Enantiomers & Diastereomers

Total Page:16

File Type:pdf, Size:1020Kb

Enantiomers & Diastereomers Chapter 5 Stereochemistry Chiral Molecules Ch. 5 - 1 1. Chirality & Stereochemistry An object is achiral (not chiral) if the object and its mirror image are identical Ch. 5 - 2 A chiral object is one that cannot be superposed on its mirror image Ch. 5 - 3 1A. The Biological Significance of Chirality Chiral molecules are molecules that cannot be superimposable with their mirror images O O ● One enantiomer NH causes birth defects, N O the other cures morning sickness O Thalidomide Ch. 5 - 4 HO NH HO OMe Tretoquinol OMe OMe ● One enantiomer is a bronchodilator, the other inhibits platelet aggregation Ch. 5 - 5 66% of all drugs in development are chiral, 51% are being studied as a single enantiomer Of the $475 billion in world-wide sales of formulated pharmaceutical products in 2008, $205 billion was attributable to single enantiomer drugs Ch. 5 - 6 2. Isomerisom: Constitutional Isomers & Stereoisomers 2A. Constitutional Isomers Isomers: different compounds that have the same molecular formula ● Constitutional isomers: isomers that have the same molecular formula but different connectivity – their atoms are connected in a different order Ch. 5 - 7 Examples Molecular Constitutional Formula Isomers C4H10 and Butane 2-Methylpropane Cl Cl C3H7Cl and 1-Chloropropane 2-Chloropropane Ch. 5 - 8 Examples Molecular Constitutional Formula Isomers CH O CH C H O OH and 3 3 2 6 Ethanol Methoxymethane O OCH and 3 C H O OH 4 8 2 O Butanoic acid Methyl propanoate Ch. 5 - 9 2B. Stereoisomers Stereoisomers are NOT constitutional isomers Stereoisomers have their atoms connected in the same sequence but they differ in the arrangement of their atoms in space. The consideration of such spatial aspects of molecular structure is called stereochemistry Ch. 5 - 10 2C. Enantiomers & Diastereomers Stereoisomers can be subdivided into two general categories: enantiomers & diasteromers ● Enantiomers – stereoisomers whose molecules are nonsuperposable mirror images of each other ● Diastereomers – stereoisomers whose molecules are not mirror images of each other Ch. 5 - 11 Geometrical isomers (cis & trans isomers) are: ● Diastereomers e.g. Ph Ph Ph and Ph (cis) (trans) Cl Cl Cl H and H H H Cl (cis) (trans) Ch. 5 - 12 Subdivision of Isomers Isomers (different compounds with same molecular formula) Constitutional Isomers Stereoisomers (isomers that have the same (isomers whose atoms have a connectivity but differ in spatial different connectivity) arrangement of their atoms) Enantiomers Diastereomers (stereoisomers that are (stereoisomers that are nonsuperposable mirror NOT mirror images of images of each other) each other) Ch. 5 - 13 3. Enantiomers and Chiral Molecules Enantiomers occur only with compounds whose molecules are chiral A chiral molecule is one that is NOT superposable on its mirror image The relationship between a chiral molecule and its mirror image is one that is enantiomeric. A chiral molecule and its mirror image are said to be enantiomers of each other Ch. 5 - 14 OH (2-Butanol) (I) and (II) are nonsuperposable H OH HO H mirror images of each other (I) (II) Ch. 5 - 15 4. A Single Chirality Center Causes a Molecule to Be Chiral The most common type of chiral compounds that we encounter are molecules that contain a carbon atom bonded to four different groups. Such a carbon atom is called an asymmetric carbon or a chiral center and is usually designated with an asterisk (*) Ch. 5 - 16 Cl Me C* Et H H Cl Cl H Me Et Et Me (III) (IV) mirror (III) and (IV) are nonsuperposable mirror images of each other Ch. 5 - 17 Cl Me C Me H H Cl Cl H Me Me Me Me (V) (VI) mirror (V) and (VI) are superposable ⇒ not enantiomers ⇒ achiral Ch. 5 - 18 4A. Tetrahedral