<<

KemKem--4.4504.450 AsymmetricAsymmetric SynthesisSynthesis

Prof. Ari Koskinen Laboratory of Organic Chemistry

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007

ChiralityChirality andand DifferingDiffering PropertiesProperties

OO Carvone

spearmint odor caraway

NH NH 2 H 2 H Aspartame HO2C NCO2Me HO2C NCO2Me (Nutrasweet) O O

sweet bitter

O O

Thalidomide N N O O OON OON H H sedative, hypnotic teratogenic

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 PharmaceuticalsPharmaceuticals

Š Growing need for enantiopure compounds Š / may have adverse effects Š Diastereomers usually easier to separate Š Enantiomers: FDA required

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 PharmaceuticalsPharmaceuticals

Penicillamine: NH2 NH2

CO2H CO2H SH SH

antidote for Pb, Au, Hg can cause optic atrophy => blindness

Timolol:

O OH O OH H H N O N N O N

N N N N S S

adrenergic blocker ineffective

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 SalesSales ofof EnantiomericEnantiomeric DrugsDrugs andand IntermediatesIntermediates

Chem. Eng. News 2001, 79 (40), 79-97.

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 AsymmetricAsymmetric InductionInduction -- DefinitionsDefinitions

Chirality - handedness Asymmetry - lacking all symmetry (except E) B Dissymmetry - lacking some element of symmery H NB!!! Molecules can be chiral but not asymmetric! e.g.

C2 axis

Asymmetric Induction (A.I.) - process that breaks (local) mirror symmetry

OOHOH +

A.I. if not 1:1

AcO AcO

Prostaglandin synthesis intermediate Danishefsky, S.J. JACS 1989, 111, 3456. AcO HO

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 SpecificitySpecificity vsvs SelectivitySelectivity

SPECIFICITY - non-statistical outcome of reaction - mechanism based SELECTIVITY - product determined by thermodynamics (product stability OR rates)

SELECTIVE PROCESS: t O Li, NH3, BuOH H OH

SPECIFIC PROCESS: 1) BH3 H 2) H O ; HO- 2 2 HOH

ALL specific reactions must be selective, but not necessarily vice versa Two reactions must be carried out to determine if a process is specific 1) BH3 H 2) H O ; HO- 2 2 HO H

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 OpticallyOptically ActiveActive SubstancesSubstances

Prochiral substrates

Asymmetric synthesis

Chemocatalysis

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 OpticallyOptically ActiveActive SubstancesSubstances

Racemates

Kinetic resolution crystallisation

Chemical Enzymatic

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 EnantioselectiveEnantioselective SynthesisSynthesis

Š Purpose: „ to create single

„ to control at remote sites

Š Methods: „ resolution z requires separation z loss of material

„ z additional operations

„ asymmetric transformations (rare)

„ Asymmetric induction

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 EnantioselectiveEnantioselective SynthesisSynthesis

For A.I. to be practical

Š > 99% ee Š Access both configurations Š General transformations Speed Š Control agent readily available Selectivity Stability Š NO added steps Safety Š : + Sustainability 1 $

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 MethodsMethods forfor ObtainingObtaining EnantiopureEnantiopure CompoundsCompounds

Š Purchase directly from a commercial supplier Š Isolate from natural sources Š Resolution „ direct „ diastereomeric derivatives „ chiral chromatography Š Asymmetric Transformations Š Asymmetric Induction (AI) „ internal a.i. (chiral SM) „ relayed a.i. (chiral AUX) „ external a.i. (chiral RGT)

Morrison, J.D. Asymmetric Synthesis vol 1, 1983, 1. © Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 MethodsMethods forfor ObtainingObtaining EnantiopureEnantiopure CompoundsCompounds

ŠŠ PurchasePurchase directlydirectly fromfrom aa commercialcommercial suppliersupplier

Problems: Availability, price, purity, ...

A growing number of small companies sell tailor-made specialty chemicals.

Applicable also in industry: contractors.

