<<

Vol. 6 No. 4

Synthetic Methods Asymmetric

Proline Analogs

MacMillan Imidazolidinone OrganoCatalysts™

Cinchona Alkaloids

TADDOLs

Schaus MBH Catalyst

Rovis Triazolium Catalyst

MacMillan Imidazolidinone OrganoCatalysts™

sigma-aldrich.com Introduction  sigma-aldrich.com enantioenriched a enantioselective organocatalytic noteworthy,direct Particularly first reactions. the Michael , Friedel–Crafts cycloadditions, 1,3-dipolar as such transformations organocatalytic numerous in employed successfully were compounds These OrganoCatalysts Imidazolidinone MacMillan chiral the of one depicts illustration cover The Cover Our About at further.Us“ even Bother range “Please product our broaden to it use will and input your welcome we organocatalyst, an find cannot visit Please organocatalysts. of preferredsupplier your being to committed are we Sigma‑Aldrich, At portfolio. organocatalysis our to additions new exciting as well as organocatalysis of edition This conditions. “open-flask” under out carried often affordable.areAdditionally,reactions and robust,organocatalytic chemically the synthesize, to easy weight, molecular low of are catalysts applied The immense. is described manner the in organocatalysis of potential commercial The proving.are area emerging this in researchefforts intense transformations—as efficient and selective remarkably achieve also can However, . organic -aided small to or reactions mediated community. researchchemical the in attention much gained recently has organocatalysis of field The Introduction -fluorination of has been accomplished to afford a broad spectrum of highly of spectrum broad afforda to accomplished been has aldehydes of -fluorination Chemistry Seminars Chemistry Sigma-Aldrich’sWeb-Based New sigma-aldrich.com/organocatalysi • •  •  •  Cheminars Highly interactive Highly navigation Convenient browser desktop your via directly Access products and technologies synthesis chemical innovative latest the Featuring seminar series, please visit please series, seminar ToSigma-Aldrich’schemistry Web-basedout new check 1 For most chemists, the term was commonly equated to transition metal- transition to equated commonly was catalysis term the chemists, most For ChemFiles a -fluoro aldehydes, which are valuable synthons for medicinal agent synthesis. agent medicinal for synthons valuable are which aldehydes, -fluoro ™ describes applications of our existing products in the field of field the in products existing our of applications describes s for a comprehensive listing of products. If you If products. of listing comprehensive a for [email protected] sigma-aldrich.com/cheminar a -chlorinations, and intramolecular and -chlorinations, m with your suggestions! your with s

. ™ . Inc. Internet at information, Aldrich Aldrich Flavors &Fragrances Custom Synthesis Web Site 24-Hour Emergency International SAFC Technical Service Customer Inquiries Customer &Technical Services FAX Telephone To PlaceOrders Milwaukee, WI53209,USA 6000 N.Teutonia Ave. Sigma-Aldrich Corporation Aldrich ChemicalCo.,Inc. ChemFiles ChemFiles Email: Mail: Phone: To requestyour Subscriptions Email please contactusby: International local this must Sigma-Aldrich, its particular slip foradditionaltermsandconditionsofsale. products

and Aldrich ™ determine Sigma-Aldrich

Group. and other

use. is are sigma-aldrich.com/chemfiles

conform

pleaseseebackcover. Attn: Marketing Communications Fluka and a

Sigma-Aldrich

See © also Inc. publication customers, FREE the

2006 Fluka

brand reverse Milwaukee, WI 53201-9358 Sigma-Aldrich, Sigma-Aldrich Corporation available suitability to office. Aldrich ChemicalCo., Inc. subscriptionto

Sigma-Aldrich the are products

side

information 800-325-3010 of Vol. 6No.4 [email protected] members For 800-325-5052 (USA) 800-325-3010 (USA) please publications.

in Aldrich sigma-aldrich.com of of [email protected] worldwide PDF the invoice

Inc. 800-227-4563 800-244-1173 800-244-1173 414-438-3850 414-438-3850 800-231-8327 800-325-3010 are

P.O. Box355

format contact product ChemFiles Co.

of Chemical warrants sold contained

the or

Purchaser (USA) . through packing

contact Sigma- on for

your , that

Co., the

its in

US $ 

Proline Analogs H3C O H3C O Coined by Jacobsen2 as the “simplest enzyme,” L-proline is capable O of effecting a variety of catalytic asymmetric transformations. The OH O first examples were reported in the mid-70s, when L-proline was Wieland-Miescher applied to Robinson annulation reactions.3 However, the big potential 100%, 93% ee 83%, 71% ee of proline as an organocatalyst was discovered in the beginning of OH the 21st century. One explanation for such a delay might be that O O 3 1 R2 the scope of highly selective transformations was considered to be R R R1 2 H rather narrow, and the development of metal catalysts seemed more Product R O N promising. H OH L-Proline The bifunctional structure of the sole cyclic proteinogenic amino H acid is a crucial factor. L-proline contains both a nucleophilic O H O N N secondary amino group and a carboxylic acid moiety functioning R2 O OH R1 H as a Brønsted acid. This facilitates a highly pre-organized transition R1

3 2 Analogs Proline state during the reaction pathway, which results in exceptionally high R OH Iminium ion R adduct enantioselectivities (Scheme 1).4 Iminium intermediate Moreover, as a small organic , proline is available in both enantiomeric forms, which is a definite advantage over enzymatic H H O methods. Numerous proline-catalyzed reactions have been developed H O H N (Scheme 2).5 O N H OH O H R1 R1 Stimulated by such a vast number of successful examples, many 3 R H R2 R2 intermediate research groups have developed synthetic proline analogs with O List−Houk optimized properties (see: ChemFiles Vol. 5 No. 12, Tools for Drug 3 transition state R H Discovery). Some examples will be presented here in more detail. Scheme 1 The catalytic asymmetric α- of aldehydes was recently described by List.6 To date, this transformation was usually O OH CH3 accomplished with the help of covalently attached auxiliaries. In H CH3 comparison to L-proline, α-methyl-L-proline (17249) gives higher CH3 enantioselectivities and improved reaction rates (Scheme 3). Intermolecular cross- up to 97% ee Organocatalytic cyclopropanation reactions were typically performed O OH 7 O NHAr using catalyst-bound ylides. However, MacMillan demonstrated H that activation of olefin substrates using catalytic (S)-(–)-indoline-2- H3C OBn OBn OH NO2 carboxylic acid (346802) is a viable route for the formation of highly a-oxyaldehyde 8 dimerization H enantioenriched cyclopropanes (Scheme 4). O up to 98% ee up to >99% ee N 7 2 3 8 . 1 3 2 . 0 0 8 . 1 : e c i v r e S l a c i n h c e T 0 1 0 3 . 5 2 3 . 0 0 8 . 1 : r e d r O Aggarwal utilized protonated (S)-(–)-2-(diphenylmethyl)pyrrolidine H OH (552534) as an organocatalyst in a novel process for the enantio­ L-Proline O CO2Bn 9 selective epoxidation of . Although the reaction proceeds O Ph N CO2Bn H H N under phase-transfer conditions (PTC), it was found that secondary NO2 H catalyzed the reaction at remarkably higher rates, implying that 552534 does not act only as a PTC. However, best results were intermolecular O O a-amination obtained with the chiral pyrrolidine bearing 1-naphthyl 23% ee NHPh up to 96% ee (Scheme 5). R1 R2 a-aminooxylation up to >99% ee L-Proline, ReagentPlus™, ;99% Scheme 2

C5H9NO2 CH3 MW: 115.13 CO H N 2 CO2H H N [α] –84.7° ± 1°, c = 4 in water OHC I H OHC 10 mol % [147-85-3] Et N, CHCl EtO2C 3 3 EtO2C P0380-10MG 10 mg 12.00 EtO2C −30 °C, 24 h EtO2C 92%, 95% ee P0380-100G 100 g 52.00 Scheme 3 P0380-1KG 1 kg 356.50 P0380-5KG 5 kg 1,533.60

CO2H O CH3 O O N Pr L-Proline, BioChemika, ;99.0% NT H Ph S + H3C Ph Pr H C5H9NO2 CHCl3, rt CHO MW: 115.13 N CO2H 6 H 78%, 94% ee, 27:1 dr [α] –84.5° ± 1°, c = 5% in water Scheme 4 [147-85-3]

81710-10G 10 g 10.60 Ph 81710-50G 50 g 35.10 N Cl H2 Ph 81710-250G 250 g 118.00 10 mol % 2 eq. Oxone Ph Ph 10 eq. NaHCO3 0.5 eq. pyridine O MeCN:H2O = 95:5 46% ee Scheme 5

Ready to scale up? For competitive quotes on larger quantities or custom synthesis, contact SAFC™ at 1-800-244-1173 (USA), or visit www.safcglobal.com. 

