Macrofungi Branch Control Document 1999.Book

Total Page:16

File Type:pdf, Size:1020Kb

Macrofungi Branch Control Document 1999.Book 1999 Trial Year Notebook for the Great Smoky Mountains National Park All Taxa Biodiversity Inventory Epigeous Macromycetes Rod Tulloss and the Asheville Volunteer Fungal Department This document is a work in progress. Any user should check with Rod Tulloss ([email protected] or 609 448 5096) in order to be sure that the copy in hand is the most recent version. Copyright 1999 by Rodham E. Tulloss. Duplication for use in the Great Smoky Mountains National Park All Taxa Biodiversity Inventory is permitted. Version printed June 14, 1999 Cover illustration and all layout by Rodham E. Tulloss. Table of Contents 1 General Introduction and Conventions ......................................................................... 7 1.1 Hypertext Version Convention ......................................................................................... 7 1.2 Fundamental Reference Work......................................................................................... 7 1.3 Standard for Citation of Chapters, Sections, Requirements, and Recommendations ..... 7 1.4 Myxomycetes Excluded ................................................................................................... 7 2 GSMNP Resource Activity Permit................................................................................. 8 2.1 Permit Instruction Letter from GSMNP ............................................................................ 8 2.2 Application Form.............................................................................................................. 9 2.3 Persons Having Copies of Permit.................................................................................. 11 3 Participants and Contacts—Addresses, Names, Phone Numbers, Email Addresses 12 4 Travel Instructions....................................................................................................... 14 4.1 Building Supply and Hardware Stores in Asheville........................................................ 14 4.2 Driving Time Between Diverse Sites ............................................................................. 14 4.3 From Greenville Airport to Steve Peek’s House ............................................................ 14 4.4 Location of Cataloochee Meeting Spot—Exxon Station ................................................ 14 4.5 Haywood Community College ....................................................................................... 15 5 Training....................................................................................................................... 16 5.1 Training—General ......................................................................................................... 16 5.2 Training—Genus Specific .............................................................................................. 16 6 Collecting Schedule .................................................................................................... 18 6.1 Schedule of Site Visits—1999 ....................................................................................... 18 7 Collecting Methodology............................................................................................... 19 7.1 Fundamental Procedures .............................................................................................. 19 7.2 Transect Layout .............................................................................................................19 7.3 Design and Location of First Transect (Fungus-1) ........................................................ 20 7.4 Collection Cards ............................................................................................................20 7.5 Collecting Trips .............................................................................................................. 22 7.6 Opportunistic Collecting................................................................................................. 23 7.7 Collecting Species of Amanita and Limacella................................................................ 23 7.8 Collecting Entolomatoid Fungi ....................................................................................... 23 7.9 Collecting Species of Russula ....................................................................................... 23 7.10 Collecting Other Agarics .............................................................................................. 23 8 Processing Methodology............................................................................................. 24 8.1 Processing Fresh Collections ........................................................................................ 24 8.2 Collection Day Debriefings for Quality Control .............................................................. 25 - 3 - 8.3 Distribution of Collections to Identifiers and Herbaria.................................................... 25 9 Web Pages ..................................................................................................................27 9.1 Sample Species Web Pages ......................................................................................... 27 10 Expenses...................................................................................................................36 11 Acknowledgments......................................................................................................37 12 Bibliography...............................................................................................................38 Appendix A-1 Generic Collecting Form for Fleshy Fungi..................................................................39 Appendix A-2 Collecting the Amanitaceae........................................................................................41 A-2.1 In the Field ............................................................................................................41 A-2.1.1 Photographing......................................................................................................... 