Abstract Software-Oriented Memory-Management Design

Total Page:16

File Type:pdf, Size:1020Kb

Abstract Software-Oriented Memory-Management Design ABSTRACT SOFTWARE-ORIENTED MEMORY-MANAGEMENT DESIGN by Bruce Ledley Jacob Chair: Trevor N. Mudge Changing trends in technologies, notably cheaper and faster memory hierarchies, have made it worthwhile to revisit many hardware-oriented design decisions made in previous decades. Hardware-oriented designs, in which one uses special-purpose hardware to perform some dedi- cated function, are a response to a high cost of executing instructions out of memory; when caches are expensive, slow, and/or in scarce supply, it is a perfectly reasonable reaction to build hardware state machines that do not compete with user applications for cache space and do not rely on the performance of the caches. In contrast, when the caches are large enough to withstand competition between the application and operating system, the cost of executing operating system functions out of the memory subsystem decreases significantly, and software-oriented designs become viable. Software-oriented designs, in which one dispenses with special-purpose hardware and instead per- forms the same function entirely in software, offer dramatically increased flexibility over hardware state machines at a modest cost in performance. This dissertation explores a software-oriented design for a virtual memory management system. It shows not only that a software design is more flexible than hardware designs, but that a software scheme can perform as well as most hardware schemes. Eliminating dedicated special- purpose hardware from processor design saves chip area and reduces power consumption, thus lowering the overall system cost. Moreover, a flexible design aids in the portability of system soft- ware. A software-oriented design methodology should therefore benefit architects of many differ- ent microprocessor designs, from general-purpose processors in PC-class and workstation-class computers, to embedded processors where cost tends to have a higher priority than performance. The particular implementation described in the following chapters, which is centered around a vir- tual cache hierarchy managed by the operating system, is shown to be useful for real-time systems, shared-memory multiprocessors, and architecture emulation. SOFTWARE-ORIENTED MEMORY-MANAGEMENT DESIGN by Bruce Ledley Jacob A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Computer Science and Engineering) in the University of Michigan 1997 Doctoral Committee: Professor Trevor Mudge, Chair Adjunct Assistant Professor Charles Antonelli Professor Richard Brown Assistant Professor Peter Chen Associate Professor Farnam Jahanian This book is merely a personal narrative, and not a pretentious history or a philosophical dissertation. It is a record of several years of variegated vagabondizing, and its object is rather to help the resting reader while away an idle hour than afflict him with metaphysics, or goad him with science. Still, there is quite a good deal of information in the book. I regret this very much; but really it could not be helped: information appears to stew out of me naturally, like the precious ottar of roses out of the otter. Sometimes it has seemed that I would give worlds if I could retain my facts; but it cannot be. The more I caulk up the sources, and the tighter I get, the more I leak wisdom. Therefore, I can only claim indulgence at the hands of the reader, not justification. Excerpted from Prefatory, Roughing It — Mark Twain Bruce Ledley Jacob © 1997 All Rights Reserved For my Family (my family, my family-in-law, and most especially my truly adorable wife) ii ACKNOWLEDGMENTS Thanks to the members of my thesis committee, who have given me good advice and per- spective over the last few years in the classroom, at informal hallway meetings, and at various local restaurants. Thanks especially to my thesis chair, whose dogged question-asking indirectly unearthed much found herein. iii PREFACE In the fall of 1995 we began a project to build a 1GHz PowerPC processor in gallium ars- enide (GaAs); my duties included the design of the memory management system, both software and hardware. The problem to solve initially was threefold: 1. Reduce transistor count 2. Reduce complexity 3. Increase performance These could be restated as: 1. Make it small 2. Make it simple 3. Make it fast These goals may appear over-simplistic; I believe that they are not. What is not immedi- ately obvious is that they are in order of priority, and that when viewed as requirements and not simply good engineering advice, they define a clear path to achieving our performance goals. To explain their rationale: if we could not make our design small, we would almost certainly not be able to build it at all—GaAs does not allow one the luxury of a large design. If it could not be made simple, we would probably not be able to debug it. If it could not be made fast, we would lose face but the design would still work. Therefore, we considered it worthwhile to sacrifice a small amount of performance if doing so would make the design smaller or simpler. One maxim that can be drawn from these requirements is: whenever it is possible to imple- ment a given function in software it is worthwhile to do so, unless the performance cost of doing so is prohibitive. The thesis work presented in this dissertation is the result of investigating the valid- ity and implications of that maxim in the