D-Proline, ;99% L-Pipecolic acid, puriss., ;99.0% NT

C5H9NO2 C6H11NO2 MW: 115.13 N CO2H MW: 129.16 OH H N H [α] +85.0°, c = 4 in water [α]6 –26° ± 1°, c = 4% in water O [344-25-2] [3105-95-1] 858919-500MG 500 mg 25.80 80615-100MG 100 mg 62.20 858919-5G 5 g 104.50 80615-500MG 500 mg 264.50

D-Proline, puriss., ;99.0% NT D-Pipecolic acid, purum, ;99.0% NT

C5H9NO2 C6H11NO2 MW: 115.13 N CO2H MW: 129.16 OH H N H [α]6 +85° ± 2°, c = 5% in water [α]6 +27° ± 1°, c = 1% in water O [344-25-2] [1723-00-8] 81705-1G 1 g 45.80 80617-100MG 100 mg 86.20 81705-5G 5 g 108.50 80617-500MG 500 mg 366.50 81705-25G 25 g 501.90 (S)-(–)-2-(Diphenylmethyl)pyrrolidine, 97% -Methyl-L-proline, purum, ;98.0% TLC a C17H19N C H NO 6 11 2 CH MW: 237.34 MW: 129.16 3 N N CO2H [α] –3.0°, c = 1% in chloroform H [α] –75° ± 2°, c = 1% in methanol H [119237-64-8] [42856-71-3] 17249-250MG 250 mg 115.00 552534-500MG 500 mg 98.70 17249-1G 1 g 321.50

Proline Proline Analogs (R)-(+)-2-(Diphenylmethyl)pyrrolidine, 97% (S)-(–)-Indoline 2-carboxylic acid, 99% C17H19N C9H9NO2 MW: 237.34 CO2H N MW: 163.17 N [α]6 +3.0°, c = 1% in chloroform H [α]6 –114° c = 1 in 1N HCl H [22348-31-8] [79815-20-6] 346802-1G 1 g 22.20 552542-1G 1 g 91.60 346802-5G 5 g 83.40 a,a-Diphenyl-L-prolinol, purum, ;99.0% HPLC (R)-(+)-Indoline 2-carboxylic acid 8 sum of C9H9NO2 C17H19NO CO2H MW: 163.17 N MW: 253.34 H [α]6 +114° c = 1 in 1N HCl 6 [α] –69° ± 2°, c = 3% in chloroform N [98167-06-7] [112068-01-6] H OH 51266-500MG 500 mg 58.90 43182-1G 1 g 62.10 43182-5G 5 g 245.50 3,4-Dehydro-L-proline, BioChemika, ;99.0% TLC C5H7NO2 a,a-Diphenyl-D-prolinol, purum, ;99.0% HPLC MW: 113.11 N CO2H sum of enantiomers [α]6 –400° ± 10° c = 0.2% in water H C17H19NO [4043-88-3] MW: 253.34

30890-10MG 10 mg 38.10 [α]6 +69° ± 3°, c = 3% in chloroform N 30890-50MG 50 mg 127.10 [22348-32-9] H OH 43179-100MG 100 mg 54.70 L-4-Thiazolidinecarboxylic acid, purum, ;99.0% T 43179-500MG 500 mg 112.00 C4H7NO2S OH MW: 133.17 O NH (S)-(–)-a,a-Diphenyl-2-pyrrolidinemethanol, 99% [α]6 –101° ± 2° , c = 1% in 1 M HCl S C17H19NO [34592-47-7] MW: 253.34 88400-10G 10 g 16.20 [α]6 –67°, c = 3 in chloroform N 88400-50G 50 g 54.00 [112068-01-6] H OH 368199-1G 1 g 56.20 L-Azetidine-2-carboxylic acid, purum, ;98.0% NT 368199-5G 5 g 175.50 C4H7NO2 O MW: 101.10 N OH (R)-(+)-a,a-Diphenyl-2-pyrrolidinemethanol, 98% [α]6 –123° ± 2°, c = 4% in water H C17H19NO [2133-34-8] MW: 253.34 11542-500MG 500 mg 95.40 [α]6 +69°, c = 3% in chloroform N 11542-2.5G 2.5 g 368.00 [22348-32-9] H OH 382337-100MG 100 mg 56.30 382337-1G 1 g 125.00 382337-5G 5 g 405.00

TO ORDER: Contact your local Sigma-Aldrich office (see back cover),

sigma-aldrich.com call 1-800-325-3010 (USA), or visit sigma-aldrich.com/chemicalsynthesis. US $ 

(S)-(–)-a,a-Di(2-naphthyl)-2-pyrrolidinemethanol, 99% (S)-(+)-2-(Methoxymethyl)pyrrolidine, purum,

C25H23NO ;98.0% GC sum of enantiomers

MW: 353.46 C6H13NO [α]6 –101°, c = 0.7 in methanol MW: 115.17 N H [127986-84-9] [ ]6 +2.4° ± 0.3°, c = 2% in benzene OCH3 N α H OH [63126-47-6] 445398-250MG 250 mg 42.20 65090-1ML 1 mL 92.00 445398-1G 1 g 124.00 65090-5ML 5 mL 307.90

(S)-(+)-1-(2-Pyrrolidinylmethyl)pyrrolidine, 96% (S)-(+)-2-(Methoxymethyl)pyrrolidine, 99%

C9H18N2 C6H13NO MW: 154.25 MW: 115.17 N N H [α]6 +7.0°, c = 2.4 in ethanol N [α]6 +2.4°, c = 2 in benzene OCH3 H [51207-66-0] [63126-47-6] 324450-250MG 250 mg 30.20 277053-100MG 100 mg 14.70 324450-1G 1 g 83.70 277053-500MG 500 mg 48.80 OrganoCatalyst s Imidazolidinone MacMillan 277053-5G 5 g 322.50

(R)-(–)-2-(Methoxymethyl)pyrrolidine, purum, ;98.0% GC sum of enantiomers

C6H13NO MW: 115.17 N H OCH [α]6 –2.4° ± 0.3°, c = 2% in benzene 3 [84025-81-0] 65089-1ML 1 mL 105.50 ™

MacMillan Imidazolidinone

™ CH3 OrganoCatalysts O N CH3 Developed by Professor David MacMillan at Caltech, imidazolidinone- Ph N CH3 H2 based organocatalysts are designed to serve as general catalysts X 5 mol % Ph for a myriad of asymmetric transformations. The first highly + Ph O MeOH/H2O, rt CHO enantioselective organocatalytic Diels–Alder reaction using a chiral 99%, 93% ee, 1:1.3 dr organocatalyst (569763) was reported in his pioneering work in Scheme 6 2000 (Scheme 6).10 The activated iminium ion, formed through 7 2 3 8 . 1 3 2 . 0 0 8 . 1 : e c i v r e S l a c i n h c e T 0 1 0 3 . 5 2 3 . 0 0 8 . 1 : r e d r O condensation of the imidazolidinone and an α,β-unsaturated , reacted with various dienes to give [4+2] cycloadducts in excellent yields and enantioselectivities. Ph CHO Other organocatalytic transformations such as 1,3-dipolar 93% ee 11 12 13 O R1 cycloadditions, Friedel–Crafts alkylations, α-chlorinations, Diels-Alder N O 14 15 OHC Ph cycloaddition α-fluorinations, and intramolecular Michael reactions using Ph R2 H MacMillan’s organocatalyst technology (569763) were reported, all CHO proceeding with impressive levels of enantioselectivity (Scheme 7). 97% ee >90% ee 1,3-dipolar intramolecular CH Michael addition 3 cycloaddition Having established iminium and enamine catalysis using O N CH3 organocatalyst 569763, MacMillan found an optimized structure in Ph N CH3 H2 organocatalyst 663107 for the Friedel–Crafts alkylation of indoles a-fluorination X Friedel-Crafts alkylation (Scheme 8),16 which are known to be privileged structures in R1 drug discovery. See ChemFiles Vol. 4 No. 8, Indoles (US) or Vol. 4 R HO a-chlorination Supplement II (Europe). F N CHO R R2 MacMillan later demonstrated the synthetic utility of this concept in 91-99% ee >89% ee the of (–)-flustramine B, a biologically active alkaloid O R bearing a pyrroloindoline architecture. The fused ring system was H cleanly assembled with the aid of imidazolidinone organocatalyst Cl 91-95% ee Scheme 7 663107 (Scheme 9).17 Imitating nature’s stereoselective enzymatic transfer with NADH cofactor, MacMillan’s variant used the combination of CH3 O N CH3 organocatalyst 661902 and Hantzsch 127220 to reduce simple CH3 Ph α,β-unsaturated aldehydes in a highly enantioselective manner N CH3 H2 R2 18 1 X O (Table 1). R 1 O 20 mol % R + H In sharp contrast to metal-mediated , the E/Z N R2 H R N geometry of the enal substrates did not have a significant influence R on the outcome of the absolute configuration of the newly created 90-97% ee . In an elegant organocascade reaction, MacMillan Scheme 8

