Early Telerobotic Exploration of the Lunar Farside by Astronauts at Earth-Moon L2

Total Page:16

File Type:pdf, Size:1020Kb

Early Telerobotic Exploration of the Lunar Farside by Astronauts at Earth-Moon L2 Fastnet: Early Telerobotic Exploration of the Lunar Farside by Astronauts at Earth-Moon L2 Josh Hopkins FISO Colloquium, November 14 2012 Copyright 2012 Lockheed Martin Corporation. All Rights Reserved 1 Stepping Stones Stepping Stones is a series of exploration 2023 missions building incrementally towards Deimos Scout the long term goal of exploring Mars. Each mission addresses science objectives relating to the formation of the solar 2031-2035 system and the origins of life. Red Rocks: explore Mars from Deimos 2024, 2025, 2029 2017 Plymouth Rock: Humans explore asteroids like Asteroid scout 1999 AO10 and 2000 SG344 2018-2023 Fastnet: Explore the Moon’s far side from Earth-Moon L2 point 2016 2017 Asteroid survey SLS test flight 2013-2020 Human systems tests on ISS Lockheed Martin notional concept Dates subject to change Deimos photo courtesy of NASA-JPL, University of Arizona 2 ‘Fastnet’ L2-Farside Missions • Send astronauts to the Earth-Moon Lagrange point beyond the Moon (EM-L2) • Teleoperate vehicles on the lunar farside surface • Demonstrate Orion operations in deep space with fast reentry as practice for later missions • Initial ~30 day mission into trans-lunar space using Orion only • Later flights would dock to a habitat to extend mission durations to 2-4 months 3 Rationale for Lunar Farside Exploration 4 Why The Farside? Planetary Science • To understand the impact N history of the terrestrial planets and dynamics of the early solar system we need samples of the most ancient impact basin on the farside – “The exploration and sample return from the Moon’s South Pole-Aitken (SPA) basin is among the highest priority activities for solar system science” 2011 Planetary Sciences Decadal Survey S Lunar farside elevation map courtesy NASA GSFC/DLR/ASU 5 Was the “Late Heavy Bombardment” Real? • Large lunar impact basins sampled by Apollo all appear to be 3.85-4.0 billion years old • Was there a surge in impact activity in the inner solar system at that time? • The “Nice Model” hypothesizes that rearrangement of the giant planets disrupted the entire solar system around this time • Returning samples to Earth from SPA basin can help pin down what was happening in the early solar system Impact Cataclysm? (Or Not) First signs Cambrian Explosion (complex life appears) of Life On Earth Impact Flux Impact 4.5 4.0 3.0 2.0 1.0 Today Time, Billions of Years Ago 6 Why The Farside? Cosmology • The lunar farside is the only radio-quiet zone where we can observe low frequency signals from the earliest formation of stars and galaxies – “A great mystery now confronts us: When and how did the first galaxies form out of cold clumps of hydrogen gas and start to shine—when was our ‘cosmic dawn’?” 2010 Astrophysics Decadal Survey • Signals from neutral hydrogen at 21 cm wavelength (1420 MHz) during this early time period have been redshifted by a factor of 10-100 down to frequencies of 10s of MHz – Artificial radio signals and natural noise from the ionosphere interfere with this faint signal on Earth and in orbit 7 Radio Astronomy Instrument • A lunar rover could unroll antennas printed on polyimide film directly onto the lunar surface – Scale is hundreds of meters to few km due to long wavelength – Antenna hardware is in early development phase – In 2013 astronauts on ISS will attempt to teleoperate rover deployment of an antenna at NASA Ames • An initial flight could unroll a single shorter arm prototype for test purposes • Later mission would unroll three arms for full resolution • Operational instrument will need communications relay from the farside at ~10 Mbs data rate 8 How Do Astronauts Help? • Launching samples up to Orion instead of directly back to Earth may enable returning much larger sample mass from the same size lunar lander • Astronauts at EM-L2 can teleoperate a rover on the lunar