vs. Trigonal Stereogenic Centers Chirality centers are tetrahedral stereogenic centers H OH HO H Me * Et Et * Me (A) (B) Tetrahedral stereogenic mirror (A) & (B) are center enantiomers ⇒ chiral Ch. 5 - 19 Cis and trans alkene isomers contain trigonal stereogenic centers Ph H H Ph H Ph Ph H Trigonal (C) (D) stereogenic mirror center ⇒ achiral (C) & (D) are identical Ch. 5 - 20 4A. Tetrahedral vs. Trigonal Stereogenic Centers Chirality centers are tetrahedral stereogenic centers Cis and trans alkene isomers contain trigonal stereogenic centers Ch. 5 - 21 5. More about the Biological Importance of Chirality (+)-Limonene (-)-Limonene (limonene enantiomer (limonene enantiomer found in oranges) found in lemons) Ch. 5 - 22 Thalidomide The activity of drugs containing chirality centers can vary between enantiomers, sometimes with serious or even tragic consequences For several years before 1963 thalidomide was used to alleviate the symptoms of morning sickness in pregnant women Ch. 5 - 23 In 1963 it was discovered that thalidomide (sold as a mixture of both enantiomers) was the cause of horrible birth defects in many children born subsequent to the use of the drug O O O O NH NH N O N O O O Thalidomide enantiomer of (cures morning sickness) Thalidomide (causes birth defects) Ch. 5 - 24 6. How to Test for Chirality: Planes of Symmetry A molecule will not be chiral if it possesses a plane of symmetry A plane of symmetry (mirror plane) is an imaginary plane that bisects a molecule such that the two halves of the molecule are mirror images of each other All molecules with a plane of symmetry in their most symmetric conformation are achiral Ch. 5 - 25 Plane of symmetry Cl Me Me H achiral Cl Me Et H No plane of symmetry chiral Ch. 5 - 26 7. Naming Enantiomers: R,S-System OH H OH HO H Recall: (I) (II) Using only the IUPAC naming that we have learned so far, these two enantiomers will have the same name: ● 2-Butanol This is undesirable because each compound must have its own distinct name Ch. 5 - 27 7A. How to Assign (R) and (S) Configurations Rule 1 ● Assign priorities to the four different groups on the stereocenter from highest to lowest (priority bases on atomic number, the higher the atomic number, the higher the priority) Ch. 5 - 28 Rule 2 ● When a priority cannot be assigned on the basis of the atomic number of the atoms that are directly attached to the chirality center, then the next set of atoms in the unassigned groups is examined. This process is continued until a decision can be made. Ch. 5 - 29 Rule 3 ● Visualize the molecule so that the lowest priority group is directed away from you, then trace a path from highest to lowest priority. If the path is a clockwise motion, then the configuration at the asymmetric carbon is (R). If the path is a counter-clockwise motion, then the configuration is (S) Ch. 5 - 30 H Example HO (2-Butanol) ① ④ O H Step 1: C C ② or ③ ② or ③ ① ④ O H ③ C ② Step 2: CH3 H3C C H2 (H, H, H) (C, H, H) Ch. 5 - 31 ① OH OH ④ H ③ ② Me Et Et Me OH OH HO H = H Me Et Me Et Et Arrows are clockwise Me (R)-2-Butanol Ch. 5 - 32 Other examples ① Cl Cl Counter- clockwise ④ H ③ CH3 HO CH3 (S) HO ② Clockwise ② OCH3 OCH3 ④ (R) ③ H3C CH2CH3 Br CH2CH3 Br ① Ch. 5 - 33 Other examples ● Rotate C–Cl bond such that H is pointed to the back ② Cl Cl ④ ③ Br H H OH HO Br ① Cl Clockwise Br OH (R) Ch. 5 - 34 Other examples ● Rotate C–CH3 bond such that H is pointed to the back ② H OCH3 ④ I H ① OCH3 I H3C H3C ③ Counter-clockwise OCH3 H3C I (S) Ch. 5 - 35 Rule 4 ● For groups containing double or triple bonds, assign priorities as if both atoms were duplicated or triplicated e.g. C O as C O O C C C as C C C C C C C C as C C C C Ch. 5 - 36 Example ③ CH3 ④ (S) H ② CH=CH2 HO ① Compare CH3 & CH CH2 : H H CH CH2 equivalent to C C H C C Thus, CH3 ⇒ (H, H, H) CH CH2 ⇒ (C, C, H) Ch. 5 - 37 Other examples ② (R) OH ④ CH H ③ 3 Cl ① O ③ OH H2C ④ CH ② C ⇒ (O, O, C) H ② 3 Cl ① O (S) ③ C ⇒ (O, H, H) Ch. 5 - 38 8. Properties of Enantiomers: Optical Activity Enantiomers ● Mirror images that are not superposable H H * * Cl Cl CH3 H3C H3CH2C CH2CH3 mirror Ch. 5 - 39 Enantiomers have identical physical properties (e.g. melting point, boiling point, refractive index, solubility etc.) Compound bp (oC) mp (oC) (R)-2-Butanol 99.5 (S)-2-Butanol 99.5 (+)-(R,R)-Tartaric Acid 168 – 170 (–)-(S,S)-Tartaric Acid 168 – 170 (+/–)-Tartaric Acid 210 – 212 Ch. 5 - 40 Enantiomers ● Have the same chemical properties (except reaction/interactions with chiral substances) ● Show different behavior only when they interact with other chiral substances ● Turn plane-polarized light on opposite direction Ch. 5 - 41 Optical activity ● The property possessed by chiral substances of rotating the plane of polarization of plane-polarized light Ch. 5 - 42 8A. Plane-Polarized Light The electric field (like the magnetic field) of light is oscillating in all possible planes When this light passes through a polarizer (Polaroid lens), we get plane- polarized light (oscillating in only one plane) Polaroid lens Ch. 5 - 43 8B. The Polarimeter A device for measuring the optical activity of a chiral compound α =observed optical rotation Ch. 5 - 44 8C. Specific Rotation observed temperature rotation 25 α [α] = D c x ℓ wavelength concentration length of cell of light of sample in dm (e.g. D-line solution (1 dm = 10 cm) of Na lamp, in g/mL λ=589.6 nm) Ch. 5 - 45 The value of α depends on the particular experiment (since there are different concentrations with each run) ● But specific rotation [α] should be the same regardless of the concentration Ch.
Recommended publications
  • II. Stereochemistry 5
    B.Sc.(H) Chemistry Semester - II Core Course - III (CC-III) Organic Chemistry - I II. Stereochemistry 5. Physical and Chemical Properties of Stereoisomers Dr. Rajeev Ranjan University Department of Chemistry Dr. Shyama Prasad Mukherjee University, Ranchi 1 Syllabus & Coverage Syllabus II Stereochemistry: Fischer Projection, Newmann and Sawhorse Projection formulae and their interconversions. Geometrical isomerism: cis–trans and syn-anti isomerism, E/Z notations with Cahn Ingold and Prelog (CIP) rules for determining absolute configuration. Optical Isomerism: Optical Activity, Specific Rotation, Chirality/Asymmetry, Enantiomers, Molecules with two or more chiral-centres, Distereoisomers, Meso structures, Racemic mixture. Resolution of Racemic mixtures. Relative and absolute configuration: D/L and R/S designations. Coverage: 1. Types of Isomers : Comparing Structures 2. Optical Activity 3. Racemic Mixtures : Separation of Racemic Mixtures 4. Enantiomeric Excess and Optical Purity 5. Relative and Absolute Configuration 6. Physical and Chemical Properties of Stereoisomers 2 Stereochemistry Types of Isomers Dr. Rajeev Ranjan 3 Stereochemistry Determining the Relationship Between Two Non-Identical Molecules Dr. Rajeev Ranjan 4 Stereochemistry Comparing Structures: Are the structures connected the same? yes no Are they mirror images? Constitutional Isomers yes no Enantiomers Enantiomers Is there a plane of symmetry? All chiral centers will be opposite between them. yes no Meso Diastereomers superimposable Dr. Rajeev Ranjan 5 Stereochemistry Optical Activity: • The chemical and physical properties of two enantiomers are identical except in their interaction with chiral substances. • The physical property that differs is the behavior when subjected to plane-polarized light ( this physical property is often called an optical property). • Plane-polarized (polarized) light is light that has an electric vector that oscillates in a single plane.