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 MethodsMethods forfor ObtainingObtaining EnantiopureEnantiopure CompoundsCompounds

ŠŠ IsolateIsolate fromfrom naturalnatural sourcessources Ideally a nearly unlimited source of new structures.

Tedious!!!

Finding the source!!!

May require vast amounts of purification, structure identification and labor.

Semisynthetic derivatives (e.g. penicillins).

NB!!! NOT ALL NATURAL PRODUCTS ARE ENANTIOPURE!!!

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 MethodsMethods forfor ObtainingObtaining EnantiopureEnantiopure CompoundsCompounds

ŠŠ ResolutionResolution

„ directdirect crystallizationcrystallization

distil + OH OH OH OH OH

PhCOCl Industrial production of Menthol benzoate esters through fractional crystallization of benzoate ester intermediates crystallize

+ OH OH OBz OBz

Haarmann & Reimer © Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 SolubilitySolubility andand meltingmelting pointpoint diagramsdiagrams

(conglomerate) racemic compound racemic solid solution (racemate)

0 50 100%(+) 0 50 100%(+) 0 50 100%(+) 100 50 0%(-) 100 50 0%(-) 100 50 0%(-)

0 50 100%(+) 0 50 100%(+) 100 50 0%(-) 100 50 0%(-)

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 OpticalOptical puritypurity duringduring titrationtitration withwith aqaq NaOHNaOH

100 mother liquor

N 50 .HCl SN

precipitate

0 50 100% starting optical purity

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 FractionalFractional SublimationSublimation ofof L--MandelicMandelic AcidAcid

OH

* CO2H

Sample enantiomeric purity % of L- 134 Stg material 20.7 60.3 Fraction 1 37.2 68.6 122 Fraction 2 31.5 65.7 Fraction 3 25.2 62.6 Fraction 4 16.0 58.0 Fraction 5 4.7 52.3 0 50 0 (L) Stg material 60.2 80.1 100 50 100 (D) Fraction 1 52.5 76.3 Fraction 2 62.0 81.0 Fraction 3 64.1 82.1 Fraction 4 74.3 87.1 Other related examples:

H OH

S CO2H H

6 %ee 74 %ee 40 %ee 64 %ee racemic non-racemic

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 MethodsMethods forfor ObtainingObtaining EnantiopureEnantiopure CompoundsCompounds

ŠŠ ResolutionResolution

„ diastereomericdiastereomeric derivativesderivatives

NB! Both enantiomers of this half single enantiomer H H

H H hydrolyze H O N Me OH Me H Me H OPh O O O O O O

Separate 1:1 mixture of diastereomers by column chromatography

Corey, E.J. et al. J. Am. Chem. Soc. 1970, 92, 396. © Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 MethodsMethods forfor ObtainingObtaining EnantiopureEnantiopure CompoundsCompounds

ŠŠ ResolutionResolution

„ chiralchiral chromatographychromatography

Chiral Stationary Phase or Chiral Mobile Phase Additive

Several applications, both analytical and preparative.

Price!

Columns available ‘on request’.

Pirkle, W.H.; Finn, J. Asymmetric Synthesis, vol. 1, 1983, 87. © Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 MethodsMethods forfor ObtainingObtaining EnantiopureEnantiopure CompoundsCompounds

ŠŠ AsymmetricAsymmetric TransformationsTransformations

„ firstfirst orderorder

„ secondsecond orderorder

Thermodynamical control

Equilibrium between enantiomers or epimers is set up to favour one or the other of the products.

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 MethodsMethods forfor ObtainingObtaining EnantiopureEnantiopure CompoundsCompounds

ŠŠ AsymmetricAsymmetric TransformationsTransformations

„ firstfirst orderorder

Conditions set up so as to favor e.g. crystallisation of one anantiomer.

Classical example: spontaneous crystallisation of NaClO4 from aqueous solution. 844 trials, 51.3 % left handed, 48.7 % right handed crystals.

Soret, C.H. Z. Krystallogr. Mineral. 1901, 34, 630.