domain of memory management. The memory-management design that adheres to this maxim is a software-oriented one. A software-oriented design is one in which the designer eliminates a piece of special-purpose hard- ware that performs some dedicated function and instead performs the same function entirely in software. For instance, the translation lookaside buffer (TLB) is a specialized hardware structure iv that performs a dedicated function; it provides protection and address translation for physically indexed or physically tagged caches. It is not needed if one uses virtually addressed caches (except for the protection function, which can be ignored or supported by keeping protection information in each cache line). We eliminated the traditional TLB structure and replaced it with virtually indexed, virtually tagged caches that are managed by the operating system—in such a scheme, address translation is performed not in hardware but entirely in software by system-level software routines. A hardware-oriented PowerPC memory-management architecture has essentially three TLBs: the segment registers, the traditional page-oriented TLB, and the superpage-oriented BAT registers (Block-Address Translation). The segment registers are required to implement the Pow- erPC’s segmented address space. With a software-oriented design, we were able to eliminate the remaining two TLB structures at virtually no performance cost. Once our investigations showed the scheme to be viable (its performance is roughly that of a system with a TLB), it occurred to us that we had designed a system that could potentially com- pete in performance with any memory-management scheme, but which offered dramatically increased flexibility over traditional designs. Thus, this memory-management organization might be useful even if one is not building a processor in a resource-poor technology such as GaAs. This dissertation explores the possibilities for such a design, comparing the performance and physical requirements (e.g. chip area) of a hardware-oriented scheme against the requirements of a soft- ware-oriented one. We discuss the flexibility of a software-oriented design and, briefly, its benefits for multiprocessor systems, real-time systems, architecture emulation, and reconfigurable comput- ing. v TABLE OF CONTENTS DEDICATION ................................................................................................................................ ii ACKNOWLEDGMENTS ............................................................................................................. iii PREFACE ...................................................................................................................................... iv TABLE OF CONTENTS .............................................................................................................. vi LIST OF FIGURES ....................................................................................................................... xi LIST OF TABLES ........................................................................................................................ xv CHAPTER 1 INTRODUCTION: VIRTUAL MEMORY, THREE DECADES LATER ............................................................................................. 1 1.1 ...... Motivation ........................................................................................................... 1 1.2 ...... Background and Previous Work in Memory Management Design ..................... 5 1.3 ...... Dissertation Overview ......................................................................................... 7 1.4 ...... Scope of the Thesis .............................................................................................. 9 CHAPTER 2 A VIRTUAL MEMORY PRIMER ................................................................................. 10 2.1 ...... Introduction ....................................................................................................... 10 2.2 ...... What Is Virtual Memory? .................................................................................. 11 2.2.1 ... Three Models
Recommended publications
  • Using the GNU Compiler Collection (GCC)
    Using the GNU Compiler Collection (GCC) Using the GNU Compiler Collection by Richard M. Stallman and the GCC Developer Community Last updated 23 May 2004 for GCC 3.4.6 For GCC Version 3.4.6 Published by: GNU Press Website: www.gnupress.org a division of the General: [email protected] Free Software Foundation Orders: [email protected] 59 Temple Place Suite 330 Tel 617-542-5942 Boston, MA 02111-1307 USA Fax 617-542-2652 Last printed October 2003 for GCC 3.3.1. Printed copies are available for $45 each. Copyright c 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with the Invariant Sections being \GNU General Public License" and \Funding Free Software", the Front-Cover texts being (a) (see below), and with the Back-Cover Texts being (b) (see below). A copy of the license is included in the section entitled \GNU Free Documentation License". (a) The FSF's Front-Cover Text is: A GNU Manual (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU software. Copies published by the Free Software Foundation raise funds for GNU development. i Short Contents Introduction ...................................... 1 1 Programming Languages Supported by GCC ............ 3 2 Language Standards Supported by GCC ............... 5 3 GCC Command Options .........................