41 A-2.1.2 Collecting................................................................................................................. 41 A-2.1.3 Basket Design ......................................................................................................... 41 A-2.1.4 Notes ....................................................................................................................... 41 A-2.2 In the Laboratory—Macroscopic Characters.........................................................42 A-2.2.1 Dimensions..............................................................................................................42 A-2.2.2 Important Ratios ...................................................................................................... 42 A-2.2.3 Decoration of the Stipe Surface .............................................................................. 42 A-2.2.4 Colors ...................................................................................................................... 43 A-2.2.5 Odor and Taste ....................................................................................................... 43 A-2.2.6 Spore Deposit.......................................................................................................... 43 A-2.2.7 Phenoloxidase Spot Tests....................................................................................... 43 A-2.2.8 Sulfuric Acid Spot Tests .......................................................................................... 44 A-2.2.9 Other Macrochemical Tests .................................................................................... 44 A-2.2.10 Triage .................................................................................................................... 45 A-2.2.11 Drying the Specimens ........................................................................................... 45 A-2.3 In the Laboratory—Microscopic Characters and Comments on Their Observation45 A-2.4 Parasitized Amanita Specimens ...........................................................................50 A-2.5 Collecting Notes for Species of Amanita...............................................................53 A-2.6 Record Form for Sulfuric Acid Spot Testing..........................................................58 A-2.7 Record Form for Phenoloxidase Spot Testing ......................................................59 A-2.8 Starter List for Genus Amanita Pers. in GSMNP ..................................................61 A-2.8.1 Amanita section Amanita......................................................................................... 61 - 4 - A-2.8.2 Amanita section Vaginatae...................................................................................... 62 A-2.8.3 Amanita section Amidella ........................................................................................ 63 A-2.8.4 Amanita section Lepidella ....................................................................................... 64 A-2.8.5 Amanita section Phalloideae................................................................................... 65 A-2.8.6 Amanita section Validae.......................................................................................... 66 A-2.8.7 Additional members of the Amanitaceae reported from the Park (Limacella)......... 67 A-2.8.8 Starting List—Literature Cited ................................................................................
Recommended publications
  • Molecular Phylogenetic Studies in the Genus Amanita
    1170 Molecular phylogenetic studies in the genus Amanita I5ichael Weiß, Zhu-Liang Yang, and Franz Oberwinkler Abstracl A group of 49 Amanita species that had been thoroughly examined morphologically and amtomically was analyzed by DNA sequence compadson to estimate natural groups and phylogenetic rclationships within the genus. Nuclear DNA sequences coding for a part of the ribosomal large subunit were determined and evaluated using neighbor-joining with bootstrap analysis, parsimony analysis, conditional clustering, and maximum likelihood methods, Sections Amanita, Caesarea, Vaginatae, Validae, Phalloideae, and Amidella were substantially confirmed as monophyletic groups, while the monophyly of section Lepidell.t remained unclear. Branching topologies between and within sections could also pafiially be derived. Stbgenera Amanita an'd Lepidella were not supported. The Mappae group was included in section Validae. Grouping hypotheses obtained by DNA analyses are discussed in relation to the distribution of morphological and anatomical chamcters in the studied species. Key words: fungi, basidiomycetes phylogeny, Agarrcales, Amanita systematics, large subunit rDNA, 28S. R6sum6 : A partir d'un groupe de 49 esp,ces d'Amanita prdalablement examinees morphologiquement et anatomiquement, les auteurs ont utilisd la comparaison des s€quences d'ADN pour ddfinir les groupes naturels et les relations phylog6ndtiques de ce genre. Les sdquences de I'ADN nucl6aire codant pour une partie de la grande sous-unit6 ribosomale ont 6t6 ddterminEes et €valu6es en utilisant l'analyse par liaison en lacet avec le voisin (neighbor-joining with bootstrap), l'analyse en parcimonie, le rcgroupement conditionnel et les m€thodes de ressemblance maximale. Les rdsultats confirment substantiellement les sections Afiarira, Caesarea, Uaqinatae, Ualidae, Phalloideae et Amidella, comme groupes monophyldtiques, alors que la monophylie de la section Lepidella demerxe obscure.
