Biocatalysis at Extreme Temperatures: Enantioselective Synthesis of Both Enantiomers of Mandelic Acid by Transesterification
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
– with Novozymes Enzymes for Biocatalysis
Biocatalysis Pregabalin case study Smarter chemical synthesis – with Novozymes enzymes for biocatalysis The new biocatalytic route results in process improvements, reduced organic solvent usage and substantial reduction of waste streams in Pregabalin production. Introduction Biocatalysis is the application of enzymes to replace chemical Using Lipolase®, a commercially available lipase, rac-2- catalysts in synthetic processes. In recent past, the use of carboxyethyl-3-cyano-5-methylhexanoic acid ethyl ester biocatalysis has gained momentum in the chemical and (1) can be resolved to form (S)-2-carboxyethyl-3-cyano-5- pharmaceutical industries. Today, it’s an important tool for methylhexanoic acid (2). Compared to the first-generation medicinal, process and polymer chemists to develop efficient process, this new route substantially improves process and highly attractive organic synthetic processes on an efficiency by setting the stereocenter early in the synthesis and industrial scale. enabling the facile racemization and reuse of (R)-1. The biocatalytic process for Pregabalin has been developed It outperforms the first-generation manufacturing process also by Pfizer to boost efficiency in Pregabalin production using by delivering higher yields of Pregabalin and by resulting in Novozymes Lipolase®. substantial reductions of waste streams, corresponding to a 5-fold decrease in the E-Factor from 86 to 17. Development of the biocatalytic process for Pregabalin involves four stages: • Screening to identify a suitable enzyme • Performing optimization of the enzymatic reaction to optimize throughput and reduce enzyme loading • Exploring a chemical pathway to preserve the enantiopurity of the material already obtained and lead to Pregabalin, and • Developing a procedure for the racemization of (R)-1 Process improvements thanks to the biocatalytic route Pregabalin chemical synthesis H Knovenagel CN condensation cyanation KOH 0 Et02C CO2Et Et02C CO2Et Et02C CO2Et CNDE (1) CN NH2 1. -
Cascade Catalysis–Strategies and Challenges En Route to Preparative
ChemComm Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/chemcomm Page 1 of 15 ChemComm ChemComm RSCPublishing Feature article Cascade catalysis – strategies and challenges en route to preparative synthetic biology Cite this: DOI: 10.1039/x0xx00000x Jan Muschiol,a,+ Christin Peters,a,+ Nikolin Oberleitner,b Marko D. Mihovilovic,b Uwe T. Bornscheuera and Florian Rudroffb,* Received 00th January 2012, Accepted 00th January 2012 Nature’s smartness and efficiency assembling cascade type reactions inspired biologists and chemists all around the world. Tremendous effort has been put in the understanding and DOI: 10.1039/x0xx00000x mimicking of such networks. In recent years considerable progress has been made in www.rsc.org/ developing multistep one-pot reactions combining either advantage of chemo-, regio-, and stereoselectivity of biocatalysts or promiscuity and productivity of chemocatalysts. -
Enantioselective Synthesis of the (1S,5R)-Enantiomer of Litseaverticillols a and B
Biosci. Biotechnol. Biochem., 70 (10), 2564–2566, 2006 Note Enantioselective Synthesis of the (1S,5R)-Enantiomer of Litseaverticillols A and B y Akira MORITA, Hiromasa KIYOTA, and Shigefumi KUWAHARA Laboratory of Applied Bioorganic Chemistry, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan Received May 8, 2006; Accepted May 31, 2006; Online Publication, October 7, 2006 [doi:10.1271/bbb.60253] An enantioselective synthesis of the (1S,5R)-enan- which have recently culminated in the first enantiose- tiomer of litseaverticillols A and B was accomplished in lective total synthesis of (1R,5S)-(À)-1 and (1R,5S)-(À)- line with our previously reported synthetic pathway for 2.4) In this note, we describe the synthesis of their their (1R,5S)-enantiomer. The use of ‘‘EtSCeCl2’’ pre- enantiomers directed toward an evaluation of the differ- pared from EtSLi and CeCl3, instead of previously ence in biological activity between the enantiomers of employed EtSLi itself, for the formation of thiol ester litseaverticillols A and B. intermediates prevented any undesirable epimerization Our synthesis of (1S,5R)-1 and (1S,5R)-2 basically occurring in the process. followed our previous synthesis of their corresponding enantiomers, (1R,5S)-1 and (1R,5S)-2, respectively,4) Key words: litseaverticillol; enantioselective synthesis; except that (R)-4-benzyloxazolidin-2-one was employed sesquiterpenoid; anti-HIV as the source of chirality, instead of its (S)-form used in the previous synthesis. Homogeranic -
