Synoptic Climatology of Lake-Effect Snow Events Off the Western Great Lakes

Total Page:16

File Type:pdf, Size:1020Kb

Synoptic Climatology of Lake-Effect Snow Events Off the Western Great Lakes climate Article Synoptic Climatology of Lake-Effect Snow Events off the Western Great Lakes Jake Wiley * and Andrew Mercer Department of Geosciences, Mississippi State University, 75 B. S. Hood Road, Starkville, MS 39762, USA; [email protected] * Correspondence: [email protected] Abstract: As the mesoscale dynamics of lake-effect snow (LES) are becoming better understood, recent and ongoing research is beginning to focus on the large-scale environments conducive to LES. Synoptic-scale composites are constructed for Lake Michigan and Lake Superior LES events by employing an LES case repository for these regions within the U.S. North American Regional Reanalysis (NARR) data for each LES event were used to construct synoptic maps of dominant LES patterns for each lake. These maps were formulated using a previously implemented composite technique that blends principal component analysis with a k-means cluster analysis. A sample case from each resulting cluster was also selected and simulated using the Advanced Weather Research and Forecast model to obtain an example mesoscale depiction of the LES environment. The study revealed four synoptic setups for Lake Michigan and three for Lake Superior whose primary differences were discrepancies in a surface pressure dipole structure previously linked with Great Lakes LES. These subtle synoptic-scale differences suggested that while overall LES impacts were driven more by the mesoscale conditions for these lakes, synoptic-scale conditions still provided important insight into the character of LES forcing mechanisms, primarily the steering flow and air–lake thermodynamics. Keywords: lake-effect; climatology; numerical weather prediction; synoptic; mesoscale; winter weather; Great Lakes; snow Citation: Wiley, J.; Mercer, A. Synoptic Climatology of Lake-Effect Snow Events off the Western Great Lakes. Climate 2021, 9, 43. https://doi.org/ 1. Introduction 10.3390/cli9030043 The North American Great Lakes have multiple effects on the weather and climate of the neighboring landscape [1–5]. Climatologically, the lakes act as a modulator of annual Received: 18 February 2021 temperature due to their enormous heat capacity that ultimately results in warmer winters Accepted: 4 March 2021 Published: 5 March 2021 and cooler summers. During the North American cool season, synoptic-scale conditions often interact with air masses modified by the lakes to create bands of lake effect snow Publisher’s Note: MDPI stays neutral (LES) near the shorelines of each lake. Previous work [6] offered the first comprehensive with regard to jurisdictional claims in examination on the atmospheric conditions conducive to LES formation and included published maps and institutional affil- characteristics such as: (1) presence of a strong polar air mass over lake surface, (2) large iations. thermal and moisture contrast between the lake surface and the atmosphere, and (3) large area of open fetch. On the extreme side, the destabilization of continental polar air masses traversing over the lakes via massive vertical heat and moisture fluxes result in severe lake- effect snow (LES) storms that produces copious amounts of winter precipitation downwind of the lakes [7–10]. This area downwind of the lakes affected by LES is known as the ‘snow Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. belt’ region as annual snowfall maps reveal that these elongated areas receive substantially This article is an open access article higher snowfall compared to areas more inland, with up to 50% of their annual snowfall distributed under the terms and coming from LES (Figure1). The unique shape of these snow belts is a consequence of the conditions of the Creative Commons elongation of snow bands that tend to form during LES events. Attribution (CC BY) license (https:// The mesoscale and local dynamics of LES have been studied thoroughly and are creativecommons.org/licenses/by/ generally well understood, though new field experiments such as the Ontario Winter Lake- 4.0/). effect Systems (OWLeS) field campaign are providing additional insight on the influence of Climate 2021, 9, 43. https://doi.org/10.3390/cli9030043 https://www.mdpi.com/journal/climate Climate 2021, 9, 43 2 of 21 Climate 2021, 9, x FOR PEER REVIEW 2 