farside more effectively than from Earth due to reduced speed of light latency – Approx 0.4 sec from L2 vs 3.5 sec from Earth via L2 relay (plus network latency) • The Moon is a good place to practice orbital teleoperation of rovers on a planetary surface before we try to do the same thing from Mars orbit – Deimos to Mars two-way speed of light latency is ~0.15 sec 9 Payoff from Reduced Latency • We tested multiple users on a 3.5 lunar driving simulator using Average of all drivers varying latency 3.0 • Driving course with 7 waypoints over ~100 m 2.5 distance, rough topography, 2.0 and 0.6 m/s maximum rover speed 1.5 • Minimal dexterity/precision required, no rover autonomy 1.0 • Test results suggest a factor 0.5 of 2 improvement in speed operating from L2 (~0.5 sec) duration,Driving normalizedto 1= no latency 0.0 0 1 2 3 4 5 6 instead of Earth (4 to 5 sec) Added control latency, seconds 10 Screen capture from lunar rover simulator 11 Value for Exploration • Astronauts at L2 can contribute to farside science, but not enough to justify the cost of a human mission on science grounds alone • L2 also provides an important proving ground for human missions to deep space such as asteroids, Mars – It allows us to “dip our toes in” deep space on short missions – Learning to do human spaceflight beyond the Earth’s magnetosphere – At the end of a much longer logistics chain than ISS – Learning to operate safely when abort return is possible, but not fast 12 L2/Farside Mission Design 13 Types of Orbits Near L2 • If a spacecraft is offset from the L2 (or L1) point, it oscillates independently in Y and Z along a Lissajous curve (examples in Blue) +Z • We can pick the Y and Z amplitudes to synchronize the periods in both axes, creating a +Y halo orbit (examples in Red) • Large amplitudes are not good 20,000 km for providing continuous comm to the lunar surface • The smallest halos have Y amplitudes > 32,000 km • Lissajous orbits can have smaller amplitudes, but pass behind the Moon as seen from Earth (communications problem) View looking towards the Moon from Earth 14 L2 Halo & Lissajous Orbit Geometry Top View (Looking “down” on the Moon’s orbit plane) L1 L2 GEO Earth Moon Side View (Parallel to Moon’s orbit plane) 15 Trajectory Options to L2 Region • For crew: Lunar flyby to L2, ~ 9-12 days, 250-325 m/s ΔV • For outpost deployment & resupply: Ballistic lunar transfer, ~95 day, < 10 m/s ΔV (data for one-way trip) Mid-Course Maneuver L2 Moon Direct Flyby Solar Vector Earth Earth Orbit of L2 Lunar 100,000 km Orbit Inertial Reference Frame 16 Example Reference Trajectory Early mission of Orion only, before an outpost habitat is available at L2 Trans-Lunar Injection (TLI) Reentry, 11 km/s Cruise to Moon, 5 Days Earth return cruise, 5 Days L1 Outbound Perilune Return Lunar Flyby and Retro Burn, 185 m/s Retro Burn, 176 m/s C L2 A Earth-Moon Rotating Reference Frame D Nominal Mission Duration: 33 Days B Duration Beyond the Moon: 22 Days A: Halo Targeting Burn: 58 m/s Nominal Orion ΔV ~470 m/s B: Halo Insertion Burn: 13 m/s Longest Eclipse ~54 min C: Halo Departure: <1 m/s Only one communications gap of 2.5 hours D: Pre-perilune Burn : 24 m/s 17 Spacecraft Configurations 18 Orion • Orion is already being designed for lunar missions and the lunar environment Launch Abort • Open space is generally more benign System (LAS) than low lunar orbit • No major redesign is expected to perform missions to L2 region Crew Module • Two upgrades may be of interest (CM) – Accommodating secondary payloads Service Module (SM) – Extending mission duration Adapters 19 Potential Secondary Payload Locations Forward Compartment Dimensions are approximate, 26” (If no docking mechanism) pending clearance analysis 660 mm 30” 760 mm 68” 42” 1725 mm 1065 mm SIM Bay (Standard) Aft Compartment (If no main engine) 40” 1015 mm 68” 144” 1725 mm 3660 mm 21” 530 mm 20 Forward Compartment Option Launch Abort System Truss Assembly Representative Spacecraft Payload Interface Ring Crew Module Fwd Bay 21 Extended Mission Duration • Baseline Orion