molecules Review Recent Advances in Asymmetric Iron Catalysis 1, 2, 3, Alessandra Casnati y , Matteo Lanzi y and Gianpiero Cera * 1 Laboratoire des Systèmes Complexes en Synthèse et Catalyse, Institut de Science et d’Ingénierie Supramoléculaires, Université de Strasbourg &CNRS, 8 Allèe Gaspard Monge, BP 70028, F-67083 Strasbourg, France;
[email protected] 2 Laboratoire de Chemie Moléculaire (UMR CNRS 7509), Université de Strasbourg, ECPM 25 Rue Becquerel, 67087 Strasbourg, France;
[email protected] 3 Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parco Area delle Scienze 17/A, I-43124 Parma, Italy * Correspondence:
[email protected]; Tel.: +39-0521-905-294 These authors contributed equally to this work. y Academic Editor: Fabio Marchetti Received: 28 July 2020; Accepted: 25 August 2020; Published: 26 August 2020 Abstract: Asymmetric transition-metal catalysis represents a fascinating challenge in the field of organic chemistry research. Since seminal advances in the late 60s, which were finally recognized by the Nobel Prize to Noyori, Sharpless and Knowles in 2001, the scientific community explored several approaches to emulate nature in producing chiral organic molecules. In a scenario that has been for a long time dominated by the use of late-transition metals (TM) catalysts, the use of 3d-TMs and particularly iron has found, recently, a widespread application. Indeed, the low toxicity and the earth-abundancy of iron, along with its chemical versatility, allowed for the development of unprecedented and more sustainable catalytic transformations. While several competent reviews tried to provide a complete picture of the astounding advances achieved in this area, within this review we aimed to survey the latest achievements and new concepts brought in the field of enantioselective iron-catalyzed transformations.