of 23 secondary LES factors such as land breeze circulations, frictional convergence, orographic uplift [11–17]. Lake Superior Lake Huron Lake Michigan Lake Ontario Lake Erie Figure 1.1. North American Great Lakes Snowbelt region highlightinghighlighting areasareas thatthat areare affectedaffected byby LESLES everyevery winter.winter. Image Image taken taken from from Dept. Dept. of Geographyof Geograph aty Hunter at Hunter College, College, City UniversityCity University of New of York.New York. LES is primarily driven by instability resulting from vertical thermal gradients between the lakeThe and mesoscale atmosphere, and local which dynamics frequently of LES results have in thebeen production studied thoroughly of convective and available are gen- potentialerally well energy understood, (CAPE) though [18]. Two new measures field expe thatriments have been such frequently as the Ontario used asWinter proxies Lake- for quantifyingeffect Systems this (OWLeS) instability field in the campaign context ofare LES: providing the surface-850 additional mb insight temperature on the difference influence andof secondary the presence/strength LES factors such of a low-levelas land breez cappinge circulations, inversion [8 frictional,9,13,19–21 convergence,]. An empirically oro- basedgraphic minimum uplift [11–17]. threshold for the surface-850 mb temperature difference of 13 ◦C has beenLES used is toprimarily establish driven a minimum by instability instability resulting threshold from for vertical lake-effect thermal convection. gradients The be- near-surfacetween the lake vertical and atmosphere, wind profile which (below frequently the capping results inversion) in the production also plays of a keyconvective role in LESavailable formation potential as it energy determines (CAPE) snow [18]. band Two morphology measures that and have dictates been the frequently amount used of lake as surfaceproxies (fetch)for quantifying air parcels this will instability interact with in th ase context they traverse of LES: the the lake, surface-850 and thus mb the tempera- amount ofture heat difference and moisture and the air parcelspresence/strength acquire [22 –of24 a]. low-level Several different capping types inversion of snow [8,9,13,19–21]. bands have beenAn empirically observed with based LES minimum activity includingthreshold long-lakefor the surface-850 axis parallel mb (LLAP), temperature broad difference coverage, shorelineof 13 °C has parallel, been used and to mesovorticies establish a minimum [8,9]. Moderate instability wind threshold speeds infor this lake-effect low-level convec- flow −1 regimetion. The (10–20 near-surface m s ) vertical have been wind shown profile to (below be the the most capping conducive inversion) to LES also formation plays a key as speedsrole in LES that formation are too fast as it result determines in disorganized snow band convection morphology due and to directionaldictates the shearamount and of speedslake surface that are (fetch) too slow air parcels limit turbulent will interact mixing with between as they the traverse atmosphere the lake, and and lake thus [10]. the amountThe of essential heat and local moisture and mesoscale air parcels ingredients acquire [22–24]. for LES Several formation different are well-known types of snow (de- scribedbands have above), been but observed the synoptic-scale with LES activity conditions including conducive long-lake to LES axis remains parallel a topic(LLAP), of continuingbroad coverage, research. shoreline Past studies parallel, have and identified mesovorticies a broad [8,9]. large-scale Moderate pattern wind speeds that, in in some this form,low-level is present flow regime during (10–20 most LESm s− events1) have offbeen the shown Great to Lakes. be the This most pattern conducive consists to ofLES a meanformation sea levelas speeds pressure that structureare too fast featuring result in an disorganized eastward cyclone convection and westwarddue to directional anticy- clone (i.e., dipole) and an upper-level low pressure system located close to the Hudson shear and speeds that are too slow limit turbulent mixing between the atmosphere and Bay (Figure2). The evolution of this broad scale pattern is unique as conditions typically lake [10]. associated with this setup are clear and calm. Initially, a cold front linked with a mid- The essential local and mesoscale ingredients for LES formation are well-known (de- latitude