Lecture 3: Stereochemistry and Drugs Key Objectives: 1
Lecture 3: Stereochemistry and drugs Key objectives: 1. Be able to explain the role of stereochemistry in drug action or metabolism 2. Be able to identify a chiral center (or centers) in a drug 3. Be able to explain the difference between enantiomers and diastereomers Value of chirality and stereochemistry: Chirality as expressed through stereoisomers increases the specificity of molecule recognition and signaling. Like a key in a lock, or a hand in a glove. Some useful definitions: Chirality (and chiral centers): An object (such as a molecule) that is asymmetric and therefore not superimposable on its own image. Chiral centers are the most common features within molecules that give rise to chirality. Stereoisomer: A molecule that possesses at least one chiral center (or center of chirality). Enantiomers: A type of stereoisomer that exists in mirror image forms. See Figure 1. Diastereomers: A type of stereoisomer that possesses more than one chiral center. Stereospecific: A term used to describe a stereochemical property that one isomer possesses but the other does not. For example, the stereospecific metabolism of the S-enantiomer of a compound by an enzyme but the R-enantiomer is not metabolized by that enzyme. Stereoselective: A term used to describe a stereochemical property that is shared by both stereoisomers, but the property is greater in one isomer than the other. For example, the stereoselective binding of the R-enantiomer for a receptor indicates that the S-enantiomer also binds but not as avidly as the R-enantiomer. Enantiomers Figure 1: For enantiomers, many times we use the example of our left and right hands to demonstrate their asymmetry. -
Diastereomers Diastereomers
Diastereomers Diastereomers: Stereoisomers that are not mirror images. enantiomer (R) (S) (S) (R) diastereomers diastereomer diastereomer enantiomer (R) (S) (R) (S) Diastereomers Diastereomers: Stereoisomers that are not mirror images. (R) enantiomer (S) (S) (R) diastereomer To draw the enantiomer of a molecule with chiral centers, invert stereochemistry at all chiral centers. (R) To draw a diastereomer of a molecule (R) with chiral centers, invert stereochemistry at only some chiral centers. Meso Compounds Meso: A molecule that contains chiral centers, but is achiral. 3 Are these molecules chiral? (R) (S) (These are diff eren t f rom th e 3 molecules I just showed; they have 2 -Cl’s, rather than 1 -Cl & 1 -OH. enantiomer (R) (S) (R) (S) These molecules are chiral mirror images of one another. (R,R) and (S,S) are not the same. Meso Compounds Meso: A molecule that contains chiral centers, but is achiral. 3 enantiomer ? (R) (S) (S) (R) no! 3 same molecule! enantiomer (R) (S) (R) (S) Meso Compounds Meso: A molecule that contains chiral centers, but is achiral. 3 enantiomer ? (R) (S) (S) (R) no! 3 same molecule! If a molecule • contains the same number of (R) and (S) stereocenters, and • those stereocenters have identical groups attached, then the molecule is achiral and meso. Meso Compounds Meso: A molecule that contains chiral centers, but is achiral. 3 same molecule (R) (S) (S) (R) 3 meso diastereomers meso diastereomer diastereomer enantiomer (R) (S) (R) (S) chiral chiral Properties of Enantiomers Most physical properties of enantiomers are identical. diethyl-(R,R)-tartrate diethyl-(S,S)-tartrate boiling point 280 °C 280 °C melting point 19 °C 19 °C density 1.204 g/mL 1.204 g/mL refractive index 1.447 1.447 i.e., chirality does not affect most physical properties. -
Enantiomers & Diastereomers