Ready to scale up? For competitive quotes on larger quantities or custom synthesis, contact SAFC™ at 1-800-244-1173 (USA), or visit www.safcglobal.com. 

showed that both LUMO-lowering iminium- and HOMO-raising enamine catalysis could coexist without deleterious catalyst–catalyst interactions by substrate activation in an orthogonal mode, hence leading to highly enantioenriched products with increased structural CH3 complexity in just one step. Using both organocatalytic transfer O N CH3 CH3 hydrogenation (Hantzsch ester, 120227) and α-halogenation Ph HO BocHN N CH3 methodologies (N-fluorobenzenesulfonimide, 392715), the formal H2 TFA addition of HF to α,β-unsaturated aldehydes could be achieved with O 1. 20 mol %, −10 °C NHBoc N + N Br CH 2. NaBH4, MeOH N H 3 very high levels of enantio- and diastereoselectivity (Scheme 10). H Br Br N H Various examples have been reported.19

(5R)-2,2,3-Trimethyl-5-phenylmethyl-4-imidazolidinone 8 (−)-flustramine B monohydrochloride, 97% C H N O · HCl 13 18 2 O CH3 MW: 254.76 N • HCl CH3 Scheme 9 [α]6 +64°, c = 1 in water N CH3 ™ H [323196-43-6] 663069-500MG 500 mg 30.00 663069-2G 2 g 80.00 CH3 O N CH3 (5S)-2,2,3-Trimethyl-5-phenylmethyl-4-imidazolidinone CH3

MacMillan N CH3 monohydrochloride, 97% H2 O H H O C H N O · HCl TFA 13 18 2 O CH3 H C O O CH 20 mol % O MW: 254.76 N • HCl O + 3 3 CH CHCl3, −30 °C 3 H C N CH H 6 CH3 H 3 3 CH3 Imidazolidinone [α] −64°, c = 1 in water N CH H H 3

OrganoCatalyst s [278173-23-2] 569763-2G 2 g 80.60

(5R)-2,2,3-Trimethyl-5-benzyl-4-imidazolidinone 8 geometry Yield (%) % ee (abs. config.) dichloroacetic acid, 97% E 91 93 (S)

C15H20Cl2N2O3 O CH3 Z 90 87 (S) MW: 347.24 N CH3 E/Z mix 88 90 (S) [ ]6 +52°±4°, c = 1% in methanol N CH α H 3 O Cl • OH Table 1 Cl 663077-500MG 500 mg 55.00 663077-2G 2 g 150.00

(5S)-2,2,3-Trimethyl-5-benzyl-4-imidazolidinone 8 dichloroacetic acid, 97% catalyst combination A catalyst combination B C15H20Cl2N2O3 O CH3 N CH3 CH3 CH3 CH3 MW: 347.24 O CH O CH3 N 3 N O N CH3 O N CH3 CH N CH3 CH3 3 [α]6 –52°±4°, c = 1% in methanol CH3 H Ph CH3 Ph CH3 N CH3 N N CH3 N O H H H H Cl • OH 7.5 mol % 30 mol % 7.5 mol % 30 mol % (5R)-iminium (2S)-enamine (5R)-iminium (2R)-enamine Cl catalyst catalyst catalyst catalyst 663085-500MG 500 mg 55.00 663085-2G 2 g 150.00

(2R,5R)-(+)-2-tert-Butyl-3-methyl-5-benzyl-4- 8 CH3 O H CH3 O imidazolidinone, 97% catalyst H combination A H

C15H22N2O O CH CHCl3 F 3 + MW: 246.35 N CH THF/i-PrOH 3 81%, 99% ee, 16:1 anti:syn CH [α]6 +72°±4°, c = 1% in chloroform N 3 O O O O H CH3 S S [390766-89-9] N 663093-500MG 500 mg 60.00 F Electrophile 663093-1G 1 g 95.00 + O H H O CH3 O (2S,5S)-(−)-2-tert-Butyl-3-methyl-5-benzyl-4- 8 catalyst H H3C O O CH3 imidazolidinone, 97% combination B H H3C N CH3 CHCl F H 3 C15H22N2O O CH3 THF/i-PrOH N 62%, 99% ee, 9:1 syn:anti MW: 246.35 CH3 CH [α]6 −72°±4°, c = 1% in chloroform N 3 H CH [346440-54-8] 3 663107-500MG 500 mg 60.00 663107-1G 1 g 95.00 Scheme 10

TO ORDER: Contact your local Sigma-Aldrich office (see back cover),

sigma-aldrich.com call 1-800-325-3010 (USA), or visit sigma-aldrich.com/chemicalsynthesis. US $ 

(R)-2-(tert-Butyl)-3-methyl-4-imidazolidinone 8 Diethyl 1,4-dihydro-2,6-dimethyl-3,5-pyridinedicarboxylate, 95% trifluoroacetate C13H19NO4 O O C H N O F O CH MW: 253.29 10 17 2 3 3 3 H C O O CH N 3 3 MW: 270.25 CH3 [1149-23-1] CH3 H3C N CH3 N H H CH3 O 120227-1G 1 g 42.90 • F3C OH Di-tert-butyl 2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate, 661910-500MG 500 mg 50.00 97%

661910-2G 2 g 165.00 C17H27NO4 CH O O H3C 3 H3C CH3 MW: 309.4 H3C O O CH3 (S)-2-(tert-Butyl)-3-methyl-4-imidazolidinone 8 [55536-71-5] H3C N CH3 trifluoroacetate H

C10H17N2O3F3 O CH3 659142-1G 1 g 35.00 N MW: 270.25 CH3 CH3 N N-Fluorobenzenesulfonimide, 97% Alkaloids H CH3 O C12H10FNO4S2 • O O O O F3C OH MW: 315.34 S S N [113745-75-2] F 661902-500MG 500 mg 50.00 661902-2G 2 g 165.00 392715-1G 1 g 15.60 392715-5G 5 g 51.90

Cinchona Alkaloids H H3C RO OR Desymmetrization H C N 3 N H Abundant in nature, cinchona alkaloids are readily accessible chiral H H catalysts that exist in pseudoenantiomeric forms. Indeed, N N OCH H CO some of the very first examples of organocatalyzed reactions were 3 3 3a mediated by O-acetylated quinine. Deng has used modified Dihydroquinidyl (DHQD) Dihydroquinyl (DHQ) cinchona alkaloids as in Sharpless’ asymmetric dihydroxylation 7 2 3 8 . 1 3 2 . 0 0 8 . 1 : e c i v r e S l a c i n h c e T 0 1 0 3 . 5 2 3 . 0 0 8 . 1 : r e d r O catalyst system and in the desymmetrization of anhydrides O N (Scheme 11). R =

A high degree of using cinchona catalysts can Cl CH3 be achieved in desymmetrization of meso anhydrides to form the corresponding hemiesters (Scheme 12). Biscinchona alkaloids such as 20 Ph (DHQD)2AQN (456713) were more efficient in this transformation. NN O O Other highly enantioselective reactions using cinchona alkaloids NN 20 20 include cyanation of , 1,4-additions of thiols to enones, Ph Scheme 11 dimerizations of methylketene,21 asymmetric Baylis–Hillman reactions,22 synthesis of β-lactams,23 α-halogenations,24 aza-Henry- 25 26 O reactions, and intramolecular aldol reactions. R O R 5-30 mol % catalyst OH Nonracemic planar chiral (arene)Cr(CO)3 complexes are increasingly R' n O R' n MeOH, Et2O important chiral building blocks in highly diastereoselective OCH3 R O −40 to −20 °C, 43-120 h R transformations and they can also serve as ligands in catalytic O 27 reactions. Kündig has shown that chiral diamine 07317 performed O O H O H C well in the asymmetric benzoylation/desymmetrization of a meso OH 3 OH 28 CO2H Cr complex. only marginally decreased (to OCH3 OCH3 CO2CH3 H C H 3 98%) when diamine 39867 was employed in the same reaction O O (Scheme 13). 82%, 98% ee 88%, 96% ee 93%, 98% ee Scheme 12 Hydroquinidine 4-chlorobenzoate, 98% H C27H29ClN2O3 Cl H3C MW: 464.98 H [α] –73°, c = 1 in ethanol CH3 N H H CO [113162-02-0] 3 O OH H2N OH O 10 mol % 1.5 eq. BzCl N 1 eq. Et N, 4 Å MS H 3 (OC)3Cr CH2Cl2, −40 °C, 21 h (OC)3Cr N OH OBz 336483-1G 1 g 26.20 89%, 99% ee Scheme 13 336483-5G 5 g 105.00

Ready to scale up? For competitive quotes on larger quantities or custom synthesis, contact SAFC™ at 1-800-244-1173 (USA), or visit www.safcglobal.com. 