    [Show full text]
  • Download Download
    LITERATURE UPDATE FOR TEXAS FLESHY BASIDIOMYCOTA WITH NEW VOUCHERED RECORDS FOR SOUTHEAST TEXAS David P. Lewis Clark L. Ovrebo N. Jay Justice 262 CR 3062 Department of Biology 16055 Michelle Drive Newton, Texas 75966, U.S.A. University of Central Oklahoma Alexander, Arkansas 72002, U.S.A. [email protected] Edmond, Oklahoma 73034, U.S.A. [email protected] [email protected] ABSTRACT This is a second paper documenting the literature records for Texas fleshy basidiomycetous fungi and includes both older literature and recently published papers. We report 80 literature articles which include 14 new taxa described from Texas. We also report on 120 new records of fleshy basdiomycetous fungi collected primarily from southeast Texas. RESUMEN Este es un segundo artículo que documenta el registro de nuevas especies de hongos carnosos basidiomicetos, incluyendo artículos antiguos y recientes. Reportamos 80 artículos científicamente relacionados con estas especies que incluyen 14 taxones con holotipos en Texas. Así mismo, reportamos unos 120 nuevos registros de hongos carnosos basidiomicetos recolectados primordialmente en al sureste de Texas. PART I—MYCOLOGICAL LITERATURE ON TEXAS FLESHY BASIDIOMYCOTA Lewis and Ovrebo (2009) previously reported on literature for Texas fleshy Basidiomycota and also listed new vouchered records for Texas of that group. Presented here is an update to the listing which includes literature published since 2009 and also includes older references that we previously had not uncovered. The authors’ primary research interests center around gilled mushrooms and boletes so perhaps the list that follows is most complete for the fungi of these groups. We have, however, attempted to locate references for all fleshy basidio- mycetous fungi.
    [Show full text]
  • Diversity of Ectomycorrhizal Fungi in Minnesota's Ancient and Younger Stands of Red Pine and Northern Hardwood-Conifer Forests
    DIVERSITY OF ECTOMYCORRHIZAL FUNGI IN MINNESOTA'S ANCIENT AND YOUNGER STANDS OF RED PINE AND NORTHERN HARDWOOD-CONIFER FORESTS A THESIS SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL OF THE UNIVERSITY OF MINNESOTA BY PATRICK ROBERT LEACOCK IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DAVID J. MCLAUGHLIN, ADVISER OCTOBER 1997 DIVERSITY OF ECTOMYCORRHIZAL FUNGI IN MINNESOTA'S ANCIENT AND YOUNGER STANDS OF RED PINE AND NORTHERN HARDWOOD-CONIFER FORESTS COPYRIGHT Patrick Robert Leacock 1997 Saint Paul, Minnesota ACKNOWLEDGEMENTS I am indebted to Dr. David J. McLaughlin for being an admirable adviser, teacher, and editor. I thank Dave for his guidance and insight on this research and for assistance with identifications. I am grateful for the friendship and support of many graduate students, especially Beth Frieders, Becky Knowles, and Bev Weddle, who assisted with research. I thank undergraduate student assistants Dustine Robin and Tom Shay and school teacher participants Dan Bale, Geri Nelson, and Judith Olson. I also thank the faculty and staff of the Department of Plant Biology, University of Minnesota, for their assistance and support. I extend my most sincere thanks and gratitude to Judy Kenney and Adele Mehta for their dedication in the field during four years of mushroom counting and tree measuring. I thank Anna Gerenday for her support and help with identifications. I thank Joe Ammirati, Tim Baroni, Greg Mueller, and Clark Ovrebo, for their kind aid with identifications. I am indebted to Rich Baker and Kurt Rusterholz of the Natural Heritage Program, Minnesota Department of Natural Resources, for providing the opportunity for this research.
    [Show full text]
  • A Preliminary Checklist of Arizona Macrofungi
    A PRELIMINARY CHECKLIST OF ARIZONA MACROFUNGI Scott T. Bates School of Life Sciences Arizona State University PO Box 874601 Tempe, AZ 85287-4601 ABSTRACT A checklist of 1290 species of nonlichenized ascomycetaceous, basidiomycetaceous, and zygomycetaceous macrofungi is presented for the state of Arizona. The checklist was compiled from records of Arizona fungi in scientific publications or herbarium databases. Additional records were obtained from a physical search of herbarium specimens in the University of Arizona’s Robert L. Gilbertson Mycological Herbarium and of the author’s personal herbarium. This publication represents the first comprehensive checklist of macrofungi for Arizona. In all probability, the checklist is far from complete as new species await discovery and some of the species listed are in need of taxonomic revision. The data presented here serve as a baseline for future studies related to fungal biodiversity in Arizona and can contribute to state or national inventories of biota. INTRODUCTION Arizona is a state noted for the diversity of its biotic communities (Brown 1994). Boreal forests found at high altitudes, the ‘Sky Islands’ prevalent in the southern parts of the state, and ponderosa pine (Pinus ponderosa P.& C. Lawson) forests that are widespread in Arizona, all provide rich habitats that sustain numerous species of macrofungi. Even xeric biomes, such as desertscrub and semidesert- grasslands, support a unique mycota, which include rare species such as Itajahya galericulata A. Møller (Long & Stouffer 1943b, Fig. 2c). Although checklists for some groups of fungi present in the state have been published previously (e.g., Gilbertson & Budington 1970, Gilbertson et al. 1974, Gilbertson & Bigelow 1998, Fogel & States 2002), this checklist represents the first comprehensive listing of all macrofungi in the kingdom Eumycota (Fungi) that are known from Arizona.
