesticide Programs (OPP) Regulatory Public Docket (7502P) Environmental Protection Agency 1200 Pennsylvania Ave., NW Washington, DC 20460-0001 RE: Insect Repellent-Sunscreen Combination Products [EPA-HQ-OPP-2007-0087] Beyond Pesticides appreciates the prudent contemplation of insect repellent-sunscreen combination products EPA proposed in the reregistration eligibility decision (RED) for N,N-diethyl-meta-toluamide (DEET). We also appreciate this opportunity to share our concerns over these products. Beyond Pesticides interest in this issue lies in our effort to restrict pesticide use in a manner that protects public health and the environment, and to advance alternatives that eliminate dependency on toxic chemicals. We oppose the reregistration of all DEET-sunscreen combination products for the following reasons: 1. DEET exposure can result in negative health effects. As the agency notes, the registration of DEET is unusual in that it is one of few residential-use pesticides that is applied directly to the skin. The result is that the public is being exposed to a pesticide that has the ability to cause in lab animals increased fetal loss, bone and skeleton abnormalities in the offspring of rabbits, birth defects in birds, reduction in size of the testes and degeneration, and has produced abnormal sperm with reduced motility. Additionally, the public is directly applying a chemical to their skin that is demonstrated to cross the placenta and move into fetal blood in humans, has the ability to cause mutagenicity and oxidative stress, can decrease sensory and motor skills, causes skin irritation and kills brain cells.1 2. Sunscreen exposure can result in negative health effects.
    [Show full text]
  • A Thesis Entitled Evaluating UVB and UVA Boosting Technologies For
    A Thesis entitled Evaluating UVB and UVA Boosting Technologies for Chemical and Physical Sunscreens by An Ngoc Hiep Huynh Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science Degree in Pharmaceutical Sciences Industrial Pharmacy ___________________________________________ Gabriella Baki, Ph.D., Committee Chair ___________________________________________ Jerry Nesamony, Ph.D., Committee Member ___________________________________________ Matthew W. Liberatore, Ph.D., Committee Member ___________________________________________ Dr. Amanda C. Bryant-Friedrich, Dean College of Graduate Studies The University of Toledo May 2020 Copyright 2020 An Ngoc Hiep Huynh This document is copyrighted material. Under copyright law, no parts of this document may be reproduced without the expressed permission of the author. An Abstract of Evaluating UVB and UVA Boosting Technologies for Chemical and Physical Sunscreens by An Ngoc Hiep Huynh Submitted to the Graduate Faculty as partial fulfillment of the requirements for the Master of Science Degree in Pharmaceutical Sciences Industrial Pharmacy The University of Toledo May 2020 There are currently 14 organic and 2 inorganic UV filters approved in the United States. Due to coral reef safety concerns, octinoxate and oxybenzone have been banned in Hawaii, Key West, FL and the US Virgin Islands; and octocrylene is also being studied for its potential impact on coral reef safety, leaving 11 organic UV filters as viable options for sunscreen manufacturers – with limitations on their combination. Since consumers are always looking for sunscreens with high SPF and broad-spectrum protection, the need for UVB and UVA protection boosting technologies is greater than ever. In a preliminary study, about two dozen emollients were scanned for their SPF boosting capability with selected organic UV filters.
    [Show full text]
  • GAO-18-61, SUNSCREEN: FDA Reviewed Applications For
    United States Government Accountability Office Report to Congressional Committees November 2017 SUNSCREEN FDA Reviewed Applications for Additional Active Ingredients and Determined More Data Needed GAO-18-61 November 2017 SUNSCREEN FDA Reviewed Applications for Additional Active Ingredients and Determined More Data Needed Highlights of GAO-18-61, a report to congressional committees Why GAO Did This Study What GAO Found Using sunscreen as directed with other The Food and Drug Administration (FDA), within the Department of Health and sun protective measures may help Human Services, implemented requirements for reviewing applications for reduce the risk of skin cancer—the sunscreen active ingredients within time frames set by the Sunscreen Innovation most common form of cancer in the Act, which was enacted in November 2014. For example, the agency issued a United States. In the United States, guidance document on safety and effectiveness testing in November 2016. sunscreen is considered an over-the- counter drug, which is a drug available As of August 2017, all applications for sunscreen active ingredients remain to consumers without a prescription. pending after the agency determined more safety and effectiveness data are Some sunscreen active ingredients not needed. By February 2015, FDA completed its initial review of the safety and currently marketed in the United States effectiveness data for each of the eight pending applications, as required by the have been available in products in act. FDA concluded that additional data are needed to determine that the other countries for more than a ingredients are generally recognized as safe and effective (GRASE), which is decade. Companies that manufacture needed so that products using the ingredients can subsequently be marketed in some of these ingredients have sought the United States without FDA’s premarket approval.