crew mission capability is 21 days, limited primarily by life support consumables • Water, O2 and N2 supply can be extended to >30 days by changing ECLSS tank size GO2 tanks (2) GN2 tanks (2) Water tanks (5) Baseline 21 Day Crew Capability Extended Duration Capability 22 Added Pressurized Stowage • Mission duration is limited by stowage volume and mass limits in the Crew Module for food, waste tanks, etc. • This could be augmented by a “pantry module” on the forward docking adapter which jettisons prior to reentry. – Could stow supplies for up to 60 day missions – But, would preclude docking to other vehicles (e.g. habitat) Medium Pantry Module Total Pressurized Volume: 85 ft3 (2.4 m3) Cargo volume: 58 ft3 (1.8 m3) 23 International Industry Collaboration • International industry team formed in 2009 to study next steps in human exploration, focusing on an L2 outpost supporting lunar farside missions • Team members are prime contractors from most of the ISS participating countries • Jointly investigating ways to apply heritage systems to L2 outpost and robotic lunar surface functions 24 Why an Outpost at EM-L2? • Our companies and agencies have different priorities. An EM-L2 outpost is potentially compatible with multiple objectives such as – Relay and control node for lunar surface robotics – Preparing for missions into deep space (radiation protection, psychological health, crew autonomy) – Possible transportation hub for human lunar landings or missions to asteroids or Mars – Servicing space telescopes • EM-L2 is easier to reach than lunar orbit, GEO, or EM-L1 so multiple countries can contribute using their ISS- derived capabilities 25 Rendezvous in Halo Orbits • Rendezvous with a pre-deployed habitat in the halo orbit imposes an additional launch window constraint – Budget of ~100 m/s buys launch opportunities on 4 consecutive days every 14-15 days – Budget of ~300 m/s allows launch on any date, but with trip times that vary by several days • Halo orbits are in a shallow gravity field with long periods, so rendezvous is not like LEO operations – No phasing orbits.
Recommended publications
  • LCROSS (Lunar Crater Observation and Sensing Satellite) Observation Campaign: Strategies, Implementation, and Lessons Learned
    Space Sci Rev DOI 10.1007/s11214-011-9759-y LCROSS (Lunar Crater Observation and Sensing Satellite) Observation Campaign: Strategies, Implementation, and Lessons Learned Jennifer L. Heldmann · Anthony Colaprete · Diane H. Wooden · Robert F. Ackermann · David D. Acton · Peter R. Backus · Vanessa Bailey · Jesse G. Ball · William C. Barott · Samantha K. Blair · Marc W. Buie · Shawn Callahan · Nancy J. Chanover · Young-Jun Choi · Al Conrad · Dolores M. Coulson · Kirk B. Crawford · Russell DeHart · Imke de Pater · Michael Disanti · James R. Forster · Reiko Furusho · Tetsuharu Fuse · Tom Geballe · J. Duane Gibson · David Goldstein · Stephen A. Gregory · David J. Gutierrez · Ryan T. Hamilton · Taiga Hamura · David E. Harker · Gerry R. Harp · Junichi Haruyama · Morag Hastie · Yutaka Hayano · Phillip Hinz · Peng K. Hong · Steven P. James · Toshihiko Kadono · Hideyo Kawakita · Michael S. Kelley · Daryl L. Kim · Kosuke Kurosawa · Duk-Hang Lee · Michael Long · Paul G. Lucey · Keith Marach · Anthony C. Matulonis · Richard M. McDermid · Russet McMillan · Charles Miller · Hong-Kyu Moon · Ryosuke Nakamura · Hirotomo Noda · Natsuko Okamura · Lawrence Ong · Dallan Porter · Jeffery J. Puschell · John T. Rayner · J. Jedadiah Rembold · Katherine C. Roth · Richard J. Rudy · Ray W. Russell · Eileen V. Ryan · William H. Ryan · Tomohiko Sekiguchi · Yasuhito Sekine · Mark A. Skinner · Mitsuru Sôma · Andrew W. Stephens · Alex Storrs · Robert M. Suggs · Seiji Sugita · Eon-Chang Sung · Naruhisa Takatoh · Jill C. Tarter · Scott M. Taylor · Hiroshi Terada · Chadwick J. Trujillo · Vidhya Vaitheeswaran · Faith Vilas · Brian D. Walls · Jun-ihi Watanabe · William J. Welch · Charles E. Woodward · Hong-Suh Yim · Eliot F. Young Received: 9 October 2010 / Accepted: 8 February 2011 © The Author(s) 2011.
