Manufacture of Cadmium Mercury Telluride

Total Page:16

File Type:pdf, Size:1020Kb

Manufacture of Cadmium Mercury Telluride Europâisches Patenta mt ® COÏ) EuropeanEur°Pean Patent Office ® Publication number: 0 040 939 Office européen des brevets B1 ® EUROPEAN PATENT SPECIFICATION ® Date of publication of patent spécification: 02.01 .85 ® '"t. Cl.4: C 30 B 25/02, C 30 B 29/48 ® Application number: 81302178.9 (22) Dateoffiling: 15.05.81 (54) Manufacture of cadmium mercury telluride. (30) Priority: 27.05.80 GB 8017334 ® Proprietor: The Secretary of State for Defence in Her Britannic Majesty's Government of The United Kingdom of Great Britain and (43) Date of publication of application: Northern Ireland Whitehall 02.12.81 Bulletin 81/48 London SW1 A 2HB (GB) (4jj) Publication ofthe grant of the patent: (7?) Inventor: Irvine, Stuart James Curzon 02.01 .85 Bulletin 85/01 14 Pixief ield, Cradley Malvern Worcestershire WR13 5ND (GB) Inventor: Mullin, John Brian (§) Designated Contracting States: The Hoo, Brockhill Road DE FR IT NL Malvern Worcestershire WR14 4DO (GB) (5B) References cited: @ Representative: Edwards, John Brian et al US-A-3 218 203 Procurement Executive Ministry of Defence US-A-3 664 866 Patents 1 A (4), Room 2014 Empress State US-A-3 725 135 Building Lillie Road London SW6 1TR (GB) J. Electrochem. Soc: Solid State Science & Technology, May 1981, pp. 1142-1144 Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1 ) European patent convention). Courier Press, Leamington Spa, England. limitation in respect of composition control i.e. the value of x (in CdxHg1-xTe) cannot be inde- The invention relates to the manufacture of pendently controlled. Thus to produce epitaxial the material cadmium, mercury telluride i.e. layers having different values of x it is neces- CdxHg,_XTe commonly referred to as CMT or sary to use differently composed solutions of MCT. CMT in Te. Such a material in its semiconducting form is A vapour phase epitaxial (VPE) process for used as a detector of infra red radiation in growing CMT has been reported by Vohl Et thermal imaging systems. These detectors com- Wolfe (J. Electronic Materials, 7 (1978) 659). prise small pieces of CMT cut and polished flat This uses an open flow process with inde- with electrical contacts. U.K. Patent Specifica- pendently controlled sources of the elements tion No. 859,588, published 25 January 1961, Cd, Hg, and Te. However this method suffers a describes the production and use of CMT fundamental limitation in the inability to effect detectors. adequate control of the values of x at the low At present CMT appears to be the most deposition temperature that is needed to useful of all infra red detectors and is therefore produce CMT particularly in the important range used in the majority of high performance x=0.2-0.3. Because of the low vapour thermal imager systems. pressure of Cd and Te in the region of 400°C CMT is a difficult material to grow and the input vapours can suffer a capricious reduc- handle, partly because of the volatile nature of tion in composition before they reach the sub- the components. strate. When the substrate is held at a tem- Present methods of manufacture can be perature suitable for epitaxial CMT growth the broadly classified into bulk melt growth and epi- temperature gradient in the deposition chamber taxial methods. is not high enough to prevent condensation of The most important melt growth methods CdTe upstream from the substrate. are: the Bridgman method involving growth in a Epitaxial layers of CMT have also been pro- sealed container carried out in a vertical or hori- duced by subliming sources of HgTe onto a zontal manner; the cast quench anneal method; CdTe substrate in close proximity - so-called a cast recrystalline anneal method; and a so- close-spaced epitaxy - with or without the called slush method. All these methods involve presence of additional Hg. Examples include the batch preparation that is lengthy and expensive work Cohen-Solal and co-workers, and Tufte taking weeks rather than days to complete. A and Stelzer. References to these works can be further disadvantage is that the crystals pro- found in J. Appl. Phys. 40 (1969). duced are roughly cylindrical and need slicing, This technique relies on the production of grinding, lapping, etching and dicing into small CMT by the interdiffusion of Cd and Hg between pieces for use as e.g. detectors. the substrate and the epitaxial layer. It suffers Epitaxial methods of manufacturing semi- from the problem of compositional non- conductors on the other hand are intrinsically uniformity in the direction normal to the plane quicker in