    [Show full text]
  • Octinoxate, Octisalate, Avobenzone, Ensulizole, Homosalate
    TONYMOLY MAGIC FOOD MANGO MILD SUN BLOCK- octinoxate, octisalate, avobenzone, ensulizole, homosalate cream TONYMOLY CO.,LTD Disclaimer: Most OTC drugs are not reviewed and approved by FDA, however they may be marketed if they comply with applicable regulations and policies. FDA has not evaluated whether this product complies. ---------- ACTIVE INGREDIENT Active ingredients: Ethylhexyl Methoxycinnamate 6.9%, Ethylhexyl Salicylate 4.5%, Butyl Methoxydibenzoylmethane 3.5%, Phenylbenzimidazole Sulfonic Acid 3.5%, Homosalate 3.0% INACTIVE INGREDIENT Inactive ingredients: Water, Butylene Glycol, Alcohol Denat., Octocrylene, Phenethyl Benzoate, Aminomethyl Propanol, Bis-Ethylhexyloxyphenol Methoxyphenyl Triazine, Triceteareth-4 Phosphate, Glycol Stearate, Ammonium Acryloyldimethyltaurate/VP Copolymer, Carbomer, PEG-2 Stearate, Fragrance(Parfum), Phenoxyethanol, Glyceryl Caprylate, Caprylyl Glycol, Mangifera Indica (Mango) Seed Butter, Disodium EDTA, Citrus Limon (Lemon) Fruit Extract, Musa Sapientum (Banana) Fruit Extract, Propylene Glycol, 1,2-Hexanediol, Citrus Aurantium Dulcis (Orange) Fruit Extract, Mangifera Indica (Mango) Fruit Extract, Psidium Guajava Fruit Extract, Citrus Paradisi (Grapefruit) Fruit Extract, Cocos Nucifera (Coconut) Fruit Extract, Actinidia Chinensis (Kiwi) Fruit Extract, Carica Papaya (Papaya) Fruit Extract, Ethylhexylglycerin PURPOSE Purpose: Sunscreen WARNINGS Warnings: For external use only Do not use on damaged or broken skin Stop use and ask a doctor if irritation occurs Keep out of reach of children DESCRIPTION Uses: - helps prevent sunburn - If used as directed with other sun protection measures Directions: decreases the risk of skin cancer and early skin aging caused by the sun Directions: For sunscreen use: - apply liberally 15 minutes before sun exposure - use a water resistant sunscreen if swimming or sweating - reapply at least every 2 hours - Sun Protection Measures. Spending time in the sun increases your risk of skin cancer and early skin aging.
    [Show full text]
  • Research Article Development and Validation of a Stability Indicating
    Hindawi Publishing Corporation ISRN Chromatography Volume 2013, Article ID 506923, 12 pages http://dx.doi.org/10.1155/2013/506923 Research Article Development and Validation of a Stability Indicating RP-HPLC Method for the Determination of Two Sun Protection Factors (Koptrizon and Tinosorb S) in Topical Pharmaceutical Formulations Using Experimental Designs Chinmoy Roy1,2 and Jitamanyu Chakrabarty2 1 Analytical Research and Development, Dr. Reddy’s Laboratories Ltd., Bachupally, Hyderabad, Andhra Pradesh 500090, India 2 Department of Chemistry, National Institute of Technology, Durgapur, West Bengal 713209, India Correspondence should be addressed to Chinmoy Roy; [email protected] Received 11 March 2013; Accepted 15 April 2013 Academic Editors: C. Akbay and J. A. P. Coelho Copyright © 2013 C. Roy and J. Chakrabarty. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. A novel, simple, validated stability indicating HPLC method was developed for determination of Koptrizon and Tinosorb S. Stability indicating power of the method was established by forced degradation study. The chromatographic separation was achieved with Waters X Bridge C18 column, by using mobile phase consisting of a mixture of acetonitrile : tetrahydrofuran : water (38 : 38 : 24, v/v/v). The method fulfilled validation criteria and was shown to be sensitive, with limits of detection (LOD) and quantitation −1 −1 (LOQ) of 0.024 and 0.08 gmL for Koptrizon and 0.048 and 0.16 gmL for Tinosorb S, respectively. The developed method is validated for parameters like precision, accuracy, linearity, solution stability, specificity, and ruggedness as per ICH norms.