    [Show full text]
  • Highlights in Space 2010
    International Astronautical Federation Committee on Space Research International Institute of Space Law 94 bis, Avenue de Suffren c/o CNES 94 bis, Avenue de Suffren UNITED NATIONS 75015 Paris, France 2 place Maurice Quentin 75015 Paris, France Tel: +33 1 45 67 42 60 Fax: +33 1 42 73 21 20 Tel. + 33 1 44 76 75 10 E-mail: : [email protected] E-mail: [email protected] Fax. + 33 1 44 76 74 37 URL: www.iislweb.com OFFICE FOR OUTER SPACE AFFAIRS URL: www.iafastro.com E-mail: [email protected] URL : http://cosparhq.cnes.fr Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law The United Nations Office for Outer Space Affairs is responsible for promoting international cooperation in the peaceful uses of outer space and assisting developing countries in using space science and technology. United Nations Office for Outer Space Affairs P. O. Box 500, 1400 Vienna, Austria Tel: (+43-1) 26060-4950 Fax: (+43-1) 26060-5830 E-mail: [email protected] URL: www.unoosa.org United Nations publication Printed in Austria USD 15 Sales No. E.11.I.3 ISBN 978-92-1-101236-1 ST/SPACE/57 *1180239* V.11-80239—January 2011—775 UNITED NATIONS OFFICE FOR OUTER SPACE AFFAIRS UNITED NATIONS OFFICE AT VIENNA Highlights in Space 2010 Prepared in cooperation with the International Astronautical Federation, the Committee on Space Research and the International Institute of Space Law Progress in space science, technology and applications, international cooperation and space law UNITED NATIONS New York, 2011 UniTEd NationS PUblication Sales no.
    [Show full text]
  • The British Astronomical Association Handbook 2017
    THE HANDBOOK OF THE BRITISH ASTRONOMICAL ASSOCIATION 2017 2016 October ISSN 0068–130–X CONTENTS PREFACE . 2 HIGHLIGHTS FOR 2017 . 3 CALENDAR 2017 . 4 SKY DIARY . .. 5-6 SUN . 7-9 ECLIPSES . 10-15 APPEARANCE OF PLANETS . 16 VISIBILITY OF PLANETS . 17 RISING AND SETTING OF THE PLANETS IN LATITUDES 52°N AND 35°S . 18-19 PLANETS – EXPLANATION OF TABLES . 20 ELEMENTS OF PLANETARY ORBITS . 21 MERCURY . 22-23 VENUS . 24 EARTH . 25 MOON . 25 LUNAR LIBRATION . 26 MOONRISE AND MOONSET . 27-31 SUN’S SELENOGRAPHIC COLONGITUDE . 32 LUNAR OCCULTATIONS . 33-39 GRAZING LUNAR OCCULTATIONS . 40-41 MARS . 42-43 ASTEROIDS . 44 ASTEROID EPHEMERIDES . 45-50 ASTEROID OCCULTATIONS .. ... 51-53 ASTEROIDS: FAVOURABLE OBSERVING OPPORTUNITIES . 54-56 NEO CLOSE APPROACHES TO EARTH . 57 JUPITER . .. 58-62 SATELLITES OF JUPITER . .. 62-66 JUPITER ECLIPSES, OCCULTATIONS AND TRANSITS . 67-76 SATURN . 77-80 SATELLITES OF SATURN . 81-84 URANUS . 85 NEPTUNE . 86 TRANS–NEPTUNIAN & SCATTERED-DISK OBJECTS . 87 DWARF PLANETS . 88-91 COMETS . 92-96 METEOR DIARY . 97-99 VARIABLE STARS (RZ Cassiopeiae; Algol; λ Tauri) . 100-101 MIRA STARS . 102 VARIABLE STAR OF THE YEAR (T Cassiopeiæ) . .. 103-105 EPHEMERIDES OF VISUAL BINARY STARS . 106-107 BRIGHT STARS . 108 ACTIVE GALAXIES . 109 TIME . 110-111 ASTRONOMICAL AND PHYSICAL CONSTANTS . 112-113 INTERNET RESOURCES . 114-115 GREEK ALPHABET . 115 ACKNOWLEDGEMENTS / ERRATA . 116 Front Cover: Northern Lights - taken from Mount Storsteinen, near Tromsø, on 2007 February 14. A great effort taking a 13 second exposure in a wind chill of -21C (Pete Lawrence) British Astronomical Association HANDBOOK FOR 2017 NINETY–SIXTH YEAR OF PUBLICATION BURLINGTON HOUSE, PICCADILLY, LONDON, W1J 0DU Telephone 020 7734 4145 PREFACE Welcome to the 96th Handbook of the British Astronomical Association.