O-(4-Chlorobenzoyl)hydroquinine, 98% (DHQD)2Pyr, 97% H H C27H29ClN2O3 H3C H C56H60N6O4 MW: 464.98 OCH3 MW: 881.11 N N [α] +150°, c = 1 in ethanol H N [α]6 –390°, c = 1.2 in methanol CH3 CH3 O H O O H [113216-88-9] O [149725-81-5] H3CO NN OCH3 N N N Cl 336491-1G 1 g 45.50 418951-250MG 250 mg 35.30 418951-1G 1 g 98.80 Hydroquinidine 4-methyl-2-quinolyl ether, 97%

C30H33N3O2 CH3 (DHQ)2Pyr, 97% MW: 467.60 H C56H60N6O4 CH H C 3  H3C MW: 881.11 3 [α] –168°, c = 1 in ethanol N O N N [135042-89-6] H3CO N [α]6 +455°, c = 1.2 in methanol O O H H H [149820-65-5] H3CO NN OCH3 N N 381942-1G 1 g 39.70

Hydroquinine 4-methyl-2-quinolyl ether, 98% 418978-250MG 250 mg 43.50 C H N O H 418978-1G 1 g 120.50 30 33 3 2 H3C MW: 467.60 OCH3 H N [α]6 +260°, c = 1 in ethanol CH3 (DHQD)2AQN, 95% [135096-79-6] O C54H56N4O6 H H N N MW: 857.05 CH3 H3C [α]6 –468°, c = 1 in chloroform N N O O [176298-44-5] H H Cinchona Alkaloids 381969-1G 1 g 52.00 H CO 3 O O OCH3

Hydroquinidine 9-phenanthryl ether, 96% N N

C34H34N2O2 456713-500MG 500 mg 68.20 MW: 502.65 H [ ]6 –348°, c = 1 in ethanol H3C α O [135042-88-5] N (DHQ)2AQN, 95% H3CO H C54H56N4O6 H H MW: 857.05 H3C CH3 N N N [α]6 +495°, c = 1 in chloroform O O [176097-24-8] H H 381950-250MG 250 mg 55.00 H3CO O O OCH3 381950-1G 1 g 152.50 N N Hydroquinine 9-phenanthryl ether, 97% 456705-500MG 500 mg 37.20 C34H34N2O2 H H3C OCH MW: 502.65 3 Quinine, purum, for fluorescence, anhydrous, 6 H N [α] +420°, c = 1 in ethanol ;98.0% NT dried material [135096-78-5] O C H N O H N 20 24 2 2 H2C MW: 324.42 H3CO [α]6 –126° ± 5°, c = 1% in chloroform H N 381977-100MG 100 mg 41.10 [130-95-0] OH 381977-500MG 500 mg 135.50 N 22620-5G 5 g 32.80 (DHQD) PHAL, ;95% 2 22620-25G 25 g 114.40 C H N O H H 48 54 6 4 22620-100G 100 g 322.30 MW: 778.98 N CH3 CH3 N [α] –262°, c = 1.2 in methanol N N O O Quinidine, purum, crystallized, ;98.0% NT dried material [140853-10-7] H H H3CO OCH3 C20H24N2O2 H CO 3 H MW: 324.42 H2C N N HO [α]6 +265° ± 5°, c = 0.8% in ethanol dry matter N 392731-1G 1 g 66.60 [56-54-2] N H

(DHQ)2PHAL, ;95% 22600-10G-F 10 g 61.40

C48H54N6O4 H H 22600-50G-F 50 g 223.00 H3C CH MW: 778.98 3 N N  N N Cinchonine, purum, crystallized, ;98.0% NT [α] +336°, c = 1.2 in methanol O O H H [140924-50-1] C19H22N2O H H3CO OCH3 H2C MW: 294.39 HO N N [α]6 +225° ± 5°, c = 0.5% in ethanol N [118-10-5] H N 392723-500MG 500 mg 39.00 27370-25G 25 g 22.90 27370-100G 100 g 76.60

TO ORDER: Contact your local Sigma-Aldrich office (see back cover),

sigma-aldrich.com call 1-800-325-3010 (USA), or visit sigma-aldrich.com/chemicalsynthesis. US $ 

Cinchonidine, purum, ;98.0% NT dried material (2R,4S,5R)-2-Aminomethyl-5-ethylquinuclidine 8

C19H22N2O H C10H20N2 H H2C H C MW: 294.39 MW: 168.28 3 H N N [α]6 –108° ± 3°, c = 5% in ethanol [α]6 +143°, c = 1 in ethanol H2N H [485-71-2] OH [475160-61-3] N 39867-100MG 100 mg 69.40 27350-25G-F 25 g 22.70 39867-500MG 500 mg 274.60 27350-100G-F 100 g 81.60 (2S,4S,5R)-2-Aminomethyl-5-ethylquinuclidine 8 Hydroquinine, 98% C H N H 10 20 2 H3C C20H26N2O2 H C H MW: 168.28 3 H N MW: 326.43 OCH3 [α]6 –28°, c = 1 in ethanol H N [α] –148°, c = 1 in ethanol [475160-59-9] H2N [522-66-7] OH 07317-100MG 100 mg 69.40 N 07317-500MG 500 mg 274.60

337714-1G 1 g 19.90 Alkaloids Cinchona 337714-5G 5 g 66.60 (2R,4S,5R)-2-Hydroxymethyl-5-ethylquinuclidine 8 C10H19NO H H3C Hydroquinidine, 95% MW: 169.26 N C H N O [α]6 +147°, c = 1 in chloroform HO 20 26 2 2 H C H H3CO 3 H MW: 326.43 HO [219794-81-7] [α] +226°, c = 2 in ethanol N 49463-100MG 100 mg 69.40 [1435-55-8] H N 49463-500MG 500 mg 274.60

359343-1G 1 g 16.10 (2S,4S,5R)-2-Hydroxymethyl-5-ethylquinuclidine 8 359343-5G 5 g 54.00 C10H19NO H H3C MW: 169.26 Hydrocinchonine, purum, ;97.0% GC sum of enantiomers [α]6 –5.1°, c = 1 in chloroform H N C19H24N2O H H3C [219794-79-3] HO MW: 296.41 HO 51957-100MG 100 mg 69.40 [α]6 +197° ± 4°, c = 0.5% in ethanol N H 51957-500MG 500 mg 274.60 [485-65-4] N 54060-500MG 500 mg 106.50

Asymmetric Phase-Transfer Reactions H

H2C 7 2 3 8 . 1 3 2 . 0 0 8 . 1 : e c i v r e S l a c i n h c e T 0 1 0 3 . 5 2 3 . 0 0 8 . 1 : r e d r O Asymmetric phase-transfer catalysis (PTC) has been recognized as H AlkO OAlk a “green” alternative to many homogeneous synthetic organic N N H2C transformations, and has found widespread application. Synthetically H Ar X Ar H modified cinchona alkaloids are typical chiral organocatalysts N X N used in asymmetric PTC. Several generations of O-alkyl N- arylmethyl derivatives were developed, which finally led to highly Cinchonidinium PTC Cinchoninium PTC enantioselective alkylation reactions of glycine to generate a 29 RBr range of α- derivatives (Table 2). catalyst (10 mol %) Ph N CO2t-Bu Ph N CO2t-Bu Base, Solvent In an attempt to further improve catalyst enantioselectivities, Jew Ph Temp., Time Ph R and Park linked two cinchona alkaloid moieties via spacer units.30 Cinchona PTC With such a dimeric cinchona alkaloid (06542), enantioselectivity Cat. No. R-Br % Y % ee for the above mentioned glycine alkylation was optimized to N-Ar O-Alk X– Cat. Gen. 97–99% ee. 524433 Benzyl H Br 1st PhCH2- 85 60 359580 Benzyl H Cl 1st 4-Cl-C H -CH - 95 66 N-Benzylquininium chloride, 95% 6 4 2 514276 Benzyl Allyl Br 2nd 4-Cl-C6H4-CH2- – 81 C27H31ClN2O2 H H2C MW: 451.00 H3CO - 515701 9-Anthracenylmethyl H Cl 3rd PhCH2- 68 91 + Cl [α]6 –235°, c = 1.5 in water H N 499617 9-Anthracenylmethyl Allyl Br 3rd PhCH2- 87 94 [67174-25-8] OH N 06542 2,7-Naphthalenediyldimethyl Allyl Br dimeric 4-NO2-C6H4-CH2- 91 99 374482-1G 1 g 17.70 Table 2 374482-5G 5 g 59.60