so far as they produce thin layers of of the layer. It does not have the advantages of semiconductor material onto a substrate independent control of composition enjoyed by directly often in a matter of hours or minutes. an open flow technique. In the case of materials like GaAs, inP, and GaP Epitaxial layers of GaAs have been grown well developed methods are available for the successfully by VPE using gallium alkyl and growth of homo-epitaxial layers of these com- arsine. pounds onto substrates of the parent semicon- This contrasts with the situation concerning ductor by either liquid or vapour phase pro- CMT where it is common knowledge that the cesses. However no such well developed art is attempted growth of CMT using the three alkyls available in the case of CMT. of the elements Cd, Hg and Te in combination In the case of the epitaxial growth of CMT has not been successful. from the it has been reported by Harman, liquid there has been a need, since 1961, J. Electronic Materials 8 (1979) 191; and by Although for a relatively simple method of growing CMT Schmit and Bowers, Appi. Phys. Letters 35 the existing techniques of bulk growth, and epi, (1979) 457; and by Wang et al, J. Electro- taxial growth have proved inadequate in terms chem. Soc. 127 (1980) 175; and by Bowers et of speed of preparation and in the versatility of al, I.E.E.E. Trans. Electron Devices ED 27 (1980) growing material of the desired composition. 24; and et al, I.E.E.E. Trans. Electron by Wang There is a need therefore to provide an effective Devices ED 27 (1980) 154; that it is possible to method of manufacturing layers of CMT which of CMT from supersaturated solu- grow layers method allows independent control of the com- tions in tellurium or onto sub- excess mercury position CdxHg1-xTe and that preferably allows of cadmium telluride (CdTe). Such strates pro- for independent control of doping. cesses demand considerable skill and a very long development period. The epitaxial layers According to this invention a method of frequently suffer from surface blemishes which growing a layer of the ternary alloy cadmium can render them useless for device fabrica- mercury telluride onto a substrate comprises tions. Such methods also suffer a fundamental the steps of: providing an atmosphere of mercury vapour at a bath of mercury inside the vessel adjacent to required temperature and pressure inside a the substrate. vessel; The vessel heater may be an electrical controlling the temperature of the substrate resistance heater surrounding the vessel to heat mounted in the vessel controlling the tem- both the vessel and mercury bath. perature of the vessel walls independently of The substrate may be mounted on a carbon the substrate temperature and at a lower susceptor and heated by an RF coil surrounding value than that of the substrate; part of the vessel. Alternatively resistance providing a supply of a volatile cadmium alkyl heaters may be used inside the vessel, or an into the vessel and onto the substrate; infra red heater may be used to illuminate the providing a supply of a volatile tellurium alkyl substrate surface. into the vessel and onto the substrate; The Cd and Te-alkyl may be supplied by passing high purity hydrogen through two the arrangement being such that the cadmium bubblers containing the appropriate Cd and Te- and the tellurium alkyls decompose in the alkyls. region of the substrate and the cadmium and The invention will now be described, by way tellurium combine with mercury on the sub- of example only with reference to the accom- strate to form a layer of cadmium mercury panying drawing which is a schematic flow telluride whose cadmium composition is con- diagram. trolled by the supply of the cadmium alkyl and As shown high purity hydrogen is supplied to the overall composition of the cation content is a hydrogen manifold 1 which maintains a controlled by the supply of the tellurium alkyl supply for five mass-flow controllers 2, 3, 4, 5, the mercury vapour pressure being held greater and 23. Mass flow controller 2 supplies than the decomposition pressure of the growing hydrogen via a bypass line 14 to a combustion layer. chamber 31 which burns exhaust vapour in a The grown layer may be a single epitaxial hydrogen flame. Mass flow controllers 3 and 4 layer or multiple layers. Such a layer or layers supply hydrogen to alkyl bubblers 6, and 7, may be graded in composition. The layer or which respectively contain an alkyl or cadmium layers may also be suitably doped. For example such as dimethyl cadmium and an alkyl of tellur- two layers may be grown with two different ium such as diethyl telluride.