    [Show full text]
  • KISS Lunar Volatiles Workshop 7-22-2013
    Future Lunar Missions: Plans and Opportunities Leon Alkalai, JPL New Approaches to Lunar Ice Detection and Mapping Workshop Keck Institute of Space Studies July 22nd – July 25th, 2013 California Institute of Technology Some Lunar Robotic Science & Exploration Mission Formulation Studies at JPL (2003 – 2013) MoonRise New Frontiers GRAIL (2005-2007) Moonlight (2003-2004) (2005-2012) Lunette – Discovery Proposal Pre-Phase A Network of small landers (2005-2011) MIRANDA: cold trap access (2010) Lunar Impactor (2006) Other Lunar Science & Exploration Studies at JPL (2003 – 2013) • Sample Acquisition and Transfer Systems (SATS) • Landers: hard landers, soft landers, powered descent, hazard avoidance, nuclear powered lander and rover • Sub-surface access: penetrators deployed from orbit, drills, heat- flow probe, etc. • Surface mobility: Short-range, long-range, access to cold traps in deep craters • CubeSats and other micro-spacecraft deployed e.g. gravity mapping • International Studies & Discussions: – MoonLITE lunar orbiter and probes with UKSA – Farside network of lunar landers, with ESA, CNES, IPGP – Lunar Exploration Orbiter (LEO) with DLR – Lunar Com Relay Satellite with ISRO – Canadian Space Agency: robotics, surface mobility – In-situ science with RSA, landers, rovers – JAXA lunar landers, rovers – Korean Space Agency 7/23/2013 L. Alkalai, JPL 3 Robotic Missions to the Moon: Just in the last decade: 2003 - 2013 • Smart-1 ESA September 2003 • Chang’e-1 China October 2007 • SELENE-1 Japan September 2007 • Chandrayaan-1 India October 2008 – M3, Mini-SAR USA • LRO USA June 2009 • LCROSS USA June 2009 • Chang’e-2 China October 2010 • GRAIL USA September 2011 • LADEE USA September 6 th , 2013 7/23/2013 L.
    [Show full text]
  • Ryan N. Watkins (Clegg) Campus Box 1169 Phone: 864-680-4838 1 Brookings Dr
    Ryan N. Watkins (Clegg) Campus Box 1169 Phone: 864-680-4838 1 Brookings Dr. E-Mail: [email protected] Saint Louis, MO 63130 http://ryanclegg.webs.com Research Summary My research uses photometric analysis of Lunar Reconnaissance Orbiter Narrow Angle Camera images of the lunar surface to study surface features, specifically spacecraft landing sites, silicic volcanic areas, lunar swirls, exposures of pure anorthosite, and pyroclastic deposits. I determined the relationship between spacecraft mass and thrust and the area of soil that will be disturbed, with applications to future missions. I use photometric modeling and Apollo soil data to place compositional constraints on regions of non-mare volcanism on the Moon, and I take spectral measurements of the reflectance of lunar soils to use as ground truth for remote sensing data. Highlights • Several peer-reviewed publications. • Active conference participation, including multiple invited talks. • Completed multiple research opportunities and educational programs within NASA. • Heavily involved in STEM outreach in the local community, at all age levels. • Member of Lunar Exploration Analysis Group Executive Committee and Next Generation Lunar Scientists and Engineers leadership group. Education Ph.D. Earth and Planetary Science, Washington University in St. Louis, St. Louis, MO May 2015 Dissertation: Photometric Investigations of Lunar Landing Sites and Silicic Regions using LRO Narrow Angle Camera Images Advisor: Dr. Bradley L. Jolliff M.A. Earth and Planetary Science, Washington University in St. Louis, St. Louis, MO 2012 B.S. Physics, cum laude, Florida Institute of Technology, Melbourne, FL 2010 B.S. Space Science, cum laude, Florida Institute of Technology, Melbourne, FL 2010 Experience Research Scientist, Saint Louis, MO, 2015-present Washington University in St.