    [Show full text]
  • 6 Preparing to Port Applications 6.1 Ada
    Porting Applications from HP OpenVMS Alpha to HP OpenVMS Industry Standard 64 for Integrity Servers Order Number: BA442–90001 January 2005 This manual provides a framework for application developers who are migrating applications from HP OpenVMS Alpha to HP OpenVMS Industry Standard 64 for Integrity Servers. Revision/Update Information: This is a new manual. Software Version: OpenVMS I64 Version 8.2 OpenVMS Alpha Version 8.2 Hewlett-Packard Company Palo Alto, California © Copyright 2005 Hewlett-Packard Development Company, L.P. Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor’s standard commercial license. The information contained herein is subject to change without notice. The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein. Intel, Itanium, and Xeon are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. Java is a U.S. trademark of Sun Microsystems, Inc. UNIX is a registered trademark of The Open Group. Printed in the US ZK6673 This document was prepared using DECdocument, Version 3.3-1b. Contents Preface ............................................................ ix 1 Introduction 1.1 OpenVMS Industry Standard 64 for Integrity Servers . ............... 1–1 1.2 Overview of the Porting Process .
    [Show full text]
  • Digital Semiconductor Alpha 21064 and Alpha 21064A Microprocessors Hardware Reference Manual
    Digital Semiconductor Alpha 21064 and Alpha 21064A Microprocessors Hardware Reference Manual Order Number: EC–Q9ZUC–TE Abstract: This document contains information about the following Alpha microprocessors: 21064-150, 21064-166, 21064-200, 21064A-200, 21064A-233, 21064A-275, 21064A-275-PC, and 21064A-300. Revision/Update Information: This manual supersedes the Alpha 21064 and Alpha 21064A Microprocessors Hard- ware Reference Manual (EC–Q9ZUB–TE). Digital Equipment Corporation Maynard, Massachusetts June 1996 While Digital believes the information included in this publication is correct as of the date of publication, it is subject to change without notice. Digital Equipment Corporation makes no representations that the use of its products in the manner described in this publication will not infringe on existing or future patent rights, nor do the descriptions contained in this publication imply the granting of licenses to make, use, or sell equipment or software in accordance with the description. © Digital Equipment Corporation 1996. All rights reserved. Printed in U.S.A. AlphaGeneration, Digital, Digital Semiconductor, OpenVMS, VAX, VAX DOCUMENT, the AlphaGeneration design mark, and the DIGITAL logo are trademarks of Digital Equipment Corporation. Digital Semiconductor is a Digital Equipment Corporation business. GRAFOIL is a registered trademark of Union Carbide Corporation. Windows NT is a trademark of Microsoft Corporation. All other trademarks and registered trademarks are the property of their respective owners. This document was prepared using VAX DOCUMENT Version 2.1. Contents Preface ..................................................... xix 1 Introduction to the 21064/21064A 1.1 Introduction ......................................... 1–1 1.2 The Architecture . ................................... 1–1 1.3 Chip Features ....................................... 1–2 1.4 Backward Compatibility ...............................