cyclone (typically an Alberta Clipper [25]) travels over the Great Lakes, which scribed above), but the synoptic-scale conditions conducive to LES remains a topic of con- results in a decrease in surface air temperatures and pressure rises. These pressure rises tinuing research. Past studies have identified a broad large-scale pattern that, in some bring in west-northwesterly flow that support LES formation. Differences in position and form, is present during most LES events off the Great Lakes. This pattern consists of a strength of this dipole structure are largely responsible for different snow band morpholo- mean sea level pressure structure featuring an eastward cyclone and westward anticy- gies [3,26,27]. Importantly, the ideal set up for maximum LES clearly is sensitive to the clone (i.e., dipole) and an upper-level
Recommended publications
  • Storm Data Publication
    FEBRUARY 2008 VOLUME 50 SSTORMTORM DDATAATA NUMBER 2 AND UNUSUAL WEATHER PHENOMENA WITH LATE REPORTS AND CORRECTIONS NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION noaa NATIONAL ENVIRONMENTAL SATELLITE, DATA AND INFORMATION SERVICE NATIONAL CLIMATIC DATA CENTER, ASHEVILLE, NC Cover: This cover represents a few weather conditions such as snow, hurricanes, tornadoes, heavy rain and flooding that may occur in any given location any month of the year. (Photos courtesy of NCDC) TABLE OF CONTENTS Page Outstanding Storm of the Month …..…………….….........……..…………..…….…..…..... 4 Storm Data and Unusual Weather Phenomena ....…….…....…………...…...........…............ 5 Reference Notes .............……...........................……….........…..….…............................................ 278 STORM DATA (ISSN 0039-1972) National Climatic Data Center Editor: William Angel Assistant Editors: Stuart Hinson and Rhonda Herndon STORM DATA is prepared, and distributed by the National Climatic Data Center (NCDC), National Environmental Satellite, Data and Information Service (NESDIS), National Oceanic and Atmospheric Administration (NOAA). The Storm Data and Unusual Weather Phenomena narratives and Hurricane/Tropical Storm summaries are prepared by the National Weather Service. Monthly and annual statistics and summaries of tornado and lightning events re- sulting in deaths, injuries, and damage are compiled by the National Climatic Data Center and the National Weather Service’s (NWS) Storm Prediction Center. STORM DATA contains all confi rmed information on storms available to our staff at the time of publication. Late reports and corrections will be printed in each edition. Except for limited editing to correct grammatical errors, the data in Storm Data are published as received. Note: “None Reported” means that no severe weather occurred and “Not Received” means that no reports were received for this region at the time of printing.
    [Show full text]
  • …Top 10 Weather Events of 2012…
    …Top 10 weather events of 2012… In terms of severe weather, 2012 started out fast and furious, and then petered out by late March. 1) By anyone’s measure, the tornado outbreak on the 2nd of March must qualify as our top event of 2012. The 49 mile long EF-4 tornado that tracked across southern Indiana became the first EF-4 in our forecast area since the northern Bullitt County tornado on May 28, 1996. Seven other tornadoes also developed on March 2, with 3 confirmed tornadoes in Trimble County alone. The image to the left shows two supercells following similar paths across southern Indiana. The first cell was producing an EF-4 tornado at this time. The second storm later brought softball sized hail and an EF-1 tornado just south of Henryville. Also, excessively large hail fell across both southern Indiana and south central Kentucky. Outside of several reports of softball-sized hail near Henryville, Indiana, associated with the second of two supercells that tracked over nearly the same path, our most damaging hailstorm developed across southwestern Adair County. This storm produced a hail swath more than 10 miles long, smashing the windshields of hundreds of vehicles before knocking out the skylights of a Walmart store in Columbia. The first picture, courtesy Simon Brewer of The Weather Channel, shows a large tornado in Washington County, IN. The image at left shows hail damage to a golf course near Henryville. 2) The Leap Day tornado outbreak on February 29 featured a squall line that spawned 6 tornadoes across central and south central Kentucky.