    [Show full text]
  • Effect of the Enantiomeric Ratio of Eutectics on the Results and Products of the Reactions Proceeding with the Participation Of
    Perspective Effect of the Enantiomeric Ratio of Eutectics on the Results and Products of the Reactions Proceeding with the Participation of Enantiomers and Enantiomeric Mixtures Emese Pálovics *, Dorottya Fruzsina Bánhegyi and Elemér Fogassy Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, 1521 Budapest, Hungary; [email protected] (D.F.B.); [email protected] (E.F.) * Correspondence: [email protected]; Tel.: +36-1-4632101 Received: 3 August 2020; Accepted: 14 September 2020; Published: 21 September 2020 Abstract: This perspective is focused on the main parameters determining the results of crystallization of enantiomers or enantiomeric mixtures. It was shown that the ratio of supramolecular and helical associations depends on the eutectic composition of the corresponding enantiomeric mixture. The M and P ratios together with the self-disproportionation (SDE) of enantiomers define the reaction of the racemic compound with the resolving agent. Eventually, each chiral molecule reacts with at least two conformers with different degrees of M and P helicity. The combined effect of the configuration, charge distribution, constituent atoms, bonds, flexibility, and asymmetry of the molecules influencing their behavior was also summarized. Keywords: chiral molecules; enantiomeric separation; self-disproportionation of enantiomers; supramolecular associations; helical structure; eutectic composition 1. Introduction The preparation of asymmetric (chiral) compounds (enantiomers) is one of the main goals of research, industry and medicine. The preparation of a given enantiomer is possible in several ways, for example by selective synthesis, which requires the separation of the chiral catalyst or the enantiomers of the racemic compound, and in which case a resolving agent (like a chiral catalyst) may be required.
    [Show full text]
  • Enantioselective Synthesis of the (1S,5R)-Enantiomer of Litseaverticillols a and B
    Biosci. Biotechnol. Biochem., 70 (10), 2564–2566, 2006 Note Enantioselective Synthesis of the (1S,5R)-Enantiomer of Litseaverticillols A and B y Akira MORITA, Hiromasa KIYOTA, and Shigefumi KUWAHARA Laboratory of Applied Bioorganic Chemistry, Graduate School of Agricultural Science, Tohoku University, Tsutsumidori-Amamiyamachi, Aoba-ku, Sendai 981-8555, Japan Received May 8, 2006; Accepted May 31, 2006; Online Publication, October 7, 2006 [doi:10.1271/bbb.60253] An enantioselective synthesis of the (1S,5R)-enan- which have recently culminated in the first enantiose- tiomer of litseaverticillols A and B was accomplished in lective total synthesis of (1R,5S)-(À)-1 and (1R,5S)-(À)- line with our previously reported synthetic pathway for 2.4) In this note, we describe the synthesis of their their (1R,5S)-enantiomer. The use of ‘‘EtSCeCl2’’ pre- enantiomers directed toward an evaluation of the differ- pared from EtSLi and CeCl3, instead of previously ence in biological activity between the enantiomers of employed EtSLi itself, for the formation of thiol ester litseaverticillols A and B. intermediates prevented any undesirable epimerization Our synthesis of (1S,5R)-1 and (1S,5R)-2 basically occurring in the process. followed our previous synthesis of their corresponding enantiomers, (1R,5S)-1 and (1R,5S)-2, respectively,4) Key words: litseaverticillol; enantioselective synthesis; except that (R)-4-benzyloxazolidin-2-one was employed sesquiterpenoid; anti-HIV as the source of chirality, instead of its (S)-form used in the previous synthesis. Homogeranic
    [Show full text]
  • Lecture 3: Stereochemistry and Drugs Key Objectives: 1
    Lecture 3: Stereochemistry and drugs Key objectives: 1. Be able to explain the role of stereochemistry in drug action or metabolism 2. Be able to identify a chiral center (or centers) in a drug 3. Be able to explain the difference between enantiomers and diastereomers Value of chirality and stereochemistry: Chirality as expressed through stereoisomers increases the specificity of molecule recognition and signaling. Like a key in a lock, or a hand in a glove. Some useful definitions: Chirality (and chiral centers): An object (such as a molecule) that is asymmetric and therefore not superimposable on its own image. Chiral centers are the most common features within molecules that give rise to chirality. Stereoisomer: A molecule that possesses at least one chiral center (or center of chirality). Enantiomers: A type of stereoisomer that exists in mirror image forms. See Figure 1. Diastereomers: A type of stereoisomer that possesses more than one chiral center. Stereospecific: A term used to describe a stereochemical property that one isomer possesses but the other does not. For example, the stereospecific metabolism of the S-enantiomer of a compound by an enzyme but the R-enantiomer is not metabolized by that enzyme. Stereoselective: A term used to describe a stereochemical property that is shared by both stereoisomers, but the property is greater in one isomer than the other. For example, the stereoselective binding of the R-enantiomer for a receptor indicates that the S-enantiomer also binds but not as avidly as the R-enantiomer. Enantiomers Figure 1: For enantiomers, many times we use the example of our left and right hands to demonstrate their asymmetry.