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 MethodsMethods forfor ObtainingObtaining EnantiopureEnantiopure CompoundsCompounds

ŠŠ AsymmetricAsymmetric TransformationsTransformations

„ secondsecond orderorder

Me Cl Me O O N CHO N

NH2 Cl NH2 N N CSA, i-PrOAc/MeCN

Reider, P.J. et al. J. Org. Chem. 1987, 52, 955.

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 MethodsMethods forfor ObtainingObtaining EnantiopureEnantiopure CompoundsCompounds

ŠŠ AsymmetricAsymmetric InductionInduction (AI)(AI)

„ internalinternal a.i.a.i. (chiral(chiral SM)SM)

H H2N CO2H N N MeO C HO2C 2 HO

Aspartic acid Vincamine

Rapoport, H. et al. J. Org. Chem. 1990, 55, 3068.

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 InternalInternal AIAI

CO2Me CO2Me Ph CO2Me Ph Ph OH OH O H O B AcO OAc O OH

Chelation controls selectivity

(Saksena, A.K.; Mangiaracina, P. Tetrahedron Lett. 1983, 24, 273.)

Turnbull, M.D. et al. Tetrahedron Lett. 1984, 25, 5449.

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 MethodsMethods forfor ObtainingObtaining EnantiopureEnantiopure CompoundsCompounds

ŠŠ AsymmetricAsymmetric InductionInduction (AI)(AI)

„ relayedrelayed a.i.a.i. (chiral(chiral AUX)AUX)

O O 1) NaHMDS 2) MeI O NO 3) LAH H O NCS 4) Swern Bn NO O

Bn

Sn(OTf)2

+ - 1) Me3O BF4 S NHMe NCS 2) H2O HN HO X*N X*N O 3) KOH O OH + O OSnL 4) H3O O

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 MethodsMethods forfor ObtainingObtaining EnantiopureEnantiopure CompoundsCompounds

ŠŠ AsymmetricAsymmetric InductionInduction (AI)(AI)

„ externalexternal a.i.a.i. (chiral(chiral RGT)RGT)

NMe2

OH H2O HO H R2Zn + R'CHO R' R catalyst

Noyori, R. Science 1990, 248, 1194. Angew. Chem., Int. Ed. Engl. 1991, 30, 49.

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 MethodsMethods forfor ObtainingObtaining EnantiopureEnantiopure CompoundsCompounds

ŠŠ AsymmetricAsymmetric InductionInduction (AI)(AI)

Me2 Me2 N R N R „ externalexternal a.i.a.i. (chiral(chiral RGT)RGT) Zn Zn O O O O Zn Zn R N R N Me2 Me2

CHIRALITY MULTIPLICATION

120 Me2 N O 100 Zn R + R Zn O N 80 Me2 60 O OH H 40

%ee in Produc in %ee 20 0

Me2 N R Zn %ee in DAIB O O Zn R N Me2

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 DAIBDAIB--ZnZn XX--rayray structuresstructures

JAMYAX JAMYEB

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 ReagentReagent ControlControl inin DoubleDouble StereodifferentiationStereodifferentiation

O OH OH H + O O O N N N BOC BOC BOC

Allyl-MgCl 55.1 % 44.9 %

Ti Ph R,R-reagent 98.1 % 1.9 % O O Ph S,S-reagent 0.5 % 99.5 % Ph Ph O O

R,R-reagent

Duthaler, R.O. et al. J. Am. Chem. Soc. 1992, 114, 2321.

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 AsymmetricAsymmetric InductionInduction -- Economy?Economy?

•• relayedexternalinternalrelayedexternalinternal a.i. a.i. a.i.a.i. (chiral (chiral (chiral(chiral SM) AUX)SM) AUX)RGT)RGT) •• SourceCanChiralitySourceCanChirality bebe ofofcatalyticcatalyticincorporatedincorporated chiralitychirality removedremoved (and(and multiplied)multiplied) inin •• ReproductReproduct--usableusable (?)(?)