    [Show full text]
  • A Winter Forecasting Handbook Winter Storm Information That Is Useful to the Public
    A Winter Forecasting Handbook Winter storm information that is useful to the public: 1) The time of onset of dangerous winter weather conditions 2) The time that dangerous winter weather conditions will abate 3) The type of winter weather to be expected: a) Snow b) Sleet c) Freezing rain d) Transitions between these three 7) The intensity of the precipitation 8) The total amount of precipitation that will accumulate 9) The temperatures during the storm (particularly if they are dangerously low) 7) The winds and wind chill temperature (particularly if winds cause blizzard conditions where visibility is reduced). 8) The uncertainty in the forecast. Some problems facing meteorologists: Winter precipitation occurs on the mesoscale The type and intensity of winter precipitation varies over short distances. Forecast products are not well tailored to winter Subtle features, such as variations in the wet bulb temperature, orography, urban heat islands, warm layers aloft, dry layers, small variations in cyclone track, surface temperature, and others all can influence the severity and character of a winter storm event. FORECASTING WINTER WEATHER Important factors: 1. Forcing a) Frontal forcing (at surface and aloft) b) Jetstream forcing c) Location where forcing will occur 2. Quantitative precipitation forecasts from models 3. Thermal structure where forcing and precipitation are expected 4. Moisture distribution in region where forcing and precipitation are expected. 5. Consideration of microphysical processes Forecasting winter precipitation in 0-48 hour time range: You must have a good understanding of the current state of the Atmosphere BEFORE you try to forecast a future state! 1. Examine current data to identify positions of cyclones and anticyclones and the location and types of fronts.
    [Show full text]
  • Chapter 3 the Development of North American Cities
    CHAPTER 3 THE DEVELOPMENT OF NORTH AMERICAN CITIES THE COLONIAL F;RA: 1600-1800 Beginnings The Character of the Early Cities The Revolutionary War Era GROWTH AND EXPANSION: 1800-1870 Cities as Big Business To The Beginnings of Industrialization Am Urhan-Rural/North-South Tensions ace THE ERA OF THE GREAT METROPOLIS: of! 1870-1950 bui Technological Advance wh, The Great Migration cen Politics and Problems que The Quality of Life in the New Metropolis and Trends Through 1950 onl tee] THE NORTH AMERICAN CIITTODAY: urb 1950 TO THE PRESENT Can Decentralization oft: The Sun belt Expansion dan THE COMING OF THE POSTINDUSTRIAL CIIT sug) Deterioration' and Regeneration the The Future f The Human Cost of Economic Restructuring rath wor /f!I#;f.~'~~~~'A'~~~~ '~·~_~~~~Ji?l~ij:j hist. The Colonial Era Thi: fron Growth and Expansion coa~ The Great Metropolis Emerges to tJ New York Today new SUMMARY Nor CONCLUSION' T Am, cent EUf( izati< citie weal 62 Chapter 3 The Development of North American Cities 63 Come hither, and I will show you an admirable cities across the Atlantic in Europe. The forces Spectacle! 'Tis a Heavenly CITY ... A CITY to of postmedieval culture-commercial trade be inhabited by an Innumerable Company of An· and, shortly thereafter, industrial production­ geL" and by the Spirits ofJust Men .... were the primary shapers of urban settlement Put on thy beautiful garments, 0 America, the Holy City! in the United States and Canada. These cities, like the new nations themselves, began with -Cotton Mather, seventeenth· the greatest of hopes. Cotton Mather was so century preacher enamored of the idea of the city that he saw its American urban history began with the small growth as the fulfillment of the biblical town-five villages hacked out of the wilder· promise of a heavenly setting here on earth.