Recommended publications
  • Journal of Materials Chemistry C Rscpublishing COMMUNICATION
    Journal of Materials Chemistry C RSCPublishing COMMUNICATION The room temperature phosphine-free organometallic synthesis of near-infrared emitting Cite this: DOI: 10.1039/x0xx00000x HgSe quantum dots H. Mirzai,a M. N. Nordin,b,c R. J. Curry,b J.-S. Bouillard,a A. V. Zayats,a M. a Received 00th January 2012, Green* Accepted 00th January 2012 DOI: 10.1039/x0xx00000x Luminescent mercury selenide (HgSe) quantum dots have been synthesised by a phosphine- free method using oleic acid as a capping agent. The modification of experimental conditions www.rsc.org/ such as temperature resulted in particles of various sizes (15 - 100 nm) and morphologies not previously seen in HgSe, with emission tuneable between 1000 nm and 1350 nm. The popularity of semiconductor quantum dots (QDs) and b Advanced Technology Institute, Department of Electronic Engineering, their association with next-generation opto-electronic devices University of Surrey, Guildford, Surrey.UK GU2 7XH c and biomedical applications has grown rapidly over the last Present address: Medical Engineering Technology Department, University Kuala Lumpur, 53100, Gombak, Malaysia. years. Current research focuses on various synthetic routes as a means to modify QD characteristics to satisfy specific due to the lack of obvious and safe precursors (despite the optical and magnetic requirements for applications such as fact that many early routes to nano-dispersed semiconductors biological imaging,1 telecommunications,2 photodetection3 4 were based on mercury chalcogenides). We have focused on and solar energy. Quantum dots have provided a new source mercury chalcogenides due to their low reaction temperatures of electromagnetic radiation on the nano-scale.
    [Show full text]
  • Properties of Sputtered Mercury Telluride Contacts on P-Type Cadmium Telluride A
    Properties of sputtered mercury telluride contacts on p-type cadmium telluride A. Zozime, C. Vermeulin To cite this version: A. Zozime, C. Vermeulin. Properties of sputtered mercury telluride contacts on p-type cadmium telluride. Revue de Physique Appliquée, Société française de physique / EDP, 1988, 23 (11), pp.1825- 1835. 10.1051/rphysap:0198800230110182500. jpa-00246011 HAL Id: jpa-00246011 https://hal.archives-ouvertes.fr/jpa-00246011 Submitted on 1 Jan 1988 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Revue Phys. Appl. 23 (1988) 1825-1835 NOVEMBRE 1988, 1825 Classification Physics Abstracts 73.40 - 79.20 Properties of sputtered mercury telluride contacts on p-type cadmium telluride A. Zozime and C. Vermeulin Laboratoire de Physique des Matériaux, CNRS, 1 place A. Briand, 92195 Meudon Cedex, France (Reçu le 12 avril 1988, révisé le 29 juillet 1988, accepté le 16 août 1988) Résumé. 2014 La valeur élevée du travail de sortie du composé semi-métallique HgTe (q03A6m ~ 5.9 eV) a conduit à utiliser ce matériau pour réaliser des contacts ohmiques de faible résistance spécifique 03C1c (03A9 cm2) sur le composé semi-conducteur II-VI CdTe de type p, dans la gamme des résistivités 70 03A9 cm 03C1B 45 k03A9 cm.