    [Show full text]
  • LCROSS (Lunar Crater Observation and Sensing Satellite) Observation Campaign: Strategies, Implementation, and Lessons Learned
    Space Sci Rev (2012) 167:93–140 DOI 10.1007/s11214-011-9759-y LCROSS (Lunar Crater Observation and Sensing Satellite) Observation Campaign: Strategies, Implementation, and Lessons Learned Jennifer L. Heldmann · Anthony Colaprete · Diane H. Wooden · Robert F. Ackermann · David D. Acton · Peter R. Backus · Vanessa Bailey · Jesse G. Ball · William C. Barott · Samantha K. Blair · Marc W. Buie · Shawn Callahan · Nancy J. Chanover · Young-Jun Choi · Al Conrad · Dolores M. Coulson · Kirk B. Crawford · Russell DeHart · Imke de Pater · Michael Disanti · James R. Forster · Reiko Furusho · Tetsuharu Fuse · Tom Geballe · J. Duane Gibson · David Goldstein · Stephen A. Gregory · David J. Gutierrez · Ryan T. Hamilton · Taiga Hamura · David E. Harker · Gerry R. Harp · Junichi Haruyama · Morag Hastie · Yutaka Hayano · Phillip Hinz · Peng K. Hong · Steven P. James · Toshihiko Kadono · Hideyo Kawakita · Michael S. Kelley · Daryl L. Kim · Kosuke Kurosawa · Duk-Hang Lee · Michael Long · Paul G. Lucey · Keith Marach · Anthony C. Matulonis · Richard M. McDermid · Russet McMillan · Charles Miller · Hong-Kyu Moon · Ryosuke Nakamura · Hirotomo Noda · Natsuko Okamura · Lawrence Ong · Dallan Porter · Jeffery J. Puschell · John T. Rayner · J. Jedadiah Rembold · Katherine C. Roth · Richard J. Rudy · Ray W. Russell · Eileen V. Ryan · William H. Ryan · Tomohiko Sekiguchi · Yasuhito Sekine · Mark A. Skinner · Mitsuru Sôma · Andrew W. Stephens · Alex Storrs · Robert M. Suggs · Seiji Sugita · Eon-Chang Sung · Naruhisa Takatoh · Jill C. Tarter · Scott M. Taylor · Hiroshi Terada · Chadwick J. Trujillo · Vidhya Vaitheeswaran · Faith Vilas · Brian D. Walls · Jun-ihi Watanabe · William J. Welch · Charles E. Woodward · Hong-Suh Yim · Eliot F. Young Received: 9 October 2010 / Accepted: 8 February 2011 / Published online: 18 March 2011 © The Author(s) 2011.
    [Show full text]
  • Observer's Handbook 1949
    THE OBSERVER’S HANDBOOK FOR 1949 PUBLISHED BY The Royal Astronomical Society of Canada C A. CHANT, E d ito r F. S. HOGG, A ssistant Editor DAVID DUNLAP OBSERVATORY FORTY-FIRST YEAR OF PUBLICATION T O R O N T O 3 W i l l c o c k s S t r e e t P r i n t e d fo r t h e S o c ie t y B y t h e U n i v e r s i t y o f T o r o n t o P r e s s 1948 THE ROYAL ASTRONOMICAL SOCIETY OF CANADA The Society was incorporated in 1890 as The Astronomical and Physical Society of Toronto, assuming its present name in 1903. For many years the Toronto organization existed alone, but now the Society is national in extent, having active Centres in Montreal and Quebec, P.Q.; Ottawa, Toronto, Hamilton, London, Windsor, and Guelph, Ontario; Winnipeg, Man.; Saskatoon, Sask.; Edmonton, Alta.; Vancouver and Victoria, B.C. As well as over 1,100 members of these Canadian Centres, there are nearly 500 members not attached to any Centre, mostly resident in other nations, while some 300 additional institutions or persons are on the regular mailing list of our publica­ tions. The Society publishes a monthly “Journal" and a yearly “Ob­ server’s Handbook”. Single copies of the Journal are 50 cents, and of the Handbook, 40 cents. Membership is open to anyone interested in astronomy. Annual dues, $3.00; life membership, $40.00.