    [Show full text]
  • Table 1 - Experimental and Predicted Physical-Chemical Parameters of the Most Recently Investigated UV-Absorbers
    Table 1 - Experimental and predicted physical-chemical parameters of the most recently investigated UV-absorbers. INCI name (INN/XAN) Chemical structure Brand name Absorption Molecula LogP Water solubility Melting spectrum range r weight (mg/L) point (°C) (g/mol)4 diethylamino Uvinul® A Plus UVA1 5.7-6.21 <0.01 (20°C) 1 54; 314 hydroxybenzoyl hexyl 397.515 (dec.) 1 benzoate Butyl Eusolex® 9020, UVA 310.393 4.514 2.2 (25°C)4 83.54 methoxydibenzoylmetha Parsol® 1789 ne (avobenzone) 4-methylbenzylidene Eusolex® 6300 UVB 258.397 4.95 1.3 (20°C) 66–68 camphor (enzacamene) Parsol® 5000 Uvinul® MBC 95 Octocrylene Eusolex® OCR, UVB 361.485 6.783 0.00383 N/A (octocrilene) Parsol® 340, Uvinul® N539T, NeoHeliopan® 303 USP isoamyl p- Neo Heliopan® UVB 248.322 3.61 4.9 (25°C)1 N/A methoxycinnamate E1000 (amiloxate) Ethylhexyl triazone Uvinul® T150 UVB 823.092 > 7(20 °C) 6 < 0.001 (20.0 °C) 6 1296 Ethylhexyl Parsol® MCX, UVB 290.403 6.14 0.041 (24 °C and N/A methoxycinnamate Heliopan® New pH 7.1) 4 (octinoxate) Ethylhexyl dimethyl Escalol™ 507 UVB 277.4084 5.774 0.54 (25 °C) 4 N/A PABA (padimate-O) Arlatone 507 Eusolex 6007 benzophenone-3 Eusolex® 4360 UVA2+ UVB 228.247 3.72 3.7 (20°C) 2 62-652 (oxybenzone) bis-ethylhexyloxyphenol Tinosorb® S UVA1+UVB 627.826 12.61 <10-4 80.401 methoxyphenol triazine (bemotrizinol) Phenylbenzimidazole Eusolex® 232 UVA2+ UVB 274.2945 -1.1 (pH 5) > 30% (As sodium N/A sulfonic acid Parsol® HS -2.1 (pH 8)5 or (ensulizole) Neo Heliopan® triethanolammoniu Hydro m salt at 20°C) 5 1 (3) 2 (34) 3 (44) 4 Pubchem 5 SCCP/1056/06 Opinion on phenylbenzimidazole sulfonic acid and its salts 6 BASF safety data sheet Table 2 – In vitro studies for the assessment of skin permeation/penetration of sunscreens.
    [Show full text]
  • Sun Protection, Sunscreens and Vitamin D
    SunSun protection,protection, sunscreenssunscreens andand VitaminVitamin DD GPGP NationalNational ConferenceConference RotoruaRotorua EnergyEnergy EventsEvents CentreCentre JuneJune 20092009 Dr. Louise Reiche Dermatologist New Zealand Dermatological Society Incorporated MelanomaMelanoma SkinSkin cancercancer andand sunlightsunlight Exposure to UVR causes > 90% of skin cancers Skin cancer is commonest cancer in NZ >50,000 new cases per year ~300 deaths per year ~$33.4 NZ million per year International Agency for Research on Cancer. IARC Monographs on the evaluation of carcinogenic risks to humans. Solar ultraviolet radiation. Lyon: International Agency for Research on Cancer, 1992. Armstrong BK. How sun exposure causes skin cancer. In: Hill D, Elwood JM, English DR, Eds. Prevention of Skin Cancer. Dordrecht: Kluwer Academic Publishers, 2004. O’Dea D. The Costs of Skin Cancer to New Zealand. Wellington: Cancer Society of New Zealand, 2000. New Zealand Health Information Service. Cancer, New Registrations and Deaths. Wellington: New Zealand Health Information Service, 2004. MelanomaMelanoma 1842 new cases in 2002 328 directly attributable to severe sunburn (Sneyd and Cox 2006) Authors recommended, “to reduce burden of melanoma in NZ, need to prevent excessive sun exposure and (facilitate) early diagnosis” Whilst cancer overall is rare in adolescence, melanoma was commonest cancer MelanomaMelanoma NZ incidence and death rate among world highest 56.2/100,000 in European population of Auckland highest reported worldwide men
    [Show full text]
  • Photophysics and Skin Penetration of Active Agents in a Commercial Sunscreen and Insect Repellent