NMe2

O O H2N CO2H OH NHMe H HON H HO NH2 HO H O O N R Zn 2 N + 2 + R'CHO Bn HO C MeOO 2COH Bn 2 catalyst R' R HO

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 ModesModes ofof AccessAccess toto EnantiopureEnantiopure CompoundsCompounds

resolution

transformation

internal asymmetric induction

external asymmetric induction

relayed asymmetric induction

chirality multiplication

chirality amplification

Noyori, ACIEE 2001, 40. © Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 PolarimetryPolarimetry

α [α]obs [α]λ = . % o.p. = l c [α]max

Precautions: Š longest path, large diameter Š strained glass (=distorted glass)  polarized beam; use center filled tubes Š particles; rotate cell, measure again Š air bubbles - refract light Š colored sample

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 EnantiopurityEnantiopurity

ŠŠ %%eeee

„ ee = − SR |%%| %ee = ∗100 + SR |%%|

„ e.g. mixture 80 % R, 20 % S z %ee = |80 - 20| = 60 %ee

OH OH R S CO2Me CO2Me MeO2C R MeO2C S OH OH

20 % 60 % 60 - 20 %ee = * 100 = 50 %ee 60 + 20

OH OH

R CO2Me S CO2Me MeO2C S MeO2C R OH OH

20 %

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 EnantiomericEnantiomeric ExcessExcess

Often %e.e. = % o.p., but sources for error

Š [α]max must be known Š solvent, concentration and temperature

„ reproduction of literature concentration

„ e.g. CHCl3 -how much EtOH? „ EtOH - ? Š rotation not necessarily linear with %ee because of association phenomena Š [α] not constant for all molecules in solution (impurities with large [α]) RR RS enantiomeric R, S pairs SR SS

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 OpticalOptical RotationRotation vs.vs. EnantiomericEnantiomeric ExcessExcess

Achiral impurity can affect :

OOH LiAlH4, Darvon *

Increases rotation!!!

Yamaguchi, S.; Mosher, H.S. J. Org. Chem. 1973, 38, 1870. © Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 PracticalPractical Determination:Determination: NMRNMR

Š Optically active solvent

NH2 OH RNH , ROH, α-OH acids 2 Ph Ph amino acids H H3C H CF3

„ use either as sole solvent or more generally as additive

„ often requires optimization of mol fractions

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 PracticalPractical Determination:Determination: NMRNMR

Š Diastereomers

„ different physical properties

− α-methoxy-α-trifluoromethyl phenylacetic acid (MTPA = Mosher’s acid; Dale Mosher J. Am. Chem. Soc. 1973, 512)

OMe Ester Ph MTPA-Cl Amide CO H C3F 2

- others: e.g. isocyanates NCO NCO Me Me

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 PracticalPractical Determination:Determination: NMRNMR

Š Chiral shift reagent

„ need not make anything

„ add more & more until peaks split z Whitesides, G. J. Am. Chem. Soc. 1974, 1038. z Sullivan Top. Stereochem. 1977, 10, 287.

C3F7

OH Eu(hfc)3

O

hfc = heptafluorocamphorato „ always use dry solvents

„ always confirm with racemic material! (peak positions)

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 PracticalPractical Determination:Determination: HPLCHPLC

Š Make diastereomeric derivatives

„ same restrictions as in NMR

Š Chiral columns

„ BY FAR the most reliable method

„ columns available nearly tailor-made

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 CreationCreation ofof StereocentersStereocenters

Enantiotopic differentiation sp3 sp3

R4

R R3 1 R2

R1 mirror R R3 1 R2 R R 2 prochiral sp3 center 1 R3

R4

Me proR Hanson J. Am. Chem. Soc. 1966, 88, 2731. H Tetrahedron 1974, 30, 3649. H Ph proS

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 EnantiotopicEnantiotopic differentiationdifferentiation

O Ph O O H H

H OR* single diastereomer H SnCl4, -78 C 74 % HO O

Whitesell, J.K. J. Org. Chem. 1985, 50, 3025.

CO2Me CO2Me (+)-Ipc2BH OH

Uskokovic, M. J. Am.Chem. Soc. 1973, 95, 7171.