    [Show full text]
  • Color Plates
    Color Plates Plate 1 (a) Lethal Yellowing on Coconut Palm caused by a Phytoplasma Pathogen. (b, c) Tulip Break on Tulip caused by Lily Latent Mosaic Virus. (d, e) Ringspot on Vanda Orchid caused by Vanda Ringspot Virus R.K. Horst, Westcott’s Plant Disease Handbook, DOI 10.1007/978-94-007-2141-8, 701 # Springer Science+Business Media Dordrecht 2013 702 Color Plates Plate 2 (a, b) Rust on Rose caused by Phragmidium mucronatum.(c) Cedar-Apple Rust on Apple caused by Gymnosporangium juniperi-virginianae Color Plates 703 Plate 3 (a) Cedar-Apple Rust on Cedar caused by Gymnosporangium juniperi.(b) Stunt on Chrysanthemum caused by Chrysanthemum Stunt Viroid. Var. Dark Pink Orchid Queen 704 Color Plates Plate 4 (a) Green Flowers on Chrysanthemum caused by Aster Yellows Phytoplasma. (b) Phyllody on Hydrangea caused by a Phytoplasma Pathogen Color Plates 705 Plate 5 (a, b) Mosaic on Rose caused by Prunus Necrotic Ringspot Virus. (c) Foliar Symptoms on Chrysanthemum (Variety Bonnie Jean) caused by (clockwise from upper left) Chrysanthemum Chlorotic Mottle Viroid, Healthy Leaf, Potato Spindle Tuber Viroid, Chrysanthemum Stunt Viroid, and Potato Spindle Tuber Viroid (Mild Strain) 706 Color Plates Plate 6 (a) Bacterial Leaf Rot on Dieffenbachia caused by Erwinia chrysanthemi.(b) Bacterial Leaf Rot on Philodendron caused by Erwinia chrysanthemi Color Plates 707 Plate 7 (a) Common Leafspot on Boston Ivy caused by Guignardia bidwellii.(b) Crown Gall on Chrysanthemum caused by Agrobacterium tumefaciens 708 Color Plates Plate 8 (a) Ringspot on Tomato Fruit caused by Cucumber Mosaic Virus. (b, c) Powdery Mildew on Rose caused by Podosphaera pannosa Color Plates 709 Plate 9 (a) Late Blight on Potato caused by Phytophthora infestans.(b) Powdery Mildew on Begonia caused by Erysiphe cichoracearum.(c) Mosaic on Squash caused by Cucumber Mosaic Virus 710 Color Plates Plate 10 (a) Dollar Spot on Turf caused by Sclerotinia homeocarpa.(b) Copper Injury on Rose caused by sprays containing Copper.