    [Show full text]
  • Alpha 21064A Microprocessors Data Sheet
    Alpha 21064A Microprocessors Data Sheet Order Number: EC–QFGKC–TE This document contains information about the following Alpha micro- processors: 21064A–200, 21064A–233, 21064A–275, 21064A–275–PC, and 21064A–300. Revision/Update Information: This document supersedes the Alpha 21064A–233, –275 Microprocessor Data Sheet, EC–QFGKB–TE. Digital Equipment Corporation Maynard, Massachusetts January 1996 While Digital believes the information included in this publication is correct as of the date of publication, it is subject to change without notice. Digital Equipment Corporation makes no representations that the use of its products in the manner described in this publication will not infringe on existing or future patent rights, nor do the descriptions contained in this publication imply the granting of licenses to make, use, or sell equipment or software in accordance with the description. © Digital Equipment Corporation 1995, 1996. All rights reserved. Printed in U.S.A. AlphaGeneration, Digital, Digital Semiconductor, OpenVMS, VAX, VAX DOCUMENT, the AlphaGeneration design mark, and the DIGITAL logo are trademarks of Digital Equipment Corporation. Digital Semiconductor is a Digital Equipment Corporation business. GRAFOIL is a registered trademark of Union Carbide Corporation. Windows NT is a trademark of Microsoft Corporation. All other trademarks and registered trademarks are the property of their respective owners. This document was prepared using VAX DOCUMENT Version 2.1. Contents 1 Overview ........................................... 1 2 Signal Names and Functions . ........................... 6 3 Instruction Set ....................................... 17 3.1 Instruction Summary ............................... 17 3.2 IEEE Floating-Point Instructions . ................... 23 3.3 21064A IEEE Floating-Point Conformance .............. 25 3.4 VAX Floating-Point Instructions . ................... 28 3.5 Required PALcode Function Codes .
    [Show full text]
  • Design of the RISC-V Instruction Set Architecture
    Design of the RISC-V Instruction Set Architecture Andrew Waterman Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2016-1 http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-1.html January 3, 2016 Copyright © 2016, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Design of the RISC-V Instruction Set Architecture by Andrew Shell Waterman A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science in the Graduate Division of the University of California, Berkeley Committee in charge: Professor David Patterson, Chair Professor Krste Asanovi´c Associate Professor Per-Olof Persson Spring 2016 Design of the RISC-V Instruction Set Architecture Copyright 2016 by Andrew Shell Waterman 1 Abstract Design of the RISC-V Instruction Set Architecture by Andrew Shell Waterman Doctor of Philosophy in Computer Science University of California, Berkeley Professor David Patterson, Chair The hardware-software interface, embodied in the instruction set architecture (ISA), is arguably the most important interface in a computer system. Yet, in contrast to nearly all other interfaces in a modern computer system, all commercially popular ISAs are proprietary.
    [Show full text]
  • Computer Architectures an Overview
    Computer Architectures An Overview PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 25 Feb 2012 22:35:32 UTC Contents Articles Microarchitecture 1 x86 7 PowerPC 23 IBM POWER 33 MIPS architecture 39 SPARC 57 ARM architecture 65 DEC Alpha 80 AlphaStation 92 AlphaServer 95 Very long instruction word 103 Instruction-level parallelism 107 Explicitly parallel instruction computing 108 References Article Sources and Contributors 111 Image Sources, Licenses and Contributors 113 Article Licenses License 114 Microarchitecture 1 Microarchitecture In computer engineering, microarchitecture (sometimes abbreviated to µarch or uarch), also called computer organization, is the way a given instruction set architecture (ISA) is implemented on a processor. A given ISA may be implemented with different microarchitectures.[1] Implementations might vary due to different goals of a given design or due to shifts in technology.[2] Computer architecture is the combination of microarchitecture and instruction set design. Relation to instruction set architecture The ISA is roughly the same as the programming model of a processor as seen by an assembly language programmer or compiler writer. The ISA includes the execution model, processor registers, address and data formats among other things. The Intel Core microarchitecture microarchitecture includes the constituent parts of the processor and how these interconnect and interoperate to implement the ISA. The microarchitecture of a machine is usually represented as (more or less detailed) diagrams that describe the interconnections of the various microarchitectural elements of the machine, which may be everything from single gates and registers, to complete arithmetic logic units (ALU)s and even larger elements.