    [Show full text]
  • Diastereomers Diastereomers
    Diastereomers Diastereomers: Stereoisomers that are not mirror images. enantiomer (R) (S) (S) (R) diastereomers diastereomer diastereomer enantiomer (R) (S) (R) (S) Diastereomers Diastereomers: Stereoisomers that are not mirror images. (R) enantiomer (S) (S) (R) diastereomer To draw the enantiomer of a molecule with chiral centers, invert stereochemistry at all chiral centers. (R) To draw a diastereomer of a molecule (R) with chiral centers, invert stereochemistry at only some chiral centers. Meso Compounds Meso: A molecule that contains chiral centers, but is achiral. 3 Are these molecules chiral? (R) (S) (These are diff eren t f rom th e 3 molecules I just showed; they have 2 -Cl’s, rather than 1 -Cl & 1 -OH. enantiomer (R) (S) (R) (S) These molecules are chiral mirror images of one another. (R,R) and (S,S) are not the same. Meso Compounds Meso: A molecule that contains chiral centers, but is achiral. 3 enantiomer ? (R) (S) (S) (R) no! 3 same molecule! enantiomer (R) (S) (R) (S) Meso Compounds Meso: A molecule that contains chiral centers, but is achiral. 3 enantiomer ? (R) (S) (S) (R) no! 3 same molecule! If a molecule • contains the same number of (R) and (S) stereocenters, and • those stereocenters have identical groups attached, then the molecule is achiral and meso. Meso Compounds Meso: A molecule that contains chiral centers, but is achiral. 3 same molecule (R) (S) (S) (R) 3 meso diastereomers meso diastereomer diastereomer enantiomer (R) (S) (R) (S) chiral chiral Properties of Enantiomers Most physical properties of enantiomers are identical. diethyl-(R,R)-tartrate diethyl-(S,S)-tartrate boiling point 280 °C 280 °C melting point 19 °C 19 °C density 1.204 g/mL 1.204 g/mL refractive index 1.447 1.447 i.e., chirality does not affect most physical properties.
    [Show full text]
  • Unit 3 – Stereochemistry
    Stereochemistry Stereochemistry refers to the 3-dimensional properties and reactions of molecules. It has its own language and terms that need to be learned in order to fully communicate and understand the concepts. New vocabulary and concepts Handedness Chirality Fischer Projections Depicting Asymmetric Carbons (R) and (S) Nomenclature Enantiomers Diastereomers Optical Activity Stereochemistry Isomers: Different compounds that have the same molecular formula (composition) but different connectivity. Two classes: - Structural (constitutional) isomers: same molecular formula but different bonding sequence - Stereoisomers: same molecular formula, same bonding sequence, but different arrangement in space. Handedness…..Chirality Handedness” right glove doesn’t fit the left hand. Superimposable: A term that describes the ability to precisely overlap one object over another. Only identical objects are superposable, everything else is non-superposable superimposable nonsuperimposable Chiral molecules & Chirality Center Chemical substances can be handed, and they are called chiral. Chiral Molecules: are molecules that are nonsuperimposable on their mirror image. A carbon atom that is bonded to four chiral carbon atom different groups is called chairal carbon atom or stereocenter (asymmetric carbon atom). It is sp3 carbon and labeled with a strict. Achiral: A molecule is achiral if it is superimposable on its mirror image H H Cl Cl Practices on Asymmetric Carbons Example: Identify all asymmetric carbons present in the following compounds. Br Br H OH H H CH2CH3 H C *C C C H Br CH3 * H H H H H H H H H3C Br CH3 * * OH * CH CHCOOH* 3 * * * Fischer Projections: ➢ It is a two-dimensional representation of a three-dimensional organic molecule by projection.