    PHOTOPHYSICS AND SKIN PENETRATION OF ACTIVE AGENTS IN A COMMERCIAL SUNSCREEN AND INSECT REPELLENT by DONALD PRETTYPAUL A Dissertation submitted to the Graduate School-Newark Rutgers, The State University of New Jersey In partial fulfillment of the requirements for the degree of Doctor of Philosophy Graduate Program in Chemistry written under the direction of Professor Richard Mendelsohn Professor Piotr Piotrowiak and approved by Newark, New Jersey October 2018 ©2018 Donald Prettypaul ALL RIGHTS RESERVED ABSTRACT OF DISSERTATION PHOTOPHYSICS AND SKIN PENETRATION OF ACTIVE AGENTS IN A COMMERCIAL SUNSCREEN AND INSECT REPELLENT By DONALD PRETTYPAUL Dissertation co-Directors: Professor Richard Mendelsohn Professor Piotr Piotrowiak This dissertation is focused on active agents in commercial sunscreen and insect repellent products. It consists of two parts, the first focusing on the photophysics of a sunscreen active agent and the second on the permeation and spatial distribution of the sunscreen active and an insect repellent active when these agents are applied to ex-vivo human skin. In the photochemistry study, ultrafast spectroscopy was used to study the excited state dynamics of the sunscreen molecule, Bemotrizinol. The work focused on the dissipation rates of the electronic excitation energy in different solvents. To complement the results from time-resolved femtosecond spectroscopy, Hartree- Fock UH/UHF 6-31G* calculations were used to characterize the ground and excited states potential energy surfaces. The results indicate that the excited state deactivation pathway follows a proton coupled electron transfer process which ii proceeds via a concerted mechanism. The dependencies on solvent polarity, viscosity, and H/D isotope effects, were investigated. Sunscreen products have been developed to protect skin from ultraviolet (UV) radiation; to achieve adequate protection, the sunscreen must be evenly applied and remain on the surface of the skin.
    [Show full text]
  • New Technology Provides Cosmetically Elegant Photoprotection Zoe Diana Draelos, MD; Christian Oresajo; Margarita Yatskayer; Angelike Galdi; Isabelle Hansenne
    COSMETIC CONSULTATION New Technology Provides Cosmetically Elegant Photoprotection Zoe Diana Draelos, MD; Christian Oresajo; Margarita Yatskayer; Angelike Galdi; Isabelle Hansenne he primary preventable cause of photoaging is United States, as there is no official rating system for exposure to UVA radiation. This wavelength UVA photoprotection yet. T emitted by the sun is present year round in all Ecamsule absorbs UVA radiation in the range of 320 to latitudes. Currently, the majority of sun-protective prod- 360 nm, but its peak absorbance occurs at 345 nm. It is ucts provide excellent UVB protection with minimal UVA typically combined with other organic sunscreen ingredi- protection. Although UVB protection is important in ents, such as avobenzone and octocrylene. Avobenzone, order to prevent sun damage to the skin from occurring, which is a photounstable photoprotectant, becomes UVA protection is equally important. New developments photostable when combined with octocrylene. These in raw material science have led to the manufacture of ingredients yield a photostable broad-spectrum sunscreen novel ingredients able to provide unprecedented photo- combination. However, the active sunscreen agents are protection COSin the UVA spectrum. DERMonly part of the formulation. Also important in sunscreen One of the most significant developments in cutaneous is the construction of the vehicle to deliver the photo- UVA protection was the discovery of ecamsule (Figure 1), protectants in an aesthetically pleasing manner, enticing also known as Mexoryl SX. Mexoryl SX, which has patients to wear the product. Sunscreens fail to be effec- the International Nomenclature of Cosmetic Ingredients tive if they remain in the bottle. name of terephthalylidene dicamphor sulfonic acid, is In order to evaluate the efficacy and tolerability of a water soluble.