    [Show full text]
  • Alpha AXP Firmware Porting Guide Revision/Update Information: Version 1.0
    Alpha AXP Firmware Porting Guide Revision/Update Information: Version 1.0 Order Number: EK-AXFRM-PG. A01 November, 1994 Digital Equipment Corporation makes no representations that the use of its products in the manner described in this publication will not infringe on existing or future patent rights, nor do the descriptions contained in this publication imply the granting of licenses to make, use, or sell equipment or software in accordance with the description. Reproduction or duplication of this courseware in any form, in whole or in part, is prohibited without the prior written permission of Digital Equipment Corporation. Possession, use, or copying of the software described in this publication is authorized only pursuant to a valid written license from Digital or an authorized sublicensor. © Digital Equipment Corporation 1994. All Rights Reserved. Printed in U.S.A. The following are trademarks of Digital Equipment Corporation: Alpha AXP, AXP, Bookreader, DEC, DECchip, DEC OSF/1, DECwindows, Digital, OpenVMS, VAX, VMS, VMScluster, the DIGITAL logo and the AXP mark. MIPS is a trademark of MIPS Computer Systems, Inc. NCR is a registered trademark of the NCR Corporation. NetWare is a registered trademark of Novell, Inc. OSF/1 is a registered trademark of the Open Software Foundation, Inc. UNIX is a registered trademark in the United States and other countries licensed exclusively through X/Open Company Ltd. Windows NT is a registered trademark of the Microsoft Corporation. All other trademarks and registered trademarks are the property of their respective holders. This document was prepared using VAX DOCUMENT Version 2.1. Contents Preface ............................................................ xiii 1 Porting Strategy Overview .......................................................
    [Show full text]
  • HP Openvms MACRO Compiler Porting and User's Guide
    HP OpenVMS MACRO Compiler Porting and User’s Guide Order Number: AA–PV64E–TE January 2005 This manual describes how to port Macro-32 source code written for the VAX MACRO compiler to the MACRO compiler for OpenVMS running on either an HP OpenVMS Industry Standard 64 or HP OpenVMS Alpha system. It also describes how to use the compiler. Revision/Update Information: This revised manual supersedes the OpenVMS MACRO-32 Porting and User’s Guide for OpenVMS Version 7.3. Software Version: OpenVMS I64 Version 8.2 OpenVMS Alpha Version 8.2 Hewlett-Packard Company Palo Alto, California © Copyright 2005 Hewlett-Packard Development Company, L.P. Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor’s standard commercial license. The information contained herein is subject to change without notice. The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein. Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. Printed in the US ZK5601 The HP OpenVMS documentation set is available on CD-ROM. This document was prepared using DECdocument, Version 3.3-1b. Contents Preface ............................................................ ix Part I Concepts and Methodology 1 Preparing to Port Macro-32 Code 1.1 Features of the MACRO Compiler ..............................
    [Show full text]
  • Alpha AXP Architecture by Richard L
    Alpha AXP Architecture By Richard L. Sites 1 Abstract The Alpha AXP 64-bit computer architecture is designed for high performance and longevity. Because of the focus on multiple instruction issue, the architecture does not contain facilities such as branch delay slots, byte writes, and precise arithmetic exceptions. Because of the focus on multiple processors, the architecture does contain a careful shared- memory model, atomic-update primitive instructions, and relaxed read/write ordering. The first implementation of the Alpha AXP architecture is the world's fastest single-chip microprocessor. The DECchip 21064 runs multiple operating systems and runs native-compiled programs that were translated from the VAX and MIPS architectures. Thus in all these cases the Romans did what all wise princes ought to do; namely, not only to look to all present troubles, but also to those in the future, against which they provided with the utmost prudence. - Niccolo Machiavelli, The Prince 2 Historical Context The Alpha AXP architecture grew out of a small task force chartered in 1988 to explore ways to preserve the VAX VMS customer base through the 1990s. This group eventually came to the conclusion that a new reduced instruction set computer (RISC) architecture would be needed before the turn of the century, primarily because 32-bit architectures will run out of address bits. Once we made the decision to pursue a new architecture, we shaped it to do much more than just preserve the VMS customer base. This paper discusses the architecture from a number of points of view. It begins by making the distinction between architecture and implementation.