    [Show full text]
  • Trends in Performance Limits of the HOT Infrared Photodetectors
    applied sciences Review Trends in Performance Limits of the HOT Infrared Photodetectors Antoni Rogalski 1, Piotr Martyniuk 1,*, Małgorzata Kopytko 1 and Weida Hu 2 1 Faculty of Advanced Technologies and Chemistry, Institute of Applied Physics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland; [email protected] (A.R.); [email protected] (M.K.) 2 State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China; [email protected] * Correspondence: [email protected]; Tel.: +48-26-183-92-15 Abstract: The cryogenic cooling of infrared (IR) photon detectors optimized for the mid- (MWIR, 3–5 µm) and long wavelength (LWIR, 8–14 µm) range is required to reach high performance. This is a major obstacle for more extensive use of IR technology. Focal plane arrays (FPAs) based on thermal detectors are presently used in staring thermal imagers operating at room temperature. However, their performance is modest; thermal detectors exhibit slow response, and the multispectral detection is difficult to reach. Initial efforts to develop high operating temperature (HOT) photodetectors were focused on HgCdTe photoconductors and photoelectromagnetic detectors. The technological efforts have been lately directed on advanced heterojunction photovoltaic HgCdTe detectors. This paper presents the several approaches to increase the photon-detectors room-temperature performance. Various kinds of materials are considered: HgCdTe, type-II AIIIBV superlattices, two-dimensional materials and colloidal quantum dots. Keywords: HOT IR detectors; HgCdTe; P-i-N; BLIP condition; 2D material photodetectors; colloidal quantum dot photodetectors Citation: Rogalski, A.; Martyniuk, P.; Kopytko, M.; Hu, W.
    [Show full text]
  • Bandgap-Engineered Hgcdte Infrared Detector Structures for Reduced Cooling Requirements
    Bandgap-Engineered HgCdTe Infrared Detector Structures for Reduced Cooling Requirements by Anne M. Itsuno A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Electrical Engineering) in The University of Michigan 2012 Doctoral Committee: Associate Professor Jamie D. Phillips, Chair Professor Pallab K. Bhattacharya Professor Fred L. Terry, Jr. Assistant Professor Kevin P. Pipe c Anne M. Itsuno 2012 All Rights Reserved To my parents. ii ACKNOWLEDGEMENTS First and foremost, I would like to thank my research advisor, Professor Jamie Phillips, for all of his guidance, support, and mentorship throughout my career as a graduate student at the University of Michigan. I am very fortunate to have had the opportunity to work alongside him. I sincerely appreciate all of the time he has taken to meet with me to discuss and review my research work. He is always very thoughtful and respectful of his students, treating us as peers and valuing our opinions. Professor Phillips has been a wonderful inspiration to me. I have learned so much from him, and I believe he truly exemplifies the highest standard of teacher and technical leader. I would also like to acknowledge the past and present members of the Phillips Research Group for their help, useful discussions, and camaraderie. In particular, I would like to thank Dr. Emine Cagin for her constant encouragement and humor. Emine has been a wonderful role model. I truly admire her expertise, her accom- plishments, and her unfailing optimism and can only hope to follow in her footsteps. I would also like to thank Dr.
    [Show full text]
  • Experimental Stability of Tellurium and Its Implications for the Venusian Radar Anomalies
    44th Lunar and Planetary Science Conference (2013) 2951.pdf EXPERIMENTAL STABILITY OF TELLURIUM AND ITS IMPLICATIONS FOR THE VENUSIAN RADAR ANOMALIES. E. Kohler1, V. Chevrier1, P. Gavin1, N. Johnson2. 1Arkansas Center for Space and Plane- tary Sciences, University of Arkansas, Fayetteville, AR, 72701; 2National Aeronautics and Space Administration (NASA) Goddard Space Flight Center, Greenbelt, MD, 20771. [email protected] Introduction: Evidence of radar anomalies on Ve- portant aspect of determining the source, thus, it was nus has sparked debate about potential atmospheric chosen for this experiment. One gram of each were interactions with the surface. These high reflectivity heated to average Venusian surface conditions, and (low emissivity) anomalies have been found on the then to highland conditions (460°C and 90 bar, 380°C Venusian surface between altitudes of 2.5-4.75km and 55 bar respectively). The latter conditions are the using radar mapping [1-5]. There have been several anticipated temperature and pressure at the anomalies theoretical studies on the source of these anomalies altitude. After each run, the samples were weighed to including increased surface roughness, materials with determine stability and/or reactivity. Each compound higher dielectric constants or surface-atmospheric in- was also tested in a Lindberg tube oven at the Univer- teractions [1, 6]. Additionally, the literature suggests sity of Arkansas and heated to both 460°C and 380°C several possibilities of metal compound frosts or low at ambient pressure. The oven experiment isolated the lying clouds/fog. Evidence from Venera 13 and 14 effects of temperature. The samples were then ana- indicates a low layer cloud deck at an altitude of 1- lyzed using X-Ray Diffraction (XRD) and Scanning 2km that could consist of tellurium, bismuth, or lead Electron Microscope (SEM).