    [Show full text]
  • Chapter 4: Stereochemistry Introduction to Stereochemistry
    Chapter 4: Stereochemistry Introduction To Stereochemistry Consider two of the compounds we produced while finding all the isomers of C7H16: CH3 CH3 2-methylhexane 3-methylhexane Me Me Me C Me H Bu Bu Me Me 2-methylhexane H H mirror Me rotate Bu Me H 2-methylhexame is superimposable with its mirror image Introduction To Stereochemistry Consider two of the compounds we produced while finding all the isomers of C7H16: CH3 CH3 2-methylhexane 3-methylhexane H C Et Et Me Pr Pr 3-methylhexane Me Me H H mirror Et rotate H Me Pr 2-methylhexame is superimposable with its mirror image Introduction To Stereochemistry Consider two of the compounds we produced while finding all the isomers of C7H16: CH3 CH3 2-methylhexane 3-methylhexane .Compounds that are not superimposable with their mirror image are called chiral (in Greek, chiral means "handed") 3-methylhexane is a chiral molecule. .Compounds that are superimposable with their mirror image are called achiral. 2-methylhexane is an achiral molecule. .An atom (usually carbon) with 4 different substituents is called a stereogenic center or stereocenter. Enantiomers Et Et Pr Pr Me CH3 Me H H 3-methylhexane mirror enantiomers Et Et Pr Pr Me Me Me H H Me H H Two compounds that are non-superimposable mirror images (the two "hands") are called enantiomers. Introduction To Stereochemistry Structural (constitutional) Isomers - Compounds of the same molecular formula with different connectivity (structure, constitution) 2-methylpentane 3-methylpentane Conformational Isomers - Compounds of the same structure that differ in rotation around one or more single bonds Me Me H H H Me H H H H Me H Configurational Isomers or Stereoisomers - Compounds of the same structure that differ in one or more aspects of stereochemistry (how groups are oriented in space - enantiomers or diastereomers) We need a a way to describe the stereochemistry! Me H H Me 3-methylhexane 3-methylhexane The CIP System Revisited 1.
    [Show full text]
  • Chirality and Enantiomers
    16.11.2010 Bioanalytics Part 5 12.11.2010 Chirality and Enantiomers • Definition: Optical activity • Properties of enantiomers • Methods: – Polarimetry – Circular dichroism • Nomenclature • Separation of enantiomers • Determination of enantiomeric excess (ee) Determination of absolute configuration • Enantiomeric ratio (E‐value) 1 16.11.2010 Definitions Enantiomers: the two mirror images of a molecule Chirality: non‐superimposable mirror‐images •Depends on the symmetry of a molecule •Point‐symmetry: asymmetric C, Si, S, P‐atoms •Helical structures (protein α‐helix) Quarz crystals snail‐shell amino acids Properties of Enantiomers – Chemical identical – Identical UV, IR, NMR‐Spectra – Differences: • Absorption and refraction of circular polarized light is different – Polarimetry, CD‐spectroscopy • Interaction with other chiral molecules/surfaces is different – Separation of enantiomers on chiral columns (GC, HPLC) 2 16.11.2010 Chiral compounds show optical activity A polarimeter is a device which measures the angle of rotation by passing polarized light through an „optical active“ (chiral) substance. Interaction of light and matter If light enters matter, its intensity (amplitude), polarization, velocity, wavelength, etc. may alter. The two basic phenomena of the interaction of light and matter are absorption (or extinction) and a decrease in velocity. 3 16.11.2010 Interaction of light and matter Absorption means that the intensity (amplitude) of light decreases in matter because matter absorbs a part of the light. (Intensity is the square of amplitude.) Interaction of light and matter The decrease in velocity (i.e. the slowdown) of light in matter is caused by the fact that all materials (even materials that do not absorb light at all) have a refraction index, which means that the velocity of light is smaller in them than in vacuum.