Chapter 5 Stereochemistry Chiral Molecules Ch. 5 - 1 1. Chirality & Stereochemistry An object is achiral (not chiral) if the object and its mirror image are identical Ch. 5 - 2 A chiral object is one that cannot be superposed on its mirror image Ch. 5 - 3 1A. The Biological Significance of Chirality Chiral molecules are molecules that cannot be superimposable with their mirror images O O ● One enantiomer NH causes birth defects, N O the other cures morning sickness O Thalidomide Ch. 5 - 4 HO NH HO OMe Tretoquinol OMe OMe ● One enantiomer is a bronchodilator, the other inhibits platelet aggregation Ch. 5 - 5 66% of all drugs in development are chiral, 51% are being studied as a single enantiomer Of the $475 billion in world-wide sales of formulated pharmaceutical products in 2008, $205 billion was attributable to single enantiomer drugs Ch. 5 - 6 2. Isomerisom: Constitutional Isomers & Stereoisomers 2A. Constitutional Isomers Isomers: different compounds that have the same molecular formula ● Constitutional isomers: isomers that have the same molecular formula but different connectivity – their atoms are connected in a different order Ch. 5 - 7 Examples Molecular Constitutional Formula Isomers C4H10 and Butane 2-Methylpropane Cl Cl C3H7Cl and 1-Chloropropane 2-Chloropropane Ch. 5 - 8 Examples Molecular Constitutional Formula Isomers CH O CH C H O OH and 3 3 2 6 Ethanol Methoxymethane O OCH and 3 C H O OH 4 8 2 O Butanoic acid Methyl propanoate Ch. 5 - 9 2B. Stereoisomers Stereoisomers are NOT constitutional isomers Stereoisomers have their atoms connected in the same sequence but they differ in the arrangement of their atoms in space. -
Screening of Macromolecular Cross-Linkers and Food-Grade Additives for Enhancement of Catalytic Performance of MNP-CLEA-Lipase of Hevea Brasiliensis
IOP Conference Series: Materials Science and Engineering PAPER • OPEN ACCESS Screening of macromolecular cross-linkers and food-grade additives for enhancement of catalytic performance of MNP-CLEA-lipase of hevea brasiliensis To cite this article: Nur Amalin Ab Aziz Al Safi and Faridah Yusof 2020 IOP Conf. Ser.: Mater. Sci. Eng. 932 012019 View the article online for updates and enhancements. This content was downloaded from IP address 170.106.202.226 on 23/09/2021 at 18:45 1st International Conference on Science, Engineering and Technology (ICSET) 2020 IOP Publishing IOP Conf. Series: Materials Science and Engineering 932 (2020) 012019 doi:10.1088/1757-899X/932/1/012019 Screening of macromolecular cross-linkers and food-grade additives for enhancement of catalytic performance of MNP- CLEA-lipase of hevea brasiliensis. Nur Amalin Ab Aziz Al Safi1 and Faridah Yusof1 1 Department of Biotechnology Engineering, International Islamic University Malaysia. Abstract. Skim latex from Hevea brasiliensis (rubber tree) consist of many useful proteins and enzymes that can be utilized to produce value added products for industrial purposes. Lipase recovered from skim latex serum was immobilized via cross-linked enzyme aggregates (CLEA) technology, while supported by magnetic nanoparticles for properties enhancement, termed ‘Magnetic Nanoparticles CLEA-lipase’ (MNP-CLEA-lipase). MNP-CLEA-lipase was prepared by chemical cross-linking of enzyme aggregates with amino functionalized magnetic nanoparticles. Instead of using glutaraldehyde as cross-linking agent, green, non-toxic and renewable macromolecular cross-linkers (dextran, chitosan, gum Arabic and pectin) were screened and the best alternative based on highest residual activity was chosen for further analysis. -
Chapter 4: Stereochemistry Introduction to Stereochemistry
Chapter 4: Stereochemistry Introduction To Stereochemistry Consider two of the compounds we produced while finding all the isomers of C7H16: CH3 CH3 2-methylhexane 3-methylhexane Me Me Me C Me H Bu Bu Me Me 2-methylhexane H H mirror Me rotate Bu Me H 2-methylhexame is superimposable with its mirror image Introduction To Stereochemistry Consider two of the compounds we produced while finding all the isomers of C7H16: CH3 CH3 2-methylhexane 3-methylhexane H C Et Et Me Pr Pr 3-methylhexane Me Me H H mirror Et rotate H Me Pr 2-methylhexame is superimposable with its mirror image Introduction To Stereochemistry Consider two of the compounds we produced while finding all the isomers of C7H16: CH3 CH3 2-methylhexane 3-methylhexane .Compounds that are not superimposable with their mirror image are called chiral (in Greek, chiral means "handed") 3-methylhexane is a chiral molecule. .Compounds that are superimposable with their mirror image are called achiral. 