Materials 2011, 4, 183-205; doi:10.3390/ma4010183 OPEN ACCESS materials ISSN 1996-1944 www.mdpi.com/journal/materials Review Organic Zeolite Analogues Based on Multi-Component Liquid Crystals: Recognition and Transformation of Molecules within Constrained Environments Yasuhiro Ishida 1,2,3,* 1 RIKEN, Advanced Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan 2 PRESTO, Japan Science and Technology Agency, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan 3 Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan * Author to whom correspondence should be addressed; E-Mail:
[email protected]; Tel.: +81-48-462-1111 (ext. 6351); Fax: +81-48-467-8214. Received: 29 November 2010; in revised form: 4 January 2010 / Accepted: 5 January 2010 / Published: 11 January 2011 Abstract: In liquid crystals (LCs), molecules are confined in peculiar environments, where ordered alignment and certain mobility are realized at the same time. Considering these characteristics, the idea of “controlling molecular events within LC media” seems reasonable. As a suitable system for investigating this challenge, we have recently developed a new class of ionic LCs; the salts of amphiphilic carboxylic acids with 2-amino alcohols, or those of carboxylic acids with amphiphilic 2-amino alcohols, have a strong tendency to exhibit thermotropic LC phases. Because of the noncovalent nature of the interaction between molecules, one of the two components can easily be exchanged with, or transformed into, another molecule, without distorting the original LC architecture. In addition, both components are common organic molecules, and a variety of compounds are easily available.