    [Show full text]
  • Magnetic Combined Cross-Linked Enzyme Aggregates of Ketoreductase and Alcohol Dehydrogenase
    catalysts Article Magnetic Combined Cross-Linked Enzyme Aggregates of Ketoreductase and Alcohol Dehydrogenase: An Efficient and Stable Biocatalyst for Asymmetric Synthesis of (R)-3-Quinuclidinol with Regeneration of Coenzymes In Situ Yuhan Chen 1, Qihua Jiang 1, Lili Sun 1, Qiang Li 2, Liping Zhou 1, Qian Chen 1, Shanshan Li 1, Mingan Yu 1 and Wei Li 1,3,* 1 Department of Medicinal Chemistry, School of Pharmacy, Chongqing Medical University, Chongqing 400016, China; [email protected] (Y.C.); [email protected] (Q.J.); [email protected] (L.S.); [email protected] (L.Z.); [email protected] (Q.C.); [email protected] (S.L.); [email protected] (M.Y.) 2 Chongqing Key Laboratory of Medicinal Resources in the Three Gorges Reservoir Region, School of Biological & Chemical engineering, Chongqing University of Education, Chongqing 400067, China; [email protected] 3 Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, Chongqing 400016, China * Correspondence: [email protected]; Tel.: +86-23-6848-5161 Received: 14 July 2018; Accepted: 30 July 2018; Published: 15 August 2018 Abstract: Enzymes are biocatalysts. In this study, a novel biocatalyst consisting of magnetic combined cross-linked enzyme aggregates (combi-CLEAs) of 3-quinuclidinone reductase (QNR) and glucose dehydrogenase (GDH) for enantioselective synthesis of (R)-3-quinuclidinolwith regeneration of cofactors in situ was developed. The magnetic combi-CLEAs were fabricated with the use of ammonium sulfate as a precipitant and glutaraldehyde as a cross-linker for direct immobilization of QNR and GDH from E. coli BL(21) cell lysates onto amino-functionalized Fe3O4 nanoparticles. The physicochemical properties of the magnetic combi-CLEAs were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and magnetic measurements.
    [Show full text]
  • Kinetic Modeling of Chiral Amplification and Enantioselectivity Reversal in Asymmetric Reactions
    J. Mex. Chem. Soc. 2007, 51(2), 117-121 Article © 2007, Sociedad Química de México ISSN 1870-249X Kinetic Modeling of Chiral Amplification and Enantioselectivity Reversal in Asymmetric Reactions Jesús Rivera Islas and Thomas Buhse* Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Avenida Universidad 1001, Colonia Chamilpa, 62209 Cuernavaca, Morelos, México. Tel/Fax: +52-7773297997, e-mail: [email protected]. Recibido el 30 de marzo de 2007; aceptado el 18 de mayo de 2007 Abstract: Nonlinear effects in asymmetric synthesis and the occa- Resumen: Los efectos no lineales en síntesis asimétrica y la inver- sionally observed reversal of the enantioselectivity of the employed sión de la enantioselectividad del catalizador empleado son evaluados catalyst are evaluated by a generalized kinetic approach. A non-auto- a través de un modelado cinético generalizado. Un sistema reactivo catalytic and an autocatalytic reaction system are considered as two autocatalítico y otro no autocatalítico son considerados como dos different prototype scenarios. It is predicted that during the course of escenarios prototipos diferentes. Se predice que durante el curso de la enantioselectivity reversal in the non-autocatalytic system a gradual inversión de la enantioselectividad en el sistema no autocatalítico transition between both optically active states under loss of chiral ocurre una transición gradual entre los dos estados óptimamente acti- amplification occurs while in the autocatalytic system a sharp transi- vos donde la amplificación quiral decae mientras en el sistema auto- tion under retention of chiral amplification is observed. catalítico ocurre una transición abrupta observándose la retención de Keywords: Asymmetric synthesis, chiral amplification, nonlinear la amplificación quiral.