    [Show full text]
  • Molecular Beam Epitaxy of Cdxhg12xte
    12 Molecular Beam Epitaxy of CdxHg12xTe Yu.G. Sidorov1, A.P. Anciferov1, V.S. Varavin1, S.A. Dvoretsky1, N.N. Mikhailov1, M.V. Yakushev1, I.V. Sabinina1, V.G. Remesnik1, D.G. Ikusov1, I.N. Uzhakov1, G.Yu. Sidorov1, V.D. Kuzmin1, S.V. Rihlicky1, V.A. Shvets1, A.S. Mardezov1, E.V. Spesivcev1, A.K. Gutakovskii1, A.V. Latyshev1,2 1 RZHANOV INSTITUTE OF SEMICONDUCTOR PHYSICS OF THE SIBERIAN BRANCHOF THE RUSSIAN ACADEMY OF SCIENCES, NOVOSIBIRSK, RUSSIA 2 NOVOSIBIRSK STATE UNIVERSITY, NOVOSIBIRSK, RUSSIA Infrared imaging systems are required for applications in medicine, agriculture, the chemical industry, ferrous and nonferrous metals metallurgy, the fuel industry, and other areas of the economy. Due to high quantum efficiency, tunable absorption wavelength, and a wide oper- ating temperature range, HgCdTe (mercury cadmium telluride, MCT)-based infrared focal plane arrays are a good choice for the fabrication of high-performance infrared imaging sys- tems. Creating arrays and matrices of photodetectors with a large number of elements imposes stringent requirements for narrow-band MCT. What is wanted is a large area plate MCT with highly uniform properties and low cost. MCT technology over the past 20 years has evolved from the production of relatively small (diameter ,10 mm) volume bars to large (up to 150 mm in diameter) epitaxial layers on alternative substrates. The electrical properties of solid solutions MCT are largely deter- mined by the intrinsic point defects and residual impurities associated with the growing method. MCT is characterized by a high rate of diffusion of point defects. Therefore, a low growth temperature is need.
    [Show full text]
  • Solid State Recrystallization of II-VI Semiconductors : Application to Cadmium Telluride, Cadmium Selenide and Zinc Selenide R
    Solid State Recrystallization of II-VI Semiconductors : Application to Cadmium Telluride, Cadmium Selenide and Zinc Selenide R. Triboulet, J. Ndap, A. El Mokri, A. Tromson Carli, A. Zozime To cite this version: R. Triboulet, J. Ndap, A. El Mokri, A. Tromson Carli, A. Zozime. Solid State Recrystallization of II-VI Semiconductors : Application to Cadmium Telluride, Cadmium Selenide and Zinc Selenide. J. Phys. IV, 1995, 05 (C3), pp.C3-141-C3-149. 10.1051/jp4:1995312. jpa-00253678 HAL Id: jpa-00253678 https://hal.archives-ouvertes.fr/jpa-00253678 Submitted on 1 Jan 1995 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. JOURNAL DE PHYSIQUE IV Colloque C3, supplCment au Journal de Physique 111, Volume 5, avril 1995 Solid State Recrystallization of 11-VI Semiconductors: Application to Cadmium Telluride, Cadmium Selenide and Zinc Selenide R. Triboulet, 3.0. Ndap, A. El Mokri, A. Tromson Carli and A. Zozime CNRS, Laboratoire de Physique des Solides de Bellevue, 1 place Aristide Briand, F 92195 Meudon cedex, France Abstract : Solid state recrystallization (SSR) has been very rarely used for semiconductors. It has nevertheless been proposed, and industrially used, for the single crystal growth of cadmium mercury telluride according to a quench-anneal process.