    [Show full text]
  • Climatic Summary of Snowfall and Snow Depth in the Ohio Snowbelt at Chardon1
    Ohio J. Science ENVIRONMENTAL EDUCATION 101 Climatic Summary of Snowfall and Snow Depth in the Ohio Snowbelt at Chardon1 THOMAS W. SCHMIDLIN, Geography Department and Water Resources Research Institute, Kent State University, Kent, OH 44242 ABSTRACT. Snowfall records were examined for the period 1945-85 at Chardon, OH, the only station with a long climatic record in the snowbelt. Average seasonal snowfall was 269 cm (106 in) with a seasonal maxi- mum of 410 cm (161 in). Seasonal snowfall was positively correlated with other sites in the lower Great Lakes snowbelts and along the western slope of the Appalachians from Tennessee to Quebec, but was not correlated with snowfall in the snowbelts of the upper Lakes. The time series of seasonal snowfall was not random but showed weak year-to-year persistence. The average number of days with 2.5 cm (1 in) of snow- fall was 35. The average dates of the first and last 2.5 cm snowfalls of the winter were 10 November and 4 April. The largest two-day snowfall of the winter averaged 33 cm. The average number of days with 2.5 cm of snow cover was 82. Daily probability of snow cover reached the seasonal maximum of 86% in mid-January and early February. These results may be reasonably extrapolated throughout the Ohio snow- belt for applications in vegetation studies, animal ecology, hydrology, soil science, recreation, and transpor- tation studies. OHIO J. SCI. 89 (4): 101-108, 1989 INTRODUCTION Great Lakes (Muller 1966, Eichenlaub 1970). The Lake The Great Lakes exert a significant influence on the Erie snowbelt extends from the eastern suburbs of regional climate (Changnon and Jones 1972, Eichen- Cleveland through extreme northeastern Ohio into laub 1979).
    [Show full text]
  • Using Analogues to Simulate Intensity, Trajectory, and Dynamical Changes in Alberta Clippers with Global Climate Change
    Using Analogues to Simulate Intensity, Trajectory, and Dynamical Changes in Alberta Clippers with Global Climate Change Item Type Thesis Authors Ward, Jamie L. Download date 07/10/2021 05:51:34 Link to Item http://hdl.handle.net/10484/5573 Using Analogues to Simulate Intensity, Trajectory, and Dynamical Changes in Alberta Clippers with Global Climate Change _______________________ A thesis Presented to The College of Graduate and Professional Studies Department of Earth and Environmental Systems Indiana State University Terre Haute, Indiana ______________________ In Partial Fulfillment of the Requirements for the Degree Master of Arts _______________________ by Jamie L. Ward August 2014 Jamie L. Ward, 2014 Keywords: Alberta Clippers, Storm Tracks, Lee Cyclogenesis, Global Climate Change, Atmospheric Analogues ii COMMITTEE MEMBERS Committee Chair: Gregory D. Bierly (Ph.D.) Professor of Geography Indiana State University Committee Member: Stephen Aldrich (Ph.D.) Assistant Professor of Geography Indiana State University Committee Member: Jennifer C. Latimer Associate Professor of Geology Indiana State University iii ABSTRACT Alberta Clippers are extratropical cyclones that form in the lee of the Canadian Rocky Mountains and traverse through the Great Plains and Midwest regions of the United States. With the imminent threat of global climate change and its effects on regional teleconnection patterns like El Niño-Southern Oscillation (ENSO), properties of Alberta Clipper could be altered as a result of changing atmospheric circulation patterns. Since the Great Plains and Midwest regions both support a large portion of the national population and agricultural activity, the effects of global climate change on Alberta Clippers could affect these areas in a variety of ways.