2-methylhexane is an achiral molecule. .An atom (usually carbon) with 4 different substituents is called a stereogenic center or stereocenter. Enantiomers Et Et Pr Pr Me CH3 Me H H 3-methylhexane mirror enantiomers Et Et Pr Pr Me Me Me H H Me H H Two compounds that are non-superimposable mirror images (the two "hands") are called enantiomers. Introduction To Stereochemistry Structural (constitutional) Isomers - Compounds of the same molecular formula with different connectivity (structure, constitution) 2-methylpentane 3-methylpentane Conformational Isomers - Compounds of the same structure that differ in rotation around one or more single bonds Me Me H H H Me H H H H Me H Configurational Isomers or Stereoisomers - Compounds of the same structure that differ in one or more aspects of stereochemistry (how groups are oriented in space - enantiomers or diastereomers) We need a a way to describe the stereochemistry! Me H H Me 3-methylhexane 3-methylhexane The CIP System Revisited 1. -
[Cu2(Mand)2(Hmt)]–MOF: a Synergetic Effect Between Cu(II)
Article 3 1 [Cu2(mand)2(hmt)]–MOF: A Synergetic Effect between Cu(II) and Hexamethylenetetramine in the Henry Reaction 1 1 1 2 2, Horat, iu Szalad , Natalia Candu , Bogdan Cojocaru , Traian D. Păsătoiu , Marius Andruh * and Vasile I. Pârvulescu 1,* 1 Department of Organic Chemistry, Biochemistry and Catalysis, Catalysis and Catalytic Processes Research Centre, Faculty of Chemistry, University of Bucharest, Bd. Regina Elisabeta nr. 4-12, 020462 Bucharest, Romania; [email protected] (H.S.); [email protected] (N.C.); [email protected] (B.C.) 2 Faculty of Chemistry, University of Bucharest, Department of Inorganic Chemistry, 23 Dumbrava Ro¸sie Street, sector 2, 020462 Bucharest, Romania; [email protected] * Correspondence: [email protected] (M.A.); [email protected] (V.I.P.) Received: 9 January 2020; Accepted: 12 February 2020; Published: 13 February 2020 3 Abstract: [Cu2(mand)2(hmt)] H2O (where mand is totally deprotonated mandelic acid (racemic 1 · mixture) and hmt is hexamethylenetetramine) proved to be a stable metal–organic framework (MOF) structure under thermal activation and catalytic conditions, as confirmed by both the in situ PXRD (Powder X-ray diffraction) and ATR–FTIR (Attenuated total reflection-Fourier-transform infrared spectroscopy) haracterization. The non-activated MOF was completely inert as catalyst for the Henry reaction, as the accessibility of the substrates to the channels was completely blocked by H-bonded water to the mand entities and CO2 adsorbed on the Lewis basic sites of the hmt. Heating at 140 ◦C removed these molecules. Only an insignificant change in the relative ratios of the XRD facets due to the capillary forces associated to the removal of the guest molecules from the network has been observed. -
Method of Making 3-(Aminomethyl)-5-Methylhexanoic Acid
Europäisches Patentamt *EP000830338B1* (19) European Patent Office Office européen des brevets (11) EP 0 830 338 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.7: C07C 229/08, C07C 255/19, of the grant of the patent: C07C 255/22, C07C 227/04 12.12.2001 Bulletin 2001/50 (86) International application number: (21) Application number: 96914618.2 PCT/US96/06819 (22) Date of filing: 13.05.1996 (87) International publication number: WO 96/40617 (19.12.1996 Gazette 1996/55) (54) Method of making 3-(aminomethyl)-5-methylhexanoic acid Verfahren zur Herstellung von 3-(Aminomethyl)-5-Methylhexansäure Procédé de preparation de l’acide 3-(aminométhyl)-5-méthylhexanoique (84) Designated Contracting States: • SOBIERAY, Denis, Martin AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC Holland, MI 49424 (US) NL PT SE • TITUS, Robert, Daniel Designated Extension States: Indianapolis, IN 46227 (US) LT LV SI (74) Representative: Mansmann, Ivo et al (30) Priority: 07.06.1995 US 474874 Warner-Lambert Company, Legal Division, (43) Date of publication of application: Legal Department, 25.03.1998 Bulletin 1998/13 c/o Gödecke AG 79090 Freiburg (DE) (73) Proprietor: WARNER-LAMBERT COMPANY Morris Plains New Jersey 07950 (US) (56) References cited: EP-A- 0 100 019 EP-A- 0 450 577 (72) Inventors: WO-A-93/23383 • GROTE, Todd, Michel Holland, MI 49424 (US) • SYNTHESIS, no. 12, December 1989, NEW • HUCKABEE, Brian, Keith YORK, US, pages 953-5, XP002011378 R. Holland, MI 49424 (US) ANDRUSZKIEWICZ ET. AL.: "A Convenient • MULHERN, Thomas Synthesis of 3-Alkyl-4-Aminobutanioc Acids" Hudsonville, MI 49426 (US) cited in the application Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. -