N-Benzylcinchoninium chloride, purum, ;98.0% AT (8S,9R)-(–)-N-Benzylcinchonidinium chloride, 98% H H C26H29ClN2O C26H29ClN2O H C H2C 2 MW: 420.97 HO MW: 420.97 - + Cl N+ H N [α]6 +169° ± 3°, c = 0.4% in water Cl- [α]6 –180°, c = 1.3 in water [69221-14-3] H [69257-04-1] OH N N 13288-10G 10 g 82.40 359580-2G 2 g 24.70 13288-50G 50 g 326.00 359580-10G 10 g 82.90

Ready to scale up? For competitive quotes on larger quantities or custom synthesis, contact SAFC™ at 1-800-244-1173 (USA), or visit www.safcglobal.com. 10

N-Benzylcinchonidinium bromide, 97% O-Allyl-N-(9-Anthracenylmethyl)cinchonidinium bromide, 95% C H BrN O C H BrN O 26 29 2 H 37 37 2 H H2C H C MW: 465.43 MW: 605.61 2 Br- - + Br [α]6 –138°, c = 1 in chloroform H N [α]6 –340°, c = 0.45 in chloroform H N+

[118089-84-2] OH [200132-54-3] O N N

524433-5G 5 g 34.60 H2C

O-Allyl-N-benzylcinchonindinium bromide 499617-1G 1 g 52.70 499617-5G 5 g 178.50 C29H33BrN2O H H2C MW: 505.49 - + Br O,O’-Diallyl-N,N’-(2,7-naphthalenediyldimethyl) 8 [α]6 –158°, c = 1 in chloroform H N bis(hydrocinchonidinium) dibromide [158195-40-5] O C56H66Br2N4O2 N H3C MW: 986.96 CH3 CH – 2 Br Br– [480427-57-4] + N+ N

514276-1G 1 g 86.20 O N O N-(9-Anthracenylmethyl)cinchonindinium chloride, 85% N H2C CH2 C34H33ClN2O H MW: 521.09 H2C + [199588-80-2] H N 06542-100MG 100 mg 83.80 OH N Cl- N-(4-Trifluoromethylbenzyl)cinchoninium bromide, purum, ;98.0% AT

Cinchona Alkaloids H C27H28BrF3N2O 515701-5G 5 g 76.20 H2C MW: 533.42 HO 515701-25G 25 g 253.00 N+ [α]6 +140° ± 20° in ethanol Br- H [95088-20-3] N

CF3

91851-1G 1 g 43.20 91851-5G 5 g 162.00

Asymmetric Organocatalysis: From Biomimetic Concepts to Applications in Asymmetric Synthesis

A. Berkessel and H. Gröger, Wiley-VHC, 2005, 454pp. Hardcover. Asymmetric catalysis represents one of the major challenges in modern organic chemistry. Besides the well-established asymmetric metal-complex-catalyzed syntheses and biocatalyses, the use of “pure” organic catalysts turned out to be an additional efficient tool for the synthesis of chiral building blocks. Experienced authors provide the first overview of the important use of such metal-free organic catalysts. With its comprehensive description of numerous reaction types, e.g., nucleophilic substitution and addition reactions, as well as cycloadditions and redox reactions, this book targets organic chemists working in industry and academia. Z704113

Please visit sigma-aldrich.com/books for a complete list of over 1700 titles, tables of contents, or to order online.

TO ORDER: Contact your local Sigma-Aldrich office (see back cover),

sigma-aldrich.com call 1-800-325-3010 (USA), or visit sigma-aldrich.com/chemicalsynthesis. US $ 11

TADDOLs Chiral Brønsted acid catalysts have recently become an important 31 Ar Ar alternative to metal catalysts. Similar to several enzymatic O OH H3C processes, these reactions proceed through -bonding H C H C CH 3 O OH H C CH 3 N 3 3 N 3 activation. Ar Ar CH COCl O 3 Ar = 1-Naphthyl O CH2Cl2/toluene O + Apart from numerous examples using TADDOLs in metal-catalyzed H Ph toluene −78 °C, 15 min TBDMSO TBDMSO Ph O Ph asymmetric reactions,32 Rawal recently reported that TADDOLs could 70%, 99% ee be used as Brønsted acid organocatalysts in highly stereoselective hetero-Diels–Alder reactions.33 The reaction of an electron-rich diene with benzaldehyde using 10 mol % TADDOL 395242 provides the Scheme 14 dihydropyrone as a single stereoisomer (Scheme 14).

(4S-trans)-2,2-Dimethyl-a,a,a’,a’-tetra(1-naphthyl)-1,3- (4S,5S)-2,2-Dimethyl-a,a,a’,a’-tetra(2-naphthyl)-1,3-dioxolane- dioxolane-4,5-dimethanol, 99% 4,5-dimethanol, purum, ;98.0% HPLC sum of enantiomers TADDOLs

C47H38O4 C47H38O4 MW: 666.80 MW: 666.80 [α]6 +280°, c = 1 in ethyl acetate [α]6 +116° ± 2°, c = 1% in ethyl acetate H C O OH O OH [171086-52-5] 3 [137365-16-3] H3C H C 3 O OH H3C O OH

395242-1G 1 g 38.50 59488-5G-F 5 g 490.50

(4R,5R)-2,2-Dimethyl-a,a,a’,a’-tetra(2-naphthyl)-1,3-dioxolane- (4R,5R)-2,2-Dimethyl-a,a,a’,a’-tetraphenyl-1,3-dioxolane-4,5- 4,5-dimethanol, 99% dimethanol

C47H38O4 C31H30O4 MW: 666.80 MW: 466.57 O OH [α]6 –116°, c = 1 in ethyl acetate [α] –62.6°, c = 1 in chloroform H3C O OH H3C O OH [137365-09-4] H3C [93379-48-7] H3C O OH

265004-250MG 250 mg 30.40 265004-1G 1 g 83.60 393754-250MG 250 mg 52.10

393754-1G 1 g 155.50 (4R,5R)-2,2-Dimethyl-a,a,a’,a 7 2 ’-tetraphenyl-1,3-dioxolane-4,5- 3 8 . 1 3 2 . 0 0 8 . 1 : e c i v r e S l a c i n h c e T 0 1 0 3 . 5 2 3 . 0 0 8 . 1 : r e d r O dimethanol, purum, ; 97.0% HPLC sum of enantiomers

(4S,5S)-2,2-Dimethyl-a,a,a’,a’-tetra(2-naphthyl)-1,3-dioxolane- C31H30O4 4,5-dimethanol, 98% MW: 466.57 O OH C47H38O4 [α]6 –67° ± 2°, c = 1% in chloroform H3C MW: 666.80 [93379-48-7] H3C O OH [α]6 +116°, c = 1 in ethyl acetate O OH [137365-16-3] H3C H3C O OH 59532-1G 1 g 77.50

(4S,5S)-2,2-Dimethyl-a,a,a’,a’-tetraphenyl-1,3-dioxolane-4,5- dimethanol

393762-250MG 250 mg 45.90 C31H30O4 393762-1G 1 g 137.50 MW: 466.57 O [α] +67°, c = 1 in chloroform H3C OH OH (4R,5R)-2,2-Dimethyl-a,a,a’,a’-tetra(2-naphthyl)-1,3-dioxolane- [93379-49-8] H3C O 4,5-dimethanol, purum, ;99.0% HPLC sum of enantiomers

C47H38O4 MW: 666.80 264997-250MG 250 mg 44.40 [α]6 –116° ± 2°, c = 1% in ethyl acetate 264997-1G 1 g 117.50 O OH [137365-09-4] H3C H3C O OH (4S,5S)-2,2-Dimethyl-a,a,a’,a’-tetraphenyl-1,3-dioxolane-4,5- dimethanol, purum, ;97.0% HPLC sum of enantiomers

C31H30O4 MW: 466.57 O 59490-1G-F 1 g 132.00 [α]6 +67° ± 2°, c = 1% in chloroform H3C OH OH 59490-5G-F 5 g 521.00 [93379-49-8] H3C O

59534-1G-F 1 g 93.80

Ready to scale up? For competitive quotes on larger quantities or custom synthesis, contact SAFC™ at 1-800-244-1173 (USA), or visit www.safcglobal.com. 8 Solvias® Chiral Phosphine Ligands The Ultimate Toolkit for Asymmetric Catalysis

• 80 air-stable, non-hygroscopic ligands and catalysts • Modular and tunable design • Industrially proven applications • CD-ROM including CoA’s and MSDS for each product and extensive literature overview organized by reaction type All in one convenient kit!