    [Show full text]
  • Effect of 10 UV Filters on the Brine Shrimp Artemia Salina and the Marine Microalgae Tetraselmis Sp
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.30.926451; this version posted January 31, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Effect of 10 UV filters on the brine shrimp Artemia salina and the marine microalgae Tetraselmis sp. Evane Thorel, Fanny Clergeaud, Lucie Jaugeon, Alice M. S. Rodrigues, Julie Lucas, Didier Stien, Philippe Lebaron* Sorbonne Université, CNRS USR3579, Laboratoire de Biodiversité et Biotechnologie Microbienne, LBBM, Observatoire Océanologique, 66650, Banyuls-sur-mer, France. *corresponding author : E-mail address : [email protected] Abstract The presence of pharmaceutical and personal care products’ (PPCPs) residues in the aquatic environment is an emerging issue due to their uncontrolled release, through grey water, and accumulation in the environment that may affect living organisms, ecosystems and public health. The aim of this study is to assess the toxicity of benzophenone-3 (BP-3), bis-ethylhexyloxyphenol methoxyphenyl triazine (BEMT), butyl methoxydibenzoylmethane (BM), methylene bis- benzotriazolyl tetramethylbutylphenol (MBBT), 2-Ethylhexyl salicylate (ES), diethylaminohydroxybenzoyl hexyl benzoate (DHHB), diethylhexyl butamido triazone (DBT), ethylhexyl triazone (ET), homosalate (HS), and octocrylene (OC) to marine organisms from two major trophic levels including autotrophs (Tetraselmis sp.) and heterotrophs (Artemia salina). In general, EC50 results show that both HS and OC are the most toxic for our tested species, followed by a significant effect of BM on Artemia salina but only at high concentrations (1 mg/L) and then an effect of ES, BP3 and DHHB on the metabolic activity of the microalgae at 100 µg/L.
    [Show full text]
  • Sunscreen Faqs
    Sunscreen FAQs What type of sunscreen should I use? There are two main types of sunscreen ingredients: physical sun blockers and chemical sunscreens. Physical sunscreens prevent ultraviolet light from reaching your skin, and contain either zinc oxide or titanium dioxide. Physical sunscreens protect against UVA and UVB damage. Physical sunscreens are preferred for patients with sensitive skin or children. Chemical sunscreens rely on an interaction between the sun and the chemical to protect your skin. Examples of such chemicals are avobenzone, octinoxate, homosalate, padimate O, and many others. Chemical sunscreens can protect against UVA, UVB, or both types of damage, depending on which ingredient is used. Read the label to ensure coverage for both UVA and UVB exposure. There are new ingredients being developed that take chemical sunscreens and stabilize them to prolong their activity (i.e., Helioplex, Mexoryl). Does the SPF really matter? In laboratory testing, there are minor differences between SPF 15 and SPF 30 or greater products. However, that data is based on using 1 oz. (30 gm.) of sunscreen for each full body application (the size of a shot glass). Most people use far less in real-life settings. For that reason, we recommend an SPF of at least 30. It is common to find good sunscreens with SPF ranging from 45-70. To maintain protection, reapply sunscreen every 1-3 hours, depending on sweating, water exposure, and sun intensity. Is sunscreen alone enough to protect my skin in the sun? In some cases, yes. However, if you are in the sun for longer periods on a regular basis (such as gardening, golfing, boating, sports), it may be better to add sun protective clothing or habits.
    [Show full text]
  • FDA Proposes Sunscreen Regulation Changes February 2019
    FDA Proposes Sunscreen Regulation Changes February 2019 The U.S. Food and Drug Administration (FDA) regulates sunscreens to ensure they meet safety and eectiveness standards. To improve the quality, safety, and eectiveness of sunscreens, FDA issued a proposed rule that describes updated proposed requirements for sunscreens. Given the recognized public health benets of sunscreen use, Americans should continue to use broad spectrum sunscreen with SPF 15 or higher with other sun protective measures as this important rulemaking eort moves forward. Highlights of FDA’s Proposals Sunscreen active ingredient safety and eectiveness Two ingredients (zinc oxide and titanium dioxide) are proposed to be safe and eective for sunscreen use and two (aminobenzoic acid (PABA) and trolamine salicylate) are 1 proposed as not safe and eective for sunscreen use. FDA proposes that it needs more safety information for the remaining 12 sunscreen ingredients (cinoxate, dioxybenzone, ensulizole, homosalate, meradimate, octinoxate, octisalate, octocrylene, padimate O, sulisobenzone, oxybenzone, avobenzone). New proposed sun protection factor Sunscreen dosage forms (SPF) and broad spectrum Sunscreen sprays, oils, lotions, creams, gels, butters, pastes, ointments, and sticks are requirements 2 proposed as safe and eective. FDA 3 • Raise the maximum proposed labeled SPF proposes that it needs more data for from SPF 50+ to SPF 60+ sunscreen powders. • Require any sunscreen SPF 15 or higher to be broad spectrum • Require for all broad spectrum products SPF 15 and above, as SPF increases, broad spectrum protection increases New proposed label requirements • Include alphabetical listing of active ingredients on the front panel • Require sunscreens with SPF below 15 to include “See Skin Cancer/Skin Aging alert” on the front panel 4 • Require font and placement changes to ensure SPF, broad spectrum, and water resistance statements stand out Sunscreen-insect repellent combination 5 products proposed not safe and eective www.fda.gov.
    [Show full text]