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 EnantiotopicEnantiotopic differentiationdifferentiation

PhN Ph Li O 31 %o.p. OH

Whitesell, J.K. J. Org. Chem. 1980, 45, 755.

Ph N O N N OTMS Me Li

TMS-Cl

97 %ee

Koga, K. J. Am. Chem. Soc. 1986, 108, 542.

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 EnantiotopicEnantiotopic differentiationdifferentiation

HAJOS-EDER-WIECHERT PROCESS

O O O O L-Pro HClO4

O O O O O O OH R R R R 97 %ee Š Natural amino acid => natural steroid configuration Š amide, ester not as efficient; need bifunctional catalyst Š amino acid can be used catalytically Š polar aprotic solvent => aldol product Š mineral acid present => enone Š rather insensitive to temperature (120 °C: 64 %ee)

Cohen Accts. Chem. Res. 1976, 412. © Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 SyntheticSynthetic ConsiderationsConsiderations

¾ Mechanism ¾ Molecular structural requirements

¾ Rxn limitations (pH, pKa, temp, hν, etc) ¾ Rxn conditions compatibility ¾ Yield ¾ Operational points

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 FurtherFurther ConsiderationsConsiderations

¾ Efficiency of overall scheme (Y, %ee) ¾ SM’s: price, availability ¾ Selectivity: ¾chemo ¾regio ¾stereo ¾ Add to general knowledge of TGT ¾ FGI (often serendipitous)

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 CreationCreation ofof StereocentersStereocenters

sp2 sp3 Enantiofacial differentiation

Y

X R2 R1

R X 2 mirror R1

R X 1 prochiral sp 2 center R2 Y

O O Hanson J. Am. Chem. Soc. 1966, 88, 2731. Ph Me Me Ph Tetrahedron 1974, 30, 3649. si re

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 EnantiofacialEnantiofacial differentiationdifferentiation

Ph2 Ph2 P P Ru(OCOR) Ru(OCOR) P 2 P 2

Ph2 Ph2

(R)-BINAP-Ru (S)-BINAP-Ru

(S)-BINAP-Ru

OH OH

(R)-BINAP-Ru 96-99 %ee

(S)-BINAP-Ru OH OH

Noyori, R. Chem. Soc. Rev. 1989, 18, 187. © Helsinki University of Technology, Laboratory of Organic Chemistry Accts. Chem. Res. 1990, 23, 345. © Ari Koskinen, 2007 MethodsMethods forfor AsymmetricAsymmetric InductionInduction

1) Reagent modification

ORO O OR - - * Al Li+ Al OH O H

Advantages: •no separate reactions on •possibility for catalysis •can be designed (if TS known)

Disadvantages: ¾well defined TS for bimolecular rxns rare ¾analysis of results difficult

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 MethodsMethods forfor AsymmetricAsymmetric InductionInduction

2) Substrate modification

O O O O O O N O N O OH OH R R Ph Ph

Advantages: •fixed interaction between auxiliary/substrate •products diastereomers: analysis simple

Disadvantages: ¾two extra steps ¾cannot be catalytic

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 MethodsMethods forfor AsymmetricAsymmetric InductionInduction

2) Substrate modification b) Weak bond a) Strong bond

ONO R

Advantages: •rxns for attachment/removal easier •possibility for catalysis

Disadvantages: ¾combination of rgt modification and strong bond

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 opop == ee?ee?

Horeau, A. Tetrahedron Lett. 1969, 36, 3121-3124. © Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 NonNon--linearlinear effectseffects

Line A: No effect B: Positive non-linear effect C: Negative non-linear effect

© Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 NonNon--linearlinear effecteffect inin aldolaldol

Evans, D.A. et al. J. Am. Chem. Soc. 1999, 121, 669-685. © Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007 NLENLE inin DielsDiels--AlderAlder

Kobayashi, S. et al. Tetrahedron Lett. 1994, 35, 6325-6328. © Helsinki University of Technology, Laboratory of Organic Chemistry © Ari Koskinen, 2007