    [Show full text]
  • Urine Elements Resource Guide
    Urine Elements Resource Guide Science + Insight doctorsdata.com Doctor’s Data, Inc. Urine Elements Resource Guide B Table of Contents Sample Report Sample Report ........................................................................................................................................................................... 1 Urine Toxic Metals Profile Introduction .................................................................................................................................................................................3 Aluminum .....................................................................................................................................................................................3 Antimony .......................................................................................................................................................................................4 Arsenic ............................................................................................................................................................................................ 4 Barium ............................................................................................................................................................................................. 5 Beryllium ........................................................................................................................................................................................5 Bismuth .........................................................................................................................................................................................
    [Show full text]
  • Survey of Mercury and Mercury Compounds
    Survey of mercury and mercury compounds Part of the LOUS-review Environmental Project No. 1544, 2014 Title: Authors and contributors: Survey of mercury and mercury compounds Jakob Maag Jesper Kjølholt Sonja Hagen Mikkelsen Christian Nyander Jeppesen Anna Juliana Clausen and Mie Ostenfeldt COWI A/S, Denmark Published by: The Danish Environmental Protection Agency Strandgade 29 1401 Copenhagen K Denmark www.mst.dk/english Year: ISBN no. 2014 978-87-93026-98-8 Disclaimer: When the occasion arises, the Danish Environmental Protection Agency will publish reports and papers concerning research and development projects within the environmental sector, financed by study grants provided by the Danish Environmental Protection Agency. It should be noted that such publications do not necessarily reflect the position or opinion of the Danish Environmental Protection Agency. However, publication does indicate that, in the opinion of the Danish Environmental Protection Agency, the content represents an important contribution to the debate surrounding Danish environmental policy. While the information provided in this report is believed to be accurate, the Danish Environmental Protection Agency disclaims any responsibility for possible inaccuracies or omissions and consequences that may flow from them. Neither the Danish Environmental Protection Agency nor COWI or any individual involved in the preparation of this publication shall be liable for any injury, loss, damage or prejudice of any kind that may be caused by persons who have acted based on their understanding of the information contained in this publication. Sources must be acknowledged. 2 Survey of mercury and mercury compounds Contents Preface ...................................................................................................................... 5 Summary and conclusions ......................................................................................... 7 Sammenfatning og konklusion ................................................................................ 14 1.
    [Show full text]
  • V. THERMOELECTRIC PROCESSES and MATERIALS Prof. R. B. Adler
    V. THERMOELECTRIC PROCESSES AND MATERIALS Prof. R. B. Adler Prof. P. Aigraintt R. E. Nelson L. Godefroyt Jane H. Dennis J. Tavernier$ O. P. Manley RESEARCH OBJECTIVES We are trying to understand the relationships between the structure of a solid and its relevant properties as a thermoelectric converter. Now, and for some time to come, we expect to remain interested primarily in compound semiconductors, and in mixed crystals of them. Besides the very considerable matters of actually making and handling the materials involved, the obvious properties of thermoelements which command immediate attention are: the thermoelectric power (Seebeck coefficient) or Peltier heat (Peltier coefficient), the electrical conductivity, and the thermal conductivity. The first two properties are dependent upon the electronic energy-band structure of the solid and the electronic scattering mechanisms in it. Underlying the third property are the dynamics and mechanical perfection of the crystal lattice. Collateral features of interest in thermoelectric applications are such device- oriented topics as the diffusion (or other transport) of contact materials in the semi- conductor and the performance of completed coolers or generators. A little progress has been made during the past year on selected parts of each topic mentioned above. We have learned how to grow good single crystals of the well- understood material Bi 2 Te 3 , and the group in France has struggled with new compounds of Mo and W, and they have made successfully polycrystalline solid solutions in the Se-Te system. We have also helped Professor David C. White's Energy Conversion Group, of the Electronic Systems Laboratory, M.