Sigma-Aldrich, in collaboration with Solvias, is proud to present the Chiral Ligands Kit— the ultimate toolkit for asymmetric catalysis! The Solvias Chiral Ligands Kit is designed to allow rapid screening of chiral catalysts, and contains sets of the well-known Solvias ligand families below.

All products in the kit are 100-mg sample sizes and available in both enantiomeric forms, giving you access to a total of 80 products. Easy Reordering All 80 ligands are available from Sigma-Aldrich individually in 100-mg, 500-mg, 1-g, and 5-g package sizes for easy reordering.

Solvias Chiral Ligands Kit 12000-1KT 1 Kit $3,750.00

For detailed information about the ligands kit and individual components, please visit sigma-aldrich.com/solviasligands.

LEADERSHIP IN LIFE SCIENCE, HIGH TECHNOLOGY AND SERVICE ALDRICH • BOX 355 • MILWAUKEE • WISCONSIN • USA Solvias is a registered trademark of Solvias AG. US $ 13

Schaus MBH Catalyst A highly enantioselective addition of cyclohexenone to different aldehydes (asymmetric Morita–Baylis–Hillman reaction) catalyzed by CH3 octahydro-BINOL-derived Brønsted acid 669172 was reported by Schaus (Scheme 15). Important for achieving high enantioselectivity CH3 OH were both the partial saturation and substitution at the 3,3’-positions 10 mol % of the BINOL derivative.34 OH CH3 O OH O O (R)-3,3’-Bis-(3,5-dimethylphenyl)-5,5’,6,6’,7,7’,8,8’- 8 CH3 R octahydro-1,1’-bi-2-naphthol R H + PEt3, THF, −10 °C (R)-3,3’-bis-(3,5-dimethylphenyl)-5,6,7,8,5’,6’,7’,8’-octahydro-

[1,1’]binaphthalenyl-2,2’-diol CH3 C36H38O2 H C H3C 3 MW: 502.69 R = CH3 CH3 Catalyst MBH Schaus OH OH 71%, 96% ee 82%, 95% ee 72%, 96% ee

CH3 Scheme 15

CH3 669180-100MG 100 mg 85.00

(S)-3,3’-Bis-(3,5-dimethylphenyl)-5,5’,6,6’,7,7’,8,8’- 8 (S)-(+)-3,3’-Dibromo-5,5’,6,6’,7,7’,8,8’-octahydro(1,1’- octahydro-1,1’-bi-2-naphthol binaphthalene)-2,2’-diol, 97%

(S)-3,3’-bis-(3,5-dimethylphenyl)-5,6,7,8,5’,6’,7’,8’-octahydro- C20H20Br2O2 Br [1,1’]binaphthalenyl-2,2’-diol CH MW: 452.18 3 OH C36H38O2 [α]6 –53°, c = 1% in THF OH MW: 502.69 [765278-73-7] CH 3 Br OH OH 540595-100MG 100 mg 39.70

CH3 540595-1G 1 g 142.50

(R)-3,3’-Di-tert-butyl-5,5’,6,6’,7,7’,8,8’-octahydro-1,1’- CH3 (bi-2-naphthol) dipotassium salt, purum, ;95.0% 669172-100MG 100 mg 85.00 (dry substance, CHN) C H K O t-Bu 28 36 2 2 7 2 3 8 . 1 3 2 . 0 0 8 . 1 : e c i v r e S l a c i n h c e T 0 1 0 3 . 5 2 3 . 0 0 8 . 1 : r e d r O Related Products MW: 482.78 O- K+ [350683-75-9] O- (R)-5,5’,6,6’,7,7’,8,8’-Octahydro-bi-2-naphthol, 98% K+

C20H22O2 t-Bu MW: 294.39 OH 77939-100MG-F 100 mg 177.00 [α]6 +75°, c = 1% in THF OH [65355-14-8] (R)-(–)-1,1’-Binaphthyl-2,2’-diyl hydrogenphosphate, ;98.0%

C20H13O4P 540560-100MG 100 mg 39.70 MW: 348.29 O O 540560-1G 1 g 124.00 [ ]6 –605°, c = 1.35% in methanol P α OH [39648-67-4] O (S)-5,5’,6,6’,7,7’,8,8’-Octahydro-bi-2-naphthol, 97% C H O 20 22 2 248932-250MG 250 mg 32.00 MW: 294.39 248932-1G 1 g 97.30 [α]6 –75°, c = 1% in THF OH OH 248932-5G 5 g 400.00 [65355-00-2] (S)-(+)-1,1’-Binaphthyl-2,2’-diyl hydrogenphosphate, 97% 540579-100MG 100 mg 41.30 C20H13O4P 540579-1G 1 g 129.00 MW: 348.29 O O [α]6 +595°, c = 1.35% in methanol P OH (R)-(+)-3,3’-Dibromo-5,5’,6,6’,7,7’,8,8’-octahydro(1,1’- [35193-64-7] O binaphthalene)-2,2’-diol, 97% C20H20Br2O2 Br 248940-250MG 250 mg 24.50 MW: 452.18 248940-1G 1 g 66.30 6 OH [α] +53°, c = 1% in THF OH 248940-5G 5 g 292.00 [65355-08-0] Br 540587-100MG 100 mg 41.30 540587-1G 1 g 129.00

Ready to scale up? For competitive quotes on larger quantities or custom synthesis, contact SAFC™ at 1-800-244-1173 (USA), or visit www.safcglobal.com. 14

Rovis Triazolium Catalyst

BF4 Rovis has demonstrated that triazolium salt 667080 in the presence O F H N F of a base can act as an N-heterocyclic carbene organocatalyst in N N highly enantioselective intramolecular Stetter reactions. The Stetter H F reaction (a conjugate addition of an aldehyde to an α,β-unsaturated O F O EWG F compound) is a superb method for construction of 1,4-dicarbonyl 20 mol % R 35 2 eq. Et3N, toluene, rt, 24 h X compounds bearing quaternary (Scheme 16). X R EWG

5a(R),10b(S)-5a,10b-Dihydro-2-(pentafluorophenyl)- 8 O O O 4H,6H-indeno[2,1-b][1,2,4]triazolo[4,3-d][1,4]oxazinium CH3 CH2CH3 CH2CH3 tetrafluoroborate O S CO2CH2 CO2CH2 CO2CH2 C18H11BF4N3O O BF4 95%, 99% ee 96%, 97% ee 95%, 92% ee MW: 467.10 H F N F N N H F Scheme 16 F F 674788-250MG 250 mg 78.00

References (1) For excellent review articles on organocatalysis, see: (a) Dalko, P. (14) Beeson, T. D.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, I.; Moisan, L. Angew. Chem. Int. Ed. 2001, 40, 3726. (b) Dalko, P. 8826. I.; Moisan, L. Angew. Chem. Int. Ed. 2004, 43, 5138. (c) Houk, K. (15) Fonseca, M. H.; List, B. Angew. Chem. Int. Ed. 2004, 43, 3958.