    [Show full text]
  • A Synoptic-Climatology and Composite Analysis of the Alberta Clipper
    !"#$%&'()*+*,)-!(&,&.$"!%/"*&-'&#)(0"!%!,$#)#"&1 (20"!,304(!"*,)''04 !" #$%&'()*+),-./%01)234)5.'%,-%')(+)/%6,&'7 1!"#"$%$&$'()*%+,-./)0.1#")2+,34)!1441&")5+,'"/)6"7)!"81-$ 9:";+%#<",#)$=)>#<$4;."%1-)+,3)?-"+,1-)2-1",-"4 @,1A"%41#()$=)014-$,41,B!+314$, C99D)0E):+(#$,)2#E !+314$,/)0F)DGHIJ KJILM)9J9BNLOD P"<+%#1CQ714-E"3R 08!9:;;<4)=>?)@8!A:B2;:>3);>)0"+#."%)+,3)S$%"-+4#1,'C)7D)58A")7EEF "#$%&"'% $()*+,-.+/0.(11-)2+3).+/+456-6.*)78.9:-.;'<=>.%?@".0+9+6-9.+)-.(6-0.97.,7/69)(,9 +.,438+9747A5.7*.BCC."4D-)9+.'4311-)6.7E-).BF.D7)-+4.,740.6-+67/6.G?,97D-)2<+),:H.*)78 BIJK2JC.97.!LLL2LBM..%:-."4D-)9+.'4311-).G:-)-+*9-).638145.!"#$$%&H.7,,()6.8769.*)-N(-/945 0()3/A.O-,-8D-).+/0.P+/(+)5.+/0.6(D69+/93+445.4-66.*)-N(-/945.0()3/A.?,97D-).+/0.<+),:M %:-6-.,5,47/-6.A-/-)+445.87E-.67(9:-+69Q+)0.*)78.9:-.4--.7*.9:-.'+/+03+/.&7,R3-6.97Q+)0 7).S(69./7)9:.7*.T+R-.$(1-)37).D-*7)-.1)7A)-663/A.-+69Q+)0.3/97.67(9:-+69-)/.'+/+0+.7).9:- /7)9:-+69-)/.U/39-0.$9+9-6V.Q39:.4-66.9:+/.BLW.7*.,+6-6.3/.9:-.,438+9747A5.9)+,R3/A.67(9:.7* 9:-.@)-+9.T+R-6M ':+)+,9-)3693,6.7*.9:-.69)(,9()-.+/0.-E74(937/.7*.'4311-)6.0()3/A.+.XK2:.1-)370.4-+03/A (1.97.0-1+)9()-.7*.9:-.,5,47/-.*)78.9:-.4--.7*.9:-.'+/+03+/.&7,R3-6.+/0.+.KL2:.1-)370.+*9-) 0-1+)9()-.+6.9:-.,5,47/-.9)+E-)6-6.,-/9)+4.+/0.-+69-)/.Y7)9:."8-)3,+.+)-.-Z+83/-0.9:)7(A: ,7817639-.+/+456-6M..?E-).9:-.,7()6-.7*.9:-.1)-20-1+)9()-.1-)370V.+.,5,47/-.7E-).9:-.@(4*.7* "4+6R+.+11)7+,:-6.9:-.Q-69.,7+69.7*.Y7)9:."8-)3,+V.+/0.9:)7(A:.396.3/9-)+,937/.Q39:.9:- 87(/9+3/7(6.9-))+3/.7*.Q-69-)/.Y7)9:."8-)3,+.61+Q/6.+.6()*+,-.4--.9)7(A:V.,:+)+,9-)3[-0.D5
    [Show full text]
  • January 21, 2014 Winter Storm by Heather Sheffield, General
    January 21, 2014 Winter Storm By Heather Sheffield, General Forecaster The snow forecast quickly escalated 36 hours prior to the first snowflakes on Tuesday, January 21, 2014. Model Guidance over the weekend and prior to the event became snowier with each model run and consistency led to the issuance of a Winter Storm Warning on Monday, January 20, 2014. An upper trough was located across the eastern half of the United States. The storm track leading up to this event featured numerous waves of low pressure, called Alberta clippers, diving southeastward around the upper trough from central Canada into the mid-Atlantic region. Alberta clippers typically produce little precipitation since they originate from central Canada- a region without a large source of moisture. However, the one Alberta clipper that moved into the Northern Plains on the Monday afternoon of January 20 was able to tap into deeper moisture from the Gulf of Mexico and Atlantic Ocean as low pressure rapidly developed in the Mid- Atlantic States on Tuesday. The strengthening of low pressure occurred in response to the position of several jet streaks in the upper levels of the troposphere- one over the northern Gulf Coast and another over New England (image below). An arctic cold front dropped southward into the region Tuesday morning, allowing cold air to sink southward into the region and precipitation with this event to be snow. Snow began to move over the Potomac Highlands early Tuesday morning. Reagan National Airport and Southern Maryland were in the upper 30s around sunrise Tuesday morning. Temperatures just before the snow arrived were above freezing across the greater Baltimore and DC metropolitan area due to light easterly surface flow and abundant cloud cover on Monday night, but quickly dropped once snow started to fall (note: temperatures at the NWS forecast office in Sterling, VA drop 5 degrees in 15 minutes at the onset).
