Digital Semiconductor Alpha 21164 Microprocessor Product Brief

Total Page:16

File Type:pdf, Size:1020Kb

Digital Semiconductor Alpha 21164 Microprocessor Product Brief Digital Semiconductor Alpha 21164 Microprocessor Product Brief March 1995 Description The Alpha 21164 microprocessor is a high-performance implementation of Digi- tal’s Alpha architecture designed for application servers and high-performance clients. It has a superscalar design capable of issuing four instructions every clock cycle. The integration of an instruction cache, data cache, and second-level cache offers unrivaled microprocessor performance. The 21164 uses a high-performance interface to access main memory, data buses, and an optional board-level cache. Features • Fully pipelined 64-bit advanced RISC • Onchip, 96KB, 3-way, set-associative (reduced instruction set computing) write-back L2 unified instruction and architecture supports multiple operat- data cache ing systems, including: • Onchip write buffer with six fully - Microsoft Windows NT associative 32-byte entries - Digital UNIX • High-performance interface - OpenVMS - 128-bit memory data path • Best-in-class performance - Selectable error correction code - 266 through 300 MHz operation (ECC) or parity protection on data - 290 through 330 SPECint (est.) - 40-bit addressing - 440 through 500 SPECfp (est.) - Programmable interface timing - Superscalar (4-way instruction issue) - Two outstanding load instructions - Peak instruction execution rate of - Control for optional offchip L3 over 1200 million instructions per cache second - Synchronous/asynchronous RAM - 0.50 µm CMOS technology support • Pipelined (9-stage) floating-point unit - Programmable cache block size - IEEE single- and double-precision - Programmable cache speed, one- operation third to one-fifteenth of clock speed - VAX F_floating and G_floating data • Programmable performance counters types to measure CPU and system perform- - Longword and quadword data types ance • Pipelined (7-stage) integer unit • Serial ROM interface • Memory-management unit - Loads instruction cache after reset - - Demand-paged memory manage- Allows software-controlled serial ment port after initialization • - 48-entry, fully associative instruction Chip- and module-level test supports translation buffer JTAG (IEEE 1149.1) - 64-entry, fully associative data • 3.3-V I/O supply voltage with chip translation buffer interface directly to 5-V logic - Each translation buffer entry able to • 499-pin ceramic interstitial pin grid ar- map 1, 8, 64, or 512 8KB pages; ray (IPGA) package each entry supports all four granular- ity hint bit combinations • Privileged architecture library code (PALcode) supports • Onchip, 8KB, direct-mapped, write- TM through L1 data cache - Optimization for multiple operating systems • Onchip, 8KB, direct-mapped L1 instruction cache - Flexible memory-management implementations - Multi-instruction atomic sequences Alpha 21164 Microarchitecture The 21164 microprocessor consists Memory-Management Unit —The Data Cache —The data cache is a of five independent functional units: memory-management unit processes dual-ported, 8KB, write-through, the instruction fetch, decode, and all load and store instructions; two read-allocate, direct-mapped, physi- branch unit; the integer execution load instructions can be executed in cally addressed cache with 32-byte unit; the memory-management unit; parallel. (The data cache is dual blocks. the cache control and bus interface ported to support this.) Up to 21 unit; and the floating-point unit. load instructions can be in progress L2 Cache —The onchip L2 cache is There are three onchip caches: the in- at any time. The memory-manage- a 96KB, 3-way, set-associative, struction cache, the data cache, and ment unit also manages the data physical, write-back, write-allocate, the second-level cache. cache and logic that serializes and data and instruction cache. The cache merges load instructions that miss is fully pipelined and supports both Pipeline Organization —The mi- the data cache. 32-byte and 64-byte blocks. croprocessor uses a 7-stage pipeline for integer operate and memory ref- Cache Control and Bus Interface Optional Offchip L3 Cache —The erence instructions. It uses a 9-stage Unit —The cache control and bus 21164 supports and fully manages a pipeline for floating-point operate in- interface unit processes all accesses direct-mapped external backup cache structions. The instruction unit main- sent by the memory-management (optional). This cache is a physical, tains state for all pipeline stages to unit and implements all memory- write-back, write-allocate cache with track outstanding register write trans- related external interface functions. 32-byte or 64-byte blocks. The L3 actions. The cache control and bus interface cache controller supports synchro- unit also manages all cache coher- nous and asynchronous cache RAMs. Instruction Fetch, Decode, and ence protocol functions. It controls Wave pipelining can be used with Branch Unit —The instruction unit the L2 cache and the optional off- asynchronous RAMs in the 64-byte fetches, decodes, and issues instruc- chip L3 cache. block mode. It is a mixed data and tions to the integer unit, memory- instruction cache. The user can select management unit, and floating-point Floating-Point Unit —The floating- an L3 cache size of 1, 2, 4, 8, 16, 32, unit. It manages the pipelines, the point unit contains a floating-point or 64MB. program counter (PC), the instruction multiply pipeline and a floating- cache, prefetching, and instruction point add pipeline. (Divides are as- Big Endian Support —The 21164 stream memory management. The in- sociated with the add pipeline but provides limited support for big struction unit can decode up to four are not pipelined themselves.) IEEE endian data formats. One mode in- instructions in parallel and check that S_ and T_floating data types are verts physical bit <2> for all long- required resources are available for supported with all rounding modes. word references. Another mode com- each. VAX F_floating and G_ floating plements operand Rbr <2:0> on data types are fully supported. VAX EXTxy, INSxy and MSKxy instruc- Integer Execution Unit —The inte- D_floating data types are partially tions. ger execution unit contains two supported. 