    [Show full text]
  • Exploring the Moon and Mars: Choices for the Nation
    Exploring the Moon and Mars: Choices for the Nation July 1991 OTA-ISC-502 NTIS order #PB91-220046 Recommended Citation: U.S. Congress, Office of Technology AssessmenT Exploring the Moon andMars: Choices for the Nation, OTA-ISC-502 (Washington, DC: U.S. Government Printing Office, July 1991). For sale by the Superintendent of Documents U.S. Government Printing 0ffice, Washington, DC 20402-9325 (order form can be found in the back of this report) Foreword The United States has always been at the forefront of exploring the planets. U.S. space- craft have now journeyed near every planet in the solar system but Pluto, the most distant one. Its probes have also landed on the Moon and Mars. Magellan, the most recent of U.S. interplan- etary voyagers, has been returning thought-provoking, high-resolution radar images of the sur- face of Venus. Scientifically, the prospect of returning to the Moon and exploring Mars in greater detail is an exciting one. President George Bush’s proposal to establish a permanent lunar base and to send human crews to explore Mars is ambitious and would engage both scientists and engi- neers in challenging tasks. Yet it also raises a host of issues regarding the appropriate mix of humans and machines, timeliness, and costs of space exploration. This Nation faces a sobering variety of economic, environmental, and technological challenges over the next few decades, all of which will make major demands on the Federal budget and other national assets. Within this context, Congress will have to decide the appropriate pace and direction for the President’s space exploration proposal.
    [Show full text]
  • Annual Meeting of the Lunar Exploration Analysis Group, P
    Program and Abstract Volume LPI Contribution No. 1685 Annual Meeting of the Lunar Exploration Analysis Group October 22–24, 2012 • Greenbelt, Maryland Sponsor National Aeronautics and Space Administration Conveners Charles Shearer University of New Mexico Jeffrey Plescia The John Hopkins Applied Physics Laboratory Clive Neal University of Notre Dame Stephen Mackwell Lunar and Planetary Institute Scientific Organizing Committee Charles Shearer, University of New Mexico Jeffrey Plescia, John Hopkins University Applied Physics Laboratory Clive Neal, University of Notre Dame Michael Wargo, NASA Headquarters Stephen Mackwell, Lunar and Planetary Institute Dallas Bienhoff, The Boeing Corporation Noah Petro, NASA Goddard Space Flight Center Kurt Sacksteder, NASA Glenn Research Center Greg Schmidt, NASA Lunar Science Institute/NASA Ames Research Center George Tahu, NASA Headquarters Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPI Contribution No. 1685 Compiled in 2012 by Meeting and Publication Services Lunar and Planetary Institute USRA Houston 3600 Bay Area Boulevard, Houston TX 77058-1113 This material is based upon work supported by NASA under Award No. NNX08AC28A. Any opinions, findings, and conclusions or recommendations expressed in this volume are those of the author(s) and do not necessarily reflect the views of the National Aeronautics and Space Administration. The Lunar and Planetary Institute is operated by the Universities Space Research Association under a cooperative agreement with the Science Mission Directorate of the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication.
    [Show full text]
  • Lunar Impact: Nasa's Lcross Mission
    Vol. 58, No. 10 – October 2010 Wednesday, October 20, 2010 – General Meeting Randall Museum . 199 Museum Way . San Francisco 7:00 pm Doors Open 7:30 pm Announcements 8:00 pm Speaker SFAA’s General Meetings take place on the 3 rd Wednesday of each month (except January) Dr. Jennifer Heldmann Space Science Division, NASA Ames Research Center LUNAR IMPACT: NASA'S LCROSS MISSION Join planetary research scientist Jennifer Heldmann from the Space Sciences Division of NASA Ames Research Center for a presentation on Lunar Impact: NASA’s LCROSS Mission. Heldmann will give an engaging summary of NASA’s current mission to explore the permanently shadowed regions of the lunar poles. With NASA’s Lunar Crater Observation and Sensing Satellite (LCROSS), research scientists are able to investigate and analyze data collected from these previously unexplored regions of the Moon. Dr. Heldmann served on the Science Team, Payload Team, and as the Observation Campaign Coordinator for NASA’s Lunar Crater Observation and Sensing Satellite (LCROSS) mission to study the permanently shadowed regions of the lunar poles. The science goals of LCROSS included investigating the presence or absence of water on the Moon as well as furthering our understanding of other species trapped in these regions. Dr. Heldmann received a Bachelor’s degree in Astrogeophysics from Colgate University, a Master’s degree in Space Studies and a minor in Geology from the University of North Dakota, and a doctorate degree in Planetary Science from the University of Colorado. Dr. Heldmann is currently a Research Scientist in the Division of Space Sciences and Astrobiology at NASA Ames Research Center in California.