    [Show full text]
  • Phd. Thesis Sana Jabeen.Pdf
    ECTOMYCORRHIZAL FUNGAL COMMUNITIES ASSOCIATED WITH HIMALAYAN CEDAR FROM PAKISTAN A dissertation submitted to the University of the Punjab in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY in BOTANY by SANA JABEEN DEPARTMENT OF BOTANY UNIVERSITY OF THE PUNJAB LAHORE, PAKISTAN JUNE 2016 TABLE OF CONTENTS CONTENTS PAGE NO. Summary i Dedication iii Acknowledgements iv CHAPTER 1 Introduction 1 CHAPTER 2 Literature review 5 Aims and objectives 11 CHAPTER 3 Materials and methods 12 3.1. Sampling site description 12 3.2. Sampling strategy 14 3.3. Sampling of sporocarps 14 3.4. Sampling and preservation of fruit bodies 14 3.5. Morphological studies of fruit bodies 14 3.6. Sampling of morphotypes 15 3.7. Soil sampling and analysis 15 3.8. Cleaning, morphotyping and storage of ectomycorrhizae 15 3.9. Morphological studies of ectomycorrhizae 16 3.10. Molecular studies 16 3.10.1. DNA extraction 16 3.10.2. Polymerase chain reaction (PCR) 17 3.10.3. Sequence assembly and data mining 18 3.10.4. Multiple alignments and phylogenetic analysis 18 3.11. Climatic data collection 19 3.12. Statistical analysis 19 CHAPTER 4 Results 22 4.1. Characterization of above ground ectomycorrhizal fungi 22 4.2. Identification of ectomycorrhizal host 184 4.3. Characterization of non ectomycorrhizal fruit bodies 186 4.4. Characterization of saprobic fungi found from fruit bodies 188 4.5. Characterization of below ground ectomycorrhizal fungi 189 4.6. Characterization of below ground non ectomycorrhizal fungi 193 4.7. Identification of host taxa from ectomycorrhizal morphotypes 195 4.8.
    [Show full text]
  • Thirty Plus Years of Mushroom Poisoning
    Summary of the Poisoning Reports in the NAMA Case Registry for 2006 through 2017 By Michael W. Beug, Chair NAMA Toxicology Committee In the early years of NAMA, toxicology was one of the concerns of the Mycophagy Committee. The existence of toxicology committees in the Puget Sound and Colorado clubs stimulated the NAMA officers to separate the good and bad aspects of ingesting mushrooms. In 1973 they established a standing Toxicology Committee initially chaired by Dr. Duane H. (Sam) Mitchel, a Denver, Colorado MD who founded the Colorado Mycological Society. In the early 1970s, Sam worked with Dr. Barry Rumack, then director of the Rocky Mountain Poison Center (RMPC) to establish a protocol for handling information on mushroom poisonings resulting in the center becoming nationally recognized for handling mushroom poisonings. Encouraged by Dr Orson Miller and acting on a motion by Kit Scates, the NAMA trustees then created the Mushroom Poisoning Case Registry in 1982. Dr. Kenneth Cochran laid the groundwork for maintaining the Registry at the University of Michigan. Individuals can report mushroom poisonings using the NAMA website (www.namyco.org). The reporting is a volunteer effort and at the end of each year members of the NAMA toxicology committee assemble all of the reports for the previous year as well as any other earlier cases that can still be documented. Individuals are encouraged to submit reports directly through the NAMA website. In addition, members of the toxicology committee work with Poison Centers to gather mushroom poisoning reports. The toxicology committee has 160 toxicology identifiers living in 36 states and 3 Canadian Provinces.
    [Show full text]
  • Ecology, Diversity and Seasonal Distribution of Wild Mushrooms in a Nigerian Tropical Forest Reserve
    BIODIVERSITAS ISSN: 1412-033X Volume 19, Number 1, January 2018 E-ISSN: 2085-4722 Pages: 285-295 DOI: 10.13057/biodiv/d190139 Ecology, diversity and seasonal distribution of wild mushrooms in a Nigerian tropical forest reserve MOBOLAJI ADENIYI1,2,♥, YEMI ODEYEMI3, OLU ODEYEMI1 1Department of Microbiology, Obafemi Awolowo University. Ile-Ife, 220282, Osun State, Nigeria 2Department of Biological Sciences, Osun State University. Oke-Baale, Osogbo, 230212, Osun State, Nigeria. Tel.: +234-0-8035778780, ♥email: [email protected], [email protected] 3Department of Molecular Medicine, University of South Florida. 4202 E Fowler Avenue, Tampa, Florida, 33620, FL, USA Manuscript received: 19 December 2017. Revision accepted: 19 January 2018. Abstract. Adeniyi M, Odeyemi Y, Odeyemi O. 2018. Ecology, diversity and seasonal distribution of wild mushrooms in a Nigerian tropical forest reserve. Biodiversitas 19: 285-295. This study investigated the ecology, diversity and seasonal distribution of wild mushrooms at Environmental Pollution Science and Technology (ENPOST) forest reserve, Ilesa, Southwestern Nigeria. Mushrooms growing in the ligneous and terrestrial habitats of the forest were collected, identified and enumerated between March 2014 and March 2015. Diversity indices including species richness, dominance, and species diversity were evaluated. Correlation (p < 0.05) was determined among climatic data and diversity indices. A total of 151 mushroom species specific to their respective habitats were obtained. The highest monthly species richness (70) was obtained in October 2014. While a higher dominance was observed in the terrestrial habitat during the rainy and dry seasons (0.072 and 0.159 respectively), species diversity was higher in the ligneous and terrestrial habitats during the rainy season (3.912 and 3.304 respectively).