Rovis Triazolium Catalyst Rovis Triazolium N.; List, B. (Eds.) Acc. Chem. Res. 2004, 37, 487. (d) Berkessel, A.; (16) Austin, J. F.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, Gröger, H. Asymmetric Organocatalysis, VCH, Weinheim, 2004. (e) 1172. Seayad, J.; List, B. Org. Biomol. Chem. 2005, 3, 719. (f) Kohovský, P.; Malkov, A. V. (Eds.) Tetrahedron Symposia-in-print: Asymmetric (17) Austin, J. F.; Kim, S. G.; Sinz, C. J.; Xiao, W. J.; MacMillan, D. W. C. Organocatalysis 2006, 62, 243. Proc. Nat. Acad. Sci. USA 2004, 101, 5482. (2) Movassaghi, M.; Jacobsen, E. N. Science 2002, 298, 1904. (18) Ouellet, S. G.; Tuttle, J. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 32. (3) For early examples of organocatalyzed reactions, see: (a) Pracejus, H. Justus Liebigs Ann. Chem. 1960, 634, 9. (b) Hajos, Z. G.; (19) Huang, Y.; Walji, A. M.; Larsen, C. H.; MacMillan, D. W. C. J. Am. Parrish, D. R. J. Org. Chem. 1974, 39, 1615. (c) Eder, U.; Sauer, G.; Chem. Soc. 2005, 127, 15051. Wiechert, R. Angew. Chem. Int. Ed. Engl. 1971, 10, 496. (20) Tian, S.-K.; Chen, Y.; Hang, J.; Tang, L.; McDaid, P.; Deng, L. Acc. (4) Bahmanyar, S.; Houk, K. N.; Martin, H. J.; List, B. J. Am. Chem. Soc. Chem. Res. 2004, 37, 621. 2003, 125, 2475. (21) Calter, M. A. J. Org. Chem. 1996, 61, 8006. (5) (a) Mannich reaction: List, B.; Pojarliev, P.; Biller, W. T.; Martin, H. J. (22) Iwabuchi, Y.; Nakatani, M.; Yokoyama, N.; Hatekeyama, S. J. Am. J. Am. Chem. Soc. 2002, 124, 827. (b) a-Amination: List, B. J. Am. Chem. Soc. 1999, 121, 10219. Chem. Soc. 2002, 124, 5656. (c) a-Aminoxylation: Zhong, G. Angew. (23) Taggi, A. E.; Hafez, A. M.; Wack, H.; Young, B.; Drury, W. J.; Leckta, Chem. Int. Ed. 2003, 42, 4247; Brown, S. P.; Brochu, M. P.; Sinz, T. J. Am. Chem. Soc. 2000, 122, 7831. C. J.; MacMillan, D. W. C. J. Am. Chem. Soc. 2003, 125, 10808; (24) Wack, H.; Taggi, A. E.; Hafez, A. M.; Drury, W. J.; Leckta, T. J. Am. Bøgevig, A.; Sunden, H.; Córdova. A. Angew. Chem. Int. Ed. 2004, Chem. Soc. 2001, 123, 1531. 43, 1109. (d) Michael addition: List, B.; Pojarliev, P.; Martin, H. J. Org. (25) Bernardi, L.; Fini, F.; Herrera, R. P.; Ricci, A.; Sgarzani, V. Tetrahedron Lett. 2001, 3, 2423. (e) a-Oxyaldehyde dimerization: Northrup, A. 2006, 62, 375. B.; Mangion, I. K.; Hettche, F.; MacMillan, D. W. C. Angew. Chem. Int. Ed. 2004, 43, 2152. (f) Cross-aldol reaction: Northrup, A. B.; (26) Cortez, G. S.; Tennyson, R. L.; Romo, D. J. Am. Chem. Soc. 2001, MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124, 6798. 123, 7945. (6) Vignola, N.; List, B. J. Am. Chem. Soc. 2003, 125, 450. (27) Pape, A.; Kaliappan, K.; Kündig, E. P. Chem. Rev. 2000, 100, 2917. (7) (a) Aggarwal, V. K.; Alonso, E.; Fang, G.; Ferrara, M.; Hynd, G.; (28) Kündig, E. P.; Lomberget, T.; Bragg, R.; Poulard, C.; Bernardinelli, G. Porcelloni, M. Angew. Chem. Int. Ed. 2001, 40, 1433. (b) Aggarwal, Chem. Commun. 2004, 1548. V. K.; Winn, C. L. Acc. Chem. Res. 2004, 37, 611. (29) (a) O’Donnell, M. J. Acc. Chem. Res. 2004, 37, 506. (b) Lygo, B.; (8) Kunz, R. K.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, Andrews, B. J. Acc. Chem. Res. 2004, 37, 518. 3240. (30) Jew, S.-S.; Jeong, B.-S.; Yoo, M.-S.; Huh, H.; Park, H.-G. Chem. (9) Aggarwal, V. K.; Lopin, C.; Sandrinelli, F. J. Am. Chem. Soc. 2003, Commun. 2001, 1244. 125, 7596. (31) (a) Schreiner, P. R. Chem. Soc. Rev. 2003, 32, 289. (b) Pihko, P. M. (10) Ahrendt, K. A.; Borths, C. J.; MacMillan, D. W. C. J. Am. Chem. Angew. Chem. Int. Ed. 2004, 43, 2062. Soc. 2000, 122, 4243. (32) Seebach, D.; Beck, A. K.; Heckel, A. Angew. Chem. Int. Ed. 2001, (11) Jen, W. S.; Wiener, J. J. M.; MacMillan, D. W. C. J. Am. Chem. Soc. 40, 92. 2000, 122, 9874. (33) Huang, Y.; Unni, A. K.; Thadani, A. N.; Rawal, V. H. Nature 2003, (12) Paras, N. A.; MacMillan, D. W. C. J. Am. Chem. Soc. 2001, 123, 424, 146. 4379. (34) McDougal, N. T.; Schaus, S. E. J. Am. Chem. Soc. 2003, 125, (13) Brochu, M. P.; Brown, S. P.; MacMillan, D. W. C. J. Am. Chem. Soc. 12094. 2004, 126, 4108. (35) Kerr, M. S.; Rovis, T. J. Am. Chem. Soc. 2004, 126, 8876.

TO ORDER: Contact your local Sigma-Aldrich office (see back cover),

sigma-aldrich.com call 1-800-325-3010 (USA), or visit sigma-aldrich.com/chemicalsynthesis. Product Highlights O Ph P N O O Ph O O • Superior enantiocontrol in numerous transformations CuCl 4 mol % PdCl2 (10 mol %) • High activities at low catalyst loadings DMF H O, O O 1. Cu(OTf)2 (2 mol %) 2 2 • Hydrogenations under low-pressure conditions ZnEt2, toluene, 30 °C 2. Pd(PPh3)4 (4 mol %) 88%, 96% ee 65%, 96% ee • Applied in tandem reactions to yield valuable chiral organics OAc

Feringa and co-workers have invented a diverse array of chiral, monodentate 1 ™ O Me phosphoramidites based on the privileged BINOL platform. The MonoPhos cat. P N O family has exhibited high levels of enantiocontrol in synthetic transformations NHAc Ph NHAc

CO2Et CO2Et ranging from metal-catalyzed asymmetric 1,4-additions of organometallic Rh(cod)2BF4 (2 mol %) to allylic alkylations to desymmetrization of meso-cycloalkene oxides.2 H2 (10 bar), CH2Cl2, 4 h, rt 99% ee Impressively, the (S)-N-benzyl-N-methyl-MonoPhos™ derivative has been utilized in highly selective hydrogenations of (E)-N-acylated dehydro-b-amino acid , affording the corresponding enantiopure b-amino acid derivatives.3 O Ph Sigma‑Aldrich, in collaboration with DSM, is pleased to offer a range of P N NHBn O Ph NH2 MonoPhos™ ligands for the research market.† Ph 1 2 mol % Ph OAc + + [Ir(cod)Cl]2 (1 mol %), EtOH, rt Ph NHBn 2 3 equiv 97:3 (1:2), 95%, 95% ee

(S,S,S)-(+)-(3,5-Dioxa-4-phospha- 8 (S)-(+)-Benzyl-(3,5-dioxa-4-phospha- 8 (S)-(+)-(3,5-Dioxa-4-phospha- 8 cyclohepta[2,1-a;3,4-a’]dinaphthalen- cyclohepta[2,1-a;3,4-a’]dinaphthalen- cyclohepta[2,1-a;3,4-a’]dinaphthalen- 4-yl)bis(1-phenylethyl)amine, 97% 4-yl)methylamine, 97% 4-yl), 97%

C36H30NO2P Ph C28H22NO2P C25H22NO2P FW: 539.6 O FW: 435.45 O Me FW: 399.42 O P N P N PN [380230-02-4] O [490023-37-5] O O Ph Ph 665290-100MG 100 mg 51.00 665355-100MG 100 mg 38.00 665479-100MG 100 mg 35.00 665290-500MG 500 mg 220.00 665355-500MG 500 mg 170.00 665479-500MG 500 mg 160.00 665290-2G 2 g 799.00 665355-2G 2 g 635.00 665479-2G 2 g 550.00

(S,R,R)-(+)-(3,5-Dioxa-4-phospha- 8 (3aR,8aR)-(–)-(2,2-Dimethyl-4,4,8,8- 8 (S)-(+)-(3,5-Dioxa-4-phospha- 8 cyclohepta[2,1-a;3,4-a’]dinaphthalen- tetraphenyl-tetrahydro-[1,3]dioxolo(4,5-e) cyclohepta[2,1-a;3,4-a’]dinaphthalen- 4-yl)bis(1-phenylethyl)amine, 97% [1,3,2]dioxaphosphepin-6-yl)Dimethylamine, 96% 4-yl)morpholine, 97% Ph C36H30NO2P Ph C33H34NO4P Ph C24H20NO3P Me FW: 539.6 O FW: 539.6 Me O O FW: 401.39 O P N P N PN O [415918-91-1] O [213843-90-4] Me O O Me O Ph Ph Ph 665363-100MG 100 mg 51.00 665460-100MG 100 mg 89.00 665487-100MG 100 mg 35.00 665363-500MG 500 mg 220.00 665460-500MG 500 mg 375.00 665487-500MG 500 mg 160.00 665363-2G 2 g 799.00 665487-2G 2 g 550.00

(1) Feringa, B. L. Acc. Chem. Res. 2000, 33, 346. (2) (a) Feringa, B. L. et al. Angew. Chem., Int. Ed. Engl. 1997, 36, 2620 (b) Martina, S. L. X. et al. Tetrahedron Lett. 2005, 46, 7159 (c) Malda, H. et al. Org. Lett. 2001, 3, 1169 (d) Alexakis, A. et al. Chem. Commun. 2005, 2843 (e) Streiff, S. et al. Chem. Commun. 2005, 2957 (f) Bertozzi, F. et al. Org. Lett. 2000, 2, 933. (g) Ohmura, T. et al. J. Am. Chem. Soc. 2002, 124, 15164. (3) (a) Pena, D. et al. J. Am. Chem. Soc. 2002, 124, 14552 (b) Van den Berg, M. et al. Adv. Synth. Catal. 2003, 345, 308.