    [Show full text]
  • SRM Console Reference Version 1.0
    hp AlphaServer ES47/ES80/GS1280 Server Management SRM Console Reference Version 1.0 This document provides a reference for the SRM console commands. 1 December 2002 © 2002 Hewlett-Packard Company. HP shall not be liable for technical or editorial errors or omissions contained herein. The information in this document is provided “as is” without warranty of any kind and is subject to change without notice. The warranties for HP products are set forth in the express limited warranty statements accompanying such products. Nothing herein should be construed as constituting an additional warranty. 2 Table Of Contents SRM Command Description Conventions ............................................................................... 5 Special Characters for the SRM Console ................................................................................. 6 SRM Command Notation Formats........................................................................................... 7 Device Naming Conventions ................................................................................................... 7 Redirecting Output.................................................................................................................. 8 I/O Pipes................................................................................................................................. 8 Background Operator .............................................................................................................. 8 Comment (#)..........................................................................................................................
    [Show full text]
  • Digital Semiconductor Alpha 21164 Microprocessor Product Brief
    Digital Semiconductor Alpha 21164 Microprocessor Product Brief March 1995 Description The Alpha 21164 microprocessor is a high-performance implementation of Digi- tal’s Alpha architecture designed for application servers and high-performance clients. It has a superscalar design capable of issuing four instructions every clock cycle. The integration of an instruction cache, data cache, and second-level cache offers unrivaled microprocessor performance. The 21164 uses a high-performance interface to access main memory, data buses, and an optional board-level cache. Features • Fully pipelined 64-bit advanced RISC • Onchip, 96KB, 3-way, set-associative (reduced instruction set computing) write-back L2 unified instruction and architecture supports multiple operat- data cache ing systems, including: • Onchip write buffer with six fully - Microsoft Windows NT associative 32-byte entries - Digital UNIX • High-performance interface - OpenVMS - 128-bit memory data path • Best-in-class performance - Selectable error correction code - 266 through 300 MHz operation (ECC) or parity protection on data - 290 through 330 SPECint (est.) - 40-bit addressing - 440 through 500 SPECfp (est.) - Programmable interface timing - Superscalar (4-way instruction issue) - Two outstanding load instructions - Peak instruction execution rate of - Control for optional offchip L3 over 1200 million instructions per cache second - Synchronous/asynchronous RAM - 0.50 µm CMOS technology support • Pipelined (9-stage) floating-point unit - Programmable cache block size - IEEE
    [Show full text]
  • Alphaserver DS25 Console Firmware Release Notes V7.3
    Revised: April 17, 2008 AlphaServer DS25 Console Firmware Release Notes V7.3 This document contains firmware enhancements and update procedures. Start with Read Me First Hewlett-Packard Company The information in this publication is subject to change without notice. Copyright © 2005-2008 Hewlett-Packard Company HP shall not be liable for technical or editorial errors or omissions contained herein, nor for incidental or consequential damages resulting from furnishing, performance, or use of this material. This is provided “as is” and HP disclaims any warranties, express, implied or statutory and expressly disclaims the implied warranties or merchantability, fitness for particular purpose, good title and against infringement. COMPAQ, the Compaq logo, DEC, the DEC logo, AlphaStation, AlphaServer, and VMS Registered in the U.S. Patent and Trademark Office. OpenVMS, Tru64 are trade- marks of Compaq Information Technologies Group, L.P. in the United States and/or other countries. UNIX is a trademark of The Open Group in the United States and/or other countries. All other product names mentioned herein may be trademarks or regis- tered trademarks of their respective companies. Compaq Computer Corporation is a wholly owned subsidiary of the Hewlett-Packard Company. The information in this publication is subject to change without notice. 2 AlphaServer DS25 Console Firmware Release Notes V7.3 Scope....................................................................................................................4 Golden Rules ......................................................................................................4
    [Show full text]