    [Show full text]
  • Windstorms Intense Windstorms in the Northeastern United States F
    Windstorms Intense windstorms in the Northeastern United States F. Letson1, R. J. Barthelmie2, K.I. Hodges3 and S. C. Pryor1 1Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York, USA 5 2Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, USA 3Environmental System Science Centre, University of Reading, Reading, United Kingdom Correspondence to: F. Letson ([email protected]), S.C. Pryor ([email protected]) Abstract. Windstorms are a major natural hazard in many countries. Windstorms Intense windstorms during the last four decades in the U.S. Northeast are identified and characterized using the spatial extent of locally extreme wind 10 speeds at 100 m height from the ERA5 reanalysis database. During all of the top 10 windstorms, wind speeds in excess of their local 99.9th percentile extend over at least one-third of land-based ERA5 grid cells in this high population density region of the U.S. Maximum sustained wind speeds at 100 m during these windstorms range from 26 to over 43 ms-1, with wind speed return periods exceeding 6.5 to 106 years (considering the top 5% of grid cells during each storm). The propertyProperty damage associated with these storms, (inflation adjusted to January 2020,) is ranges 15 from $24 million to over $29 billion. Two of these windstorms are linked to decaying tropical cyclones, three are Alberta Clippers and the remaining storms are Colorado Lows. Two of the ten re-intensified off the east coast leading to development of Nor’easters. These windstorms followed frequently observed cyclone tracks, but exhibit maximum intensities as measured using 700 hPa relative vorticity and mean sea level pressure that are five to ten times mean values for cyclones that followed similar tracks over this 40-year period.
    [Show full text]
  • NOAA Technical Memorandum NWSTM CR 38 .U61 No.38 U.S
    F QC 995 NOAA Technical Memorandum NWSTM CR 38 .U61 no.38 U.S. DEPARTMENT OF COMMERCE NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION National Weather Service [ SNOW FORECASTING FOR SOUTHEASTERN WISCONSIN Rheinhart W. Harms CENTRAL REGION KANSAS CITY,MO NOV. 1970 DEC 7 1370 154 187 NO A4 TECHNICAL MEMORANDUM* Central Region Subseries The Central Region Subseries provides a medium for quick dissemination of material not appropriate or not yet ready for formal publication. Material is primarily of regional interest and for regional people. References to this series should identify them as unpublished reports. 1 Precipitation Probability Forecast Verification Summary Nov. 1965 - Mar. 1966. 2 A Study of Summer Showers Over the Colorado Mountains. * 3 Areal Shower Distribution - Mountain Versus Valley Coverage. 4 Heavy Rains in Colorado June 16 and 17, 1965- 5 The Plum Fire. 6 Precipitation Probability Forecast Verification Summary Nov. 1965 - July 1966. 7 Effect of Diurnal Weather Variations on Soybean Harvest Efficiency. 8 Climatic Frequency of Precipitation at Central Region Stations. 9 Heavy Snow or Glazing. 10 Detection of a Weak Front by WSR-57 Radar. 11 Public Probability Forecasts. 12 Heavy Snow Forecasting in the Central United States(An Interim Report). 13 Diurnal Surface Geostrophic Wind Variations Over The Great Plains. 14 Forecasting Probability of Summertime Precipitation at Denver. 15 Improving Precipitation Probability Forecasts Using the Central Region Verification Printout. 16 Small-Scale Circulations Associated With Radiational Cooling. 17 Probability Verification Results (6-Month and 18-Month). 18 On The Use and Misuse Of The Brier Verification Score. 19 Probability Verification Results (24 Months). 20 Radar Depiction of the Topeka Tornado.