For more information, please visit us at sigma-aldrich.com/monophos.

LEADERSHIP IN LIFE SCIENCE, HIGH TECHNOLOGY AND SERVICE SIGMA-ALDRICH CORPORATION • BOX 14508 • ST. LOUIS • MISSOURI 63178 • USA

†MonoPhos™ family ligands are sold under license from DSM for research purposes only. Patent WO 0204466 applies. Argentina Denmark Ireland New Zealand Spain SIGMA-ALDRICH DE ARGENTINA, S.A. Sigma-Aldrich Denmark A/S Sigma-Aldrich Ireland Ltd. SIGMA-ALDRICH PTY., LIMITED SIGMA-ALDRICH QUÍMICA, S.A. Tel: 54 11 4556 1472 Tel: 43 56 59 10 Free Tel: 1800 200 888 Free Tel: 0800 936 666 Free Tel: 900 101376 Fax: 54 11 4552 1698 Fax: 43 56 59 05 Free Fax: 1800 600 222 Free Fax: 0800 937 777 Free Fax: 900 102028 Tel: 353 1 4041900 Tel: 61 2 9841 0500 Tel: 91 661 99 77 Australia Finland Fax: 353 1 4041910 Fax: 61 2 9841 0500 Sigma-Aldrich Pty., limited Sigma-Aldrich Finland Fax: 91 661 96 42 Free Tel: 1800 800 097 Tel: (09) 350 9250 Israel Free Fax: 1800 800 096 Fax: (09) 350 92555 Sigma-Aldrich Israel Ltd. Norway Sweden Tel: 612 9841 0555 Free Tel: 1-800-70-2222 SIGMA-ALDRICH NORWAY AS SIGMA-ALDRICH SWEDEN AB Fax: 612 9841 0500 France Tel: 08-948-4100 Tel: 23 17 60 60 Tel: 020-350510 Sigma-Aldrich Chimie S.à.r.l. Fax: 08-948-4200 Fax: 23 17 60 50 Fax: 020-352522 Austria Tel appel gratuit: 0800 211 408 Outside Sweden Tel: +46 8 7424200 SIGMA-ALDRICH Handels GmbH Fax appel gratuit: 0800 031 052 Italy Poland Outside Sweden Fax: +46 8 7424243 Tel: 43 1 605 81 10 SIGMA-ALDRICH S.r.l. SIGMA-ALDRICH Sp. z o.o. Fax: 43 1 605 81 20 Telefono: 02 33417310 Germany Tel: 061 829 01 00 Sigma-Aldrich Chemie GmbH Fax: 02 38010737 Switzerland Fax: 061 829 01 20 Belgium Free Tel: 0800-51 55 000 Numero Verde: 800-827018 SIGMA-ALDRICH CHEMIE GmbH Sigma-Aldrich NV/SA. Free Fax: 0800-649 00 00 Swiss Free Call: 0800 80 00 80 Portugal Free Tel: 0800-14747 Japan Tel: +41 81 755 2828 Sigma-Aldrich QuÍmica, S.A. Free Fax: 0800-14745 Greece SIGMA-ALDRICH JAPAN K.K. Fax: +41 81 755 2815 Tel: 03 899 13 01 SIGMA-ALDRICH (o.m.) Ltd Tokyo Tel: 03 5796 7300 Free Tel: 800 202180 Fax: 03 899 13 11 Tel: 30 210 9948010 Tokyo Fax: 03 5796 7315 Free Fax: 800 202178 United Kingdom Fax: 30 210 9943831 Tel: 21 9242555 Sigma-Aldrich Company Ltd. Brazil Korea Fax: 21 9242610 Sigma-Aldrich Brasil Ltda. Hungary SIGMA-ALDRICH KOREA Free Tel: 0800 717181 Tel: 55 11 3732-3100 SIGMA-ALDRICH Kft Tel: 031-329-9000 Russia Free Fax: 0800 378785 Fax: 55 11 3733-5151 Tel: 06-1-235-9054 Fax: 031-329-9090 SIGMA-ALDRICH RUS, LLC Tel: 01747 833000 Fax: 06-1-269-6470 Tel: +7 (095) 621-5828/6037 Fax: 01747 833313 Canada Ingyenes zöld telefon: 06-80-355-355 Malaysia SAFC (UK): 01202 712305 Sigma-Aldrich Canada Ltd. Ingyenes zöld fax: 06-80-344-344 SIGMA-ALDRICH (M) Sdn. Bhd Fax: +7 (095) 975-4792 Free Tel: 800-565-1400 Tel: 603-56353321 United States Free Fax: 800-265-3858 India Fax: 603-56354116 Singapore Tel: 905-829-9500 SIGMA-ALDRICH CHEMICALS Sigma-ALDRICH PTE. LTD. SIGMA-ALDRICH Fax: 905-829-9292 PRIVATE LIMITED Mexico Tel: 65-67791200 P.O. Box 14508 Telephone SIGMA-ALDRICH QUÍMICA, S.A. de C.V. Fax: 65-67791822 St. Louis, Missouri 63178 China Bangalore: 91-80-4112-7272 Free Tel: 01-800-007-5300 Toll-Free: (800) 325-3010 SIGMA-ALDRICH CHINA INC. New Delhi: 91-11-4165-4255 Free Fax: 01-800-712-9920 South Africa Call Collect: (314) 771-5750 Tel: 86-21-6386 2766 Mumbai: 91-22-2570-2364 Sigma-Aldrich Toll-Free Fax: (800) 325-5052 Fax: 86-21-6386 3966 Hyderabad: 91-40-5584-5488 The Netherlands South Africa (Pty) Ltd. Tel: (314) 771-5765 Fax Sigma-Aldrich Chemie BV Czech Republic Bangalore: 91-80-4112-7473 Tel Gratis: 0800-0229088 Free Tel: 0800 1100 75 Fax: (314) 771-5757 SIGMA-ALDRICH s.r.o. New Delhi: 91-11-4165-4266 Fax Gratis: 0800-0229089 Free Fax: 0800 1100 79 Tel: +420 246 003 200 Mumbai: 91-22-2579-7589 Tel: 078-6205411 Tel: 27 11 979 1188 Internet Fax: +420 246 003 291 Hyderabad: 91-40-5584-5466 Fax: 078-6205421 Fax: 27 11 979 1119 sigma-aldrich.com

World Headquarters Order/Customer Service (800) 325-3010 • Fax (800) 325-5052 3050 Spruce St., St. Louis, MO 63103 (314) 771-5765 Technical Service (800) 325-5832 • sigma-aldrich.com/techservice sigma-aldrich.com Development/Bulk Manufacturing Inquiries (800) 244-1173

The Sigma-Aldrich Group Accelerating Customers’ Success through Leadership in Life Science, ©2006 Sigma-Aldrich Co. All rights reserved. High Technology and Service SIGMA, -, SAFC, , SIGMA-ALDRICH, ), ISOTEC, ALDRICH, ^, FLUKA, T, and SUPELCO are trademarks belonging to Sigma-Aldrich Co. and its affiliate Sigma-Aldrich Biotechnology, L.P. Riedel-de Haën® trademark under license from Riedel-de Haën GmbH. Sigma brand products are sold through Sigma-Aldrich, Inc. Sigma-Aldrich, Inc. warrants that its products conform to the information contained in this and other Sigma-Aldrich publications. Purchaser must determine the suitability of the product(s) for their particular use. Additional terms and conditions may apply. Please see reverse side of the invoice or packing slip. IQL 00393-503201 0046

PRESORTED 3050 Spruce Street • St. Louis, MO 63103 USA STANDARD U.S. POSTAGE PAID Return Service Requested SIGMA-ALDRICH CORPORATION