    [Show full text]
  • Fso Newsletter 2021
    FSO NEWSLETTER 2021 From the President, RICHARD FORTEY Every year that I report on the year’s fungus season for the FSO I make some claim about how peculiar the last twelve months have been compared with some years in the past. I think I am beginning to realize that there is no such thing as a “typical” mushroom year at all, and it is simply a fact that every year is different. 2020 was certainly different in one respect: Covid 19 put a brake on our communal foray activities, so that much of the peak season had to be solitary exploration of pastures and woodland—nothing against the rules in sampling on one’s own ... However, we were at least able to get something done for National Fungus Day in October, even though our regular foray around the Harcourt Arboretum was clearly impossible. Thanks to a concerted effort by our members we were able to assemble a wide variety of fruitbodies together to allow me to present a virtual fungus foray - filmed inside an open barn - which was subsequently made available online through the Oxford University Botanic Garden website. Thanks are due to the Arboretum for making this happen. Judging by the fact that is has been viewed more than 1000 times by the time of writing this report, it was something of a success. Highlights of the presentation were a prodigious specimen of Amanita strobiliformis (Warted Amanita) found by Judy Webb and a colossal Ganoderma resinaceum from Molly Dewey’s garden. Some say that the star of the show was actually a ground beetle that kept on reappearing throughout the shooting of the video, moving from fungus to fungus alongside the presenter! Assorted Russula species + a few Lactarius (Molly Dewey) Amanita strobiliformis (Judy Webb) 2020 was unusual not only for the ‘lockdown’ and its aftermath but also for the long, sunny, and very dry summer.
    [Show full text]
  • Rock Island State Park Species List
    Rock Island State Park Species List Place cursor over cells with red By Cumberland Mycological Society, Crossville, TN triangles to view pictures click on underlined species for web links to details about those species and/or comments Inventory List: Common Name (if applicable) Jun-12 Oct-12 Jun-13 Aug-14 Edibility Notes* Aleuria aurantia syn. Peziza aruantia "Orange Peel" x(?) edible but flavorless Agaricus placomyces "Eastern Flat-topped Agaricus" x(?) poisonous Agaricus pocillator none x unknown -possibly poisonous Agaricus silvicola none x edible (with extreme caution) Amanita abrupta "Abrupt-bulbed Lepidella" x unknown and possibly poisonous Amanita amerifulva [often called 'Amanita fulva' -a European species] “Tawny Grisette” x x edible -with extreme caution!! Amanita amerirubescens "Blusher" x x x edible -with extreme caution!! Amanita banningiana "Mary Banning's Slender Caesar" x x Amanita bisporigera = A. virosa sensu auct. amer. (Ref. RET) "Destroying Angel" x x x deadly poisonous! Amanita brunnescens “Cleft foot-Amanita” x x possibly poisonous Amanita cinereoconia var. cinereoconia "American Gray Dust Lepidella" x no information -best avoided Amanita citrina f. lavendula "Lavender-staining Citrina" x possibly poisonous Amanita citrina sensu auct. amer. "Citron Amanita," "False Death Cap" x possibly poisonous Amanita daucipes "Turnip-foot Amanita" x x possibly poisonous Amanita farinosa "Powdery-cap Amanita" x x x x unknown; not recommended Amanita flavoconia “Yellow Patches" x x x possibly poisonous Amanita gemmata complex "Gem-studded Amanita" x x possibly poisonous Amanita jacksonii syn. A. umbonata, syn. A. caesarea "American Caesar's Mushroom" x edible -with extreme caution!! Amanita muscaria var. guessowii syn. A. muscaria var. formosa "Yellow-orange Fly Agaric" x poisonous Amanita parcivolvata "Ringless False Fly Agaric" x x likely poisonous Amanita polypyramis "Plateful of Pyramids Lepidella" x x poisonous Amanita subcokeri Tulloss nom.