    [Show full text]
  • Highly Enantioselective Synthesis of Γ-, Δ-, and E-Chiral 1-Alkanols Via Zr-Catalyzed Asymmetric Carboalumination of Alkenes (ZACA)–Cu- Or Pd-Catalyzed Cross-Coupling
    Highly enantioselective synthesis of γ-, δ-, and e-chiral 1-alkanols via Zr-catalyzed asymmetric carboalumination of alkenes (ZACA)–Cu- or Pd-catalyzed cross-coupling Shiqing Xu, Akimichi Oda, Hirofumi Kamada, and Ei-ichi Negishi1 Department of Chemistry, Purdue University, West Lafayette, IN 47907 Edited by Chi-Huey Wong, Academia Sinica, Taipei, Taiwan, and approved May 2, 2014 (received for review January 21, 2014) Despite recent advances of asymmetric synthesis, the preparation shown in Schemes 1 and 2 illustrate the versatility of ZACA of enantiomerically pure (≥99% ee) compounds remains a chal- represented by the organoaluminum functionality of the ini- lenge in modern organic chemistry. We report here a strategy tially formed ZACA products. Introduction of the OH group for a highly enantioselective (≥99% ee) and catalytic synthesis by oxidation of initially formed alkylalane intermediates in of various γ- and more-remotely chiral alcohols from terminal Scheme 2 is based on two considerations: (i) the proximity of the alkenes via Zr-catalyzed asymmetric carboalumination of alkenes OH group to a stereogenic carbon center is highly desirable for (ZACA reaction)–Cu- or Pd-catalyzed cross-coupling. ZACA–in situ lipase-catalyzed acetylation to provide ultrapure (≥99% ee) di- oxidation of tert-butyldimethylsilyl (TBS)-protected ω-alkene-1-ols functional intermediates, and (ii) the versatile OH group can R S α ω produced both ( )- and ( )- , -dioxyfunctional intermediates (3) be further transformed to a wide range of carbon groups by – ee ≥ ee in 80 88% , which were readily purified to the 99% level tosylation or iodination followed by Cu- or Pd-catalyzed cross- by lipase-catalyzed acetylation through exploitation of their high α ω coupling.
    [Show full text]
  • Catalytic Asymmetric Synthesis
    Catalytic Asymmetric Synthesis Dr Alan Armstrong Rm 313 (RCS1), ext. 45876; [email protected] 7 lectures Recommended texts: “Catalytic Asymmetric Synthesis, 2nd edition”, ed. I Ojima, Wiley-VCH, 2000 (or 1st ed., 1993, which contains most of the lecture material) “Asymmetric Synthesis”, G Procter, Oxford, 1996 Aims of course: To give students an understanding of the basic principles of asymmetric catalysis, and to demonstrate these in the context of state-of-the-art catalytic asymmetric processes for C-C bond formation and redox processes. Course objectives: At the end of this course you should be able to: • Recognise the types of functional groups which can be prepared by catalytic asymmetric methods discussed in the course; • Use this knowledge in planning the synthesis of enantiomerically enriched compounds from given prochiral starting materials; • Outline the scope and limitations of any methods you propose, with respect to parameters such as turnover, substrate and functional group tolerance, availability of catalysts and/or ligands etc Course content (by lecture, approximately): 1. Introduction and general principles of asymmetric catalysis. Oxidation of functionalised olefins: asymmetric epoxidation of allylic alcohols and enones 2. Oxidation of unfunctionalised olefins: epoxidation, dihydroxylation and aminohydroxylation. 3. Reduction of olefins: asymmetric hydrogenation. 4. Reduction of ketones and imines 5. Asymmetric C-C bond formation: nucleophilic attack on carbonyls, imines and enones 6. Asymmetric transition metal catalysis in C-C bond forming reactions (cross-couplings, Heck reactions, allylic substitution, carbenoid reactions) 7. Chiral Lewis acid catalysis (aldol reactions, cycloadditions, Mannich reactions, allylations) 1 Catalytic Asymmetric Synthesis - Lecture 1 Background and general principles • Why asymmetric synthesis? The need to prepare pharmaceuticals and other fine chemicals as single enantiomers drives the field of asymmetric synthesis.
    [Show full text]