    [Show full text]
  • Fish & Wildlife Branch Research Permit Environmental Condition
    Fish & Wildlife Branch Research Permit Environmental Condition Standards Fish and Wildlife Branch Technical Report No. 2013-21 December 2013 Fish & Wildlife Branch Scientific Research Permit Environmental Condition Standards First Edition 2013 PUBLISHED BY: Fish and Wildlife Branch Ministry of Environment 3211 Albert Street Regina, Saskatchewan S4S 5W6 SUGGESTED CITATION FOR THIS MANUAL: Saskatchewan Ministry of Environment. 2013. Fish & Wildlife Branch scientific research permit environmental condition standards. Fish and Wildlife Branch Technical Report No. 2013-21. 3211 Albert Street, Regina, Saskatchewan. 60 pp. ACKNOWLEDGEMENTS: Fish & Wildlife Branch scientific research permit environmental condition standards: The Research Permit Process Renewal working group (Karyn Scalise, Sue McAdam, Ben Sawa, Jeff Keith and Ed Beveridge) compiled the information found in this document to provide necessary information regarding species protocol environmental condition parameters. COVER PHOTO CREDITS: http://www.freepik.com/free-vector/weather-icons-vector- graphic_596650.htm CONTENT PHOTO CREDITS: as referenced CONTACT: [email protected] COPYRIGHT Brand and product names mentioned in this document are trademarks or registered trademarks of their respective holders. Use of brand names does not constitute an endorsement. Except as noted, all illustrations are copyright 2013, Ministry of Environment. ii Contents Introduction .......................................................................................................................
    [Show full text]
  • The State of Asian Pacific America
    THE STATE OF ASIAN PACIFIC AMERICA THE STATE OFASIANPACIFICAMERICA: ECONOMIC DIVERSITY, ISSUES & POLICIES A Public Policy Report PAULONG Editor LEAP Asian Pacific American Public Policy Institute and UCLA Asian American Studies Center 1994 Leadership Education for Asian Pacifies (LEAP), 327 East Second Street, Suite 226, Los Angeles, CA 90012-4210 UCLA Asian American Studies Center, 3230 Campbell Hall, 405 Hilgard Avenue, Los Angeles, CA 90024-1546 Copyright© 1994 by LEAP Asian Pacific American Public Policy Institute and UCLA Asian American Studies Center All rights reserved. Printed in the United States of America. ISBN: 0-934052-23-9 Cover design: Mary Kao The State of Asian Pacific America: Economic Diversity, Issues & Policies Paul Ong, Editor Table of Contents Preface vii Don T. Nakanishi and J. D. Hokoyama Chapter 1 Asian Pacific Americans and Public Policy 1 Paul Ong Part I. Overviews Chapter 2 Historical Trends 13 Don Mar and Marlene Kim Chapter3 Economic Diversity 31 Paul Ong and Suzanne J. Hee Chapter4 Workforce Policies 57 Linda C. Wing Part II. Case Studies Chapter5 Life and Work in the Inner-City 87 Paul Ong and Karen Umemoto v Chapter6 Welfare and Work Among Southeast Asians 113 Paul Ong and Evelyn Blumenberg Chapter 7 Health Professionals on the Front-line 139 Paul Ong and Tania Azores Chapter 8 Scientists and Engineers 165 Paul Ong and Evelyn Blumenberg Part UI. Policy Essays Chapter9 Urban Revitalization 193 Dennis Arguelles, Chanchanit Hirunpidok, and Erich Nakano Chapter 10 Welfare and Work Policies 215 Joel F. Handler and Paul Ong Chapter 11 Health Care Reform 233 Geraldine V.
    [Show full text]