Investigation of the Behaviour of Pregabalin Enantiomers Dorottya Fruzsina BÁNHEGYI and Emese PÁLOVICS
Review Article ISSN 2689-1050 Chemical & Pharmaceutical Research Investigation of The Behaviour of Pregabalin Enantiomers Dorottya Fruzsina BÁNHEGYI and Emese PÁLOVICS *Correspondence: Department of Organic Chemistry and Technology, H-1111 Department of Organic Chemistry and Technology, H-1111 Budapest, Budafoki út 8., Tel.: +36-1-463-2101, Fax: +36-1- Budapest, Budafoki út 8. 463-3648 Received: 30 October 2020; Accepted: 29 November 2020 Citation: Bánhegyi D.F, Pálovics E. Investigation of The Behaviour of Pregabalin Enantiomers. Chem Pharm Res. 2020; 2(1): 1-5. ABSTRACT The behavior of pregabalin enantiomers obtained by resolution of the free γ-amino acid, racemic pregabalin (PGA) was investigated in the process of the resolution via diastereomeric salt formation. Various resolution methods, purification possibilities of the enantiomeric mixtures, the effect of the achiral compound, the crystallization time of the diastereomeric salt, and the effect of the solvent on the resolution were studied. Summarizing our experimental results, we can establish that the resolution of pregabalin is affected by kinetic control, and significant enantiomeric enrichment can be reached with the replenishment of the diastereomeric salt. Keywords agent mixtures to improve resolvability. Resolution, Resolution by formation of diastereomers, Optimization, Enantiomeric purity, Diastereomeric salt Studying the resolution of pregabalin according to the patent [4], replenishment. it was considered, that it would be advisable to replace one mol of (S)-mandelic acid with another aromatic achiral carboxylic acid Introduction due to the high material demand of the reaction (Figure 1) [5]. We There is a growing interest both scientifically and industrially have chosen realted molecular structured achiral additions with the in the economical separation of chiral, enantiomerically pure same chemical character such as benzoic acid (BA), salicylic acid compounds. -
Urea Activation by an External Brønsted Acid: Breaking Self-Association and Tuning Catalytic Performance
catalysts Article Urea Activation by an External Brønsted Acid: Breaking Self-Association and Tuning Catalytic Performance Isaac G. Sonsona 1,2 ID , Eugenia Marqués-López 1 ID , Marleen Häring 2, David Díaz Díaz 2,3,* and Raquel P. Herrera 1,* ID 1 Laboratorio de Organocatálisis Asimétrica, Departamento de Química Orgánica, Instituto de Síntesis Química y Catálisis Homogénea (ISQCH) CSIC-Universidad de Zaragoza, C/ Pedro Cerbuna 12, 50009 Zaragoza, Spain; [email protected] (I.G.S.); [email protected] (E.M.-L.) 2 Institut für Organische Chemie, Universität Regensburg Universitätsstr. 31, 93053 Regensburg, Germany; [email protected] 3 Institute of Advanced Chemistry of Catalonia-Spanish National Research Council (IQAC-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain * Correspondence: [email protected] (D.D.D.); [email protected] (R.P.H.); Tel.: +49-941-943-4373 (D.D.D.); Tel.: +34-976-761-190 (R.P.H.) Received: 8 July 2018; Accepted: 25 July 2018; Published: 28 July 2018 Abstract: In this work, we hypothesize that Brønsted acids can activate urea-based catalysts by diminishing its self-assembly tendency. As a proof of concept, we used the asymmetric Friedel–Crafts alkylation of indoles with nitroalkenes as a benchmark reaction. The resulting 3-substituted indole derivatives were obtained with better results due to cooperative effects of the chiral urea and a Brønsted acid additive. Such synergy has been rationalized in terms of disassembly of the supramolecular catalyst aggregates, affording a more acidic and rigid catalytic complex. Keywords: Brønsted acids; Friedel-Crafts; organocatalysis; self-association; synergy; urea 1.