    [Show full text]
  • View PDF Version
    Nanoscale View Article Online REVIEW View Journal | View Issue Synthesis of emerging 2D layered magnetic materials Cite this: Nanoscale, 2021, 13, 2157 Mauro Och,a Marie-Blandine Martin,b Bruno Dlubak, b Pierre Seneorb and Cecilia Mattevi *a van der Waals atomically thin magnetic materials have been recently discovered. They have attracted enormous attention as they present unique magnetic properties, holding potential to tailor spin-based device properties and enable next generation data storage and communication devices. To fully under- stand the magnetism in two-dimensions, the synthesis of 2D materials over large areas with precise thick- ness control has to be accomplished. Here, we review the recent advancements in the synthesis of these materials spanning from metal halides, transition metal dichalcogenides, metal phosphosulphides, to ternary metal tellurides. We initially discuss the emerging device concepts based on magnetic van der Waals materials including what has been achieved with graphene. We then review the state of the art of Creative Commons Attribution-NonCommercial 3.0 Unported Licence. the synthesis of these materials and we discuss the potential routes to achieve the synthesis of wafer- scale atomically thin magnetic materials. We discuss the synthetic achievements in relation to the struc- Received 3rd November 2020, tural characteristics of the materials and we scrutinise the physical properties of the precursors in relation Accepted 8th January 2021 to the synthesis conditions. We highlight the challenges related to the synthesis of 2D magnets and we DOI: 10.1039/d0nr07867k provide a perspective for possible advancement of available synthesis methods to respond to the need for rsc.li/nanoscale scalable production and high materials quality.
    [Show full text]
  • Reporting Requirements for the TSCA Mercury Inventory
    30054 Federal Register / Vol. 83, No. 124 / Wednesday, June 27, 2018 / Rules and Regulations N.J.A.C. 7:27B–3.10. Procedures for the DATES: This final rule is effective August • All other basic organic chemical determination of volatile organic 27, 2018. manufacturing (NAICS code 325199). compounds in surface coating ADDRESSES: The docket for this action, • Plastics material and resin formulations identified by docket identification (ID) manufacturing (NAICS code 325211). N.J.A.C. 7:27B–3.11. Procedures for the • Pesticide and other agricultural determination of volatile organic number EPA–HQ–OPPT–2017–0421, is compounds emitted from transfer available at http://www.regulations.gov chemical manufacturing (NAICS code operations using a flame ionization or at the Office of Pollution Prevention 325320). • detector (FID) or non-dispersive infrared and Toxics Docket (OPPT Docket), Medicinal and botanical analyzer (NDIR) Environmental Protection Agency manufacturing (NAICS code 325411). • N.J.A.C. 7:27B–3.12. Procedures for the Docket Center (EPA/DC), West William Pharmaceutical preparation determination of volatile organic Jefferson Clinton Bldg., Rm. 3334, 1301 manufacturing (NAICS code 325412). • compounds in cutback and emulsified Constitution Ave. NW, Washington, DC. Biological product (except asphalts diagnostic) manufacturing (NAICS code N.J.A.C. 7:27B–3.13. Procedures for the The Public Reading Room is open from 8:30 a.m. to 4:30 p.m., Monday through 325414). determination of leak tightness of • Paint and coating manufacturing gasoline delivery vessels Friday, excluding legal holidays. The (NAICS code 325510). N.J.A.C. 7:27B–3.14. Procedures for the direct telephone number for the Public • detection of fugitive volatile organic Reading Room is (202) 566–1744, and Adhesive manufacturing (NAICS compound leaks code 325520).
    [Show full text]