    [Show full text]
  • Next Meeting Thursday, February 20Th the LADEE Mission by Rick Kang
    Io – February 2014 p.1 IO - February 2014 Issue 2014-02 PO Box 7264 Eugene Astronomical Society Annual Club Dues $25 Springfield, OR 97475 President: Sam Pitts - 688-7330 www.eugeneastro.org Secretary: Jerry Oltion - 343-4758 Additional Board members: EAS is a proud member of: Jacob Strandlien, Tony Dandurand, John Loper. Next Meeting Thursday, February 20th The LADEE Mission by Rick Kang The LADEE (pronounced “laddie” like lassie) Mission is one of a series of spacecraft launched over the past several years by NASA to further explore our Moon. LADEE stands for Lunar Atmosphere and Dust Environment Explorer, and is currently orbiting the Moon, beginning to collect data on the composi- tion of the weak lunar atmosphere, including a dust component. I’ll show a Powerpoint Presentation furnished by LADEE’s Education/Public Outreach officer, Dr. Brian Day, based at the Ames facility in California, that he made available to the Astronomical Society of the Pacific for one of their recent webcasts. The presentation covers data about lunar water and the lunar atmosphere. Much of Dr. Day’s interest is in the low density of the lunar atmosphere; technically this condition is called a surface boundary exo- sphere. This means that unlike much of Earth’s atmosphere, where air molecules are typically jostled by frequent collisions with one another, in an exosphere the low density effectively prevents collisions, and the air molecules/particles travel in ballistic trajectories. This condition exists from the very surface of the Moon upward, thus “surface boundary.” We suspect that many of the Solar System’s smaller objects (low gravity), like asteroids and moons, also have surface boundary exospheres.
    [Show full text]
  • Lunar Cartography: Progress in the 2000S and Prospects for the 2010S
    LUNAR CARTOGRAPHY: PROGRESS IN THE 2000S AND PROSPECTS FOR THE 2010S R. L. Kirk*, B. A. Archinal, L. R. Gaddis, M. R. Rosiek Astrogeology Science Center, U.S. Geological Survey, Flagstaff, Arizona 86001 USA (rkirk, barchinal, lgaddis, mrosiek)@usgs.gov Commission IV, WG IV/7 KEY WORDS: Extra-terrestrial, extraterrestrial, planetary, international, databases, cartography, geodesy, mapping ABSTRACT: The first decade of the 21st century has seen a new golden age of lunar exploration, with more missions than in any decade since the 1960’s and many more nations participating than at any time in the past. We have previously summarized the history of lunar mapping and described the lunar missions planned for the 2000’s (Kirk et al. 2006; 2007; 2008). Here we report on the outcome of lunar missions of this decade, the data gathered, the cartographic work accomplished and what remains to be done, and what is known about mission plans for the coming decade. Four missions of lunar orbital reconnaissance were launched and completed in the decade 2001–2010: SMART-1 (European Space Agency), SELENE/Kaguya (Japan), Chang’e-1 (China), and Chandrayaan-1 (India). In addition, the Lunar Reconnaissance Orbiter or LRO (USA) is in an extended mission, and Chang’e-2 (China) operated in lunar orbit in 2010-2011. All these spacecraft have incorporated cameras capable of providing basic data for lunar mapping, and all but SMART-1 carried laser altimeters. Chang’e-1, Chang’e-2, Kaguya, and Chandrayaan-1 carried pushbroom stereo cameras intended for stereo mapping at scales of 120, 10, 10, and 5 m/pixel respectively, and LRO is obtaining global stereo imaging at 100 m/pixel with its Wide Angle Camera (WAC) and hundreds of targeted stereo observations at 0.5 m/pixel with its Narrow Angle Camera (NAC).
    [Show full text]