    [Show full text]
  • Análise Em Larga Escala Das Regiões Intergênicas ITS, ITS1 E ITS2 Para O Filo Basidiomycota (Fungi)
    UNIVERSIDADE FEDERAL DE MINAS GERAIS INSTITUTO DE CIÊNCIAS BIOLÓGICAS PROGRAMA INTERUNIDADES DE PÓS-GRADUAÇÃO EM BIOINFORMÁTICA DISSERTAÇÃO DE MESTRADO FRANCISLON SILVA DE OLIVEIRA Análise em larga escala das regiões intergênicas ITS, ITS1 e ITS2 para o filo Basidiomycota (Fungi) Belo Horizonte 2015 Francislon Silva de Oliveira Análise em larga escala das regiões intergênicas ITS, ITS1 e ITS2 para o filo Basidiomycota (Fungi) Dissertação apresentada ao Programa Interunidades de Pós-Graduação em Bioinformática da UFMG como requisito parcial para a obtenção do grau de Mestre em Bioinformática. ORIENTADOR: Prof. Dr. Guilherme Oliveira Correa CO-ORIENTADOR: Prof. Dr. Aristóteles Góes-Neto Belo Horizonte 2015 AGRADECIMENTOS À minha família e amigos pelo amor e confiança depositadas em mim. Aos meus orientadores Guilherme e Aristóteles por todo o suporte oferecido durante todo o mestrado. À Fernanda Badotti pelas discussões biológicas sobre o tema de DNA barcoding e por estar sempre disposta a ajudar. À toda equipe do Centro de Excelência em Bioinformática pelos maravilhosos momentos que passamos juntos. Muito obrigado por toda paciência nesse momento final de turbulência do mestrado. Aos membros do Center for Tropical and Emerging Global Diseases pela sensacional receptividade durante o meu estágio de quatro meses na University of Georgia. Um agradecimento especial à Dra. Jessica Kissinger pelos conselhos científicos e à Betsy pela atenção e disponibilidade de ajudar a qualquer momento. Aos colegas do programa de pós-graduação em bioinformática da UFMG pelos momentos de descontração e discussão científica na mesa do bar !. Aos membros da secretaria do programa de pós-graduação pela simpatia e vontade de ajudar sempre.
    [Show full text]
  • How to Distinguish Amanita Smithiana from Matsutake and Catathelasma Species
    VOLUME 57: 1 JANUARY-FEBRUARY 2017 www.namyco.org How to Distinguish Amanita smithiana from Matsutake and Catathelasma species By Michael W. Beug: Chair, NAMA Toxicology Committee A recent rash of mushroom poisonings involving liver failure in Oregon prompted Michael Beug to issue the following photos and information on distinguishing the differences between the toxic Amanita smithiana and edible Matsutake and Catathelasma. Distinguishing the choice edible Amanita smithiana Amanita smithiana Matsutake (Tricholoma magnivelare) from the highly poisonous Amanita smithiana is best done by laying the stipe (stem) of the mushroom in the palm of your hand and then squeezing down on the stipe with your thumb, applying as much pressure as you can. Amanita smithiana is very firm but if you squeeze hard, the stipe will shatter. Matsutake The stipe of the Matsutake is much denser and will not shatter (unless it is riddled with insect larvae and is no longer in good edible condition). There are other important differences. The flesh of Matsutake peels or shreds like string cheese. Also, the stipe of the Matsutake is widest near the gills Matsutake and tapers gradually to a point while the stipe of Amanita smithiana tends to be bulbous and is usually widest right at ground level. The partial veil and ring of a Matsutake is membranous while the partial veil and ring of Amanita smithiana is powdery and readily flocculates into small pieces (often disappearing entirely). For most people the difference in odor is very distinctive. Most collections of Amanita smithiana have a bleach-like odor while Matsutake has a distinctive smell of old gym socks and cinnamon redhots (however, not all people can distinguish the odors).
    [Show full text]