64-bit integer pipelines. Results of Virtual Address Space —The vir- most integer operations are available Instruction Cache —The instruc- tual address is a 64-bit unsigned inte- for use by subsequent instructions. tion cache is an 8KB virtual direct- ger that specifies a byte location in The integer unit also partially exe- mapped cache with 32-byte blocks. the virtual address space. The micro- cutes all memory instructions by cal- processor implements a 43-bit subset culating the effective address. of the virtual address space and sup- ports a 40-bit, 1-terabyte physical ad- dress space. Thermal Management The 21164 dissipates approximately 50 watts. Conventional forced air cooling methods are sufficient to remove heat and maintain the highest levels of reliabil- ity. The user may also define an application-specific heat sink. Digital specifies two separate heat sinks for this device. Both are specified to 1000 LFM. One heat sink has mounting holes in line with the cooling fins and is approximately 6.6 × 6.6 × 3.3 cm (2.6 × 2.6 × 1.3 in). The other heat sink has mounting holes rotated 90 degrees from the cooling fins and measures approximately 7.6 × 7.6 × 4.6 cm (3 × 3 × 1.8 in). Alpha Architecture Summary As implemented in the 21164, the Al- Load/Store Instructions — These in- PALcode pha architecture supports: structions can move either 32-bit or • A fixed 32-bit instruction size 64-bit quantities. Eight-bit and PALcode is a privileged layer of soft- 16-bit load/store operations are sup- ware that automatically performs such • Separate integer and floating-point ported through an extensive set of in- functions as the dispatching and serv- registers register byte manipulations. The I/O icing of interrupts, exceptions, task - Thirty-two 64-bit integer registers bus directly supports byte and word switching, and additional privileged - Thirty-two 64-bit floating-point reg- operations in hardware. and unprivileged user instructions as isters specified by operating systems using Operate Instructions — Integer op- the CALL_PAL • 32-bit (longword) and 64-bit erate instructions manipulate full instruction. (quadword) integer data types 64-bit values and include a full com- • 32-bit and 64-bit IEEE and VAX plement of arithmetic, compare, logi- PALcode is the only method of per- floating-point data types cal, and shift instructions. There are forming some operations on the hard- also three 32-bit integer operates: add, ware. In addition to the instructions • Memory accesses, using a 64-bit vir- subtract, and multiply. defined by the Alpha architecture, a tual byte address set of implementation-specific instruc- • In addition to conventional RISC op- tions is provided. Privileged architecture library code eration, the instruction set provides (PALcode) scaled add/subtract for quick subscript PALcode runs in an environment with calculation; 128-bit multiply for multi- privileges enabled, instruction stream Instruction Set precision arithmetic and division by a mapping disabled, and interrupts dis- constant; conditional moves for avoid- abled. Disabling memory mapping al- All instructions are 32 bits long and ing branches; and an extensive set of lows PALcode to support functions use one of four different instruction in-register byte manipulation instruc- such as TB-miss routines. Disabling formats. Each format uses a 6-bit tions. interrupts allows the instruction opcode
Recommended publications
  • Using the GNU Compiler Collection (GCC)
    Using the GNU Compiler Collection (GCC) Using the GNU Compiler Collection by Richard M. Stallman and the GCC Developer Community Last updated 23 May 2004 for GCC 3.4.6 For GCC Version 3.4.6 Published by: GNU Press Website: www.gnupress.org a division of the General: [email protected] Free Software Foundation Orders: [email protected] 59 Temple Place Suite 330 Tel 617-542-5942 Boston, MA 02111-1307 USA Fax 617-542-2652 Last printed October 2003 for GCC 3.3.1. Printed copies are available for $45 each. Copyright c 1988, 1989, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with the Invariant Sections being \GNU General Public License" and \Funding Free Software", the Front-Cover texts being (a) (see below), and with the Back-Cover Texts being (b) (see below). A copy of the license is included in the section entitled \GNU Free Documentation License". (a) The FSF's Front-Cover Text is: A GNU Manual (b) The FSF's Back-Cover Text is: You have freedom to copy and modify this GNU Manual, like GNU software. Copies published by the Free Software Foundation raise funds for GNU development. i Short Contents Introduction ...................................... 1 1 Programming Languages Supported by GCC ............ 3 2 Language Standards Supported by GCC ............... 5 3 GCC Command Options .........................
    [Show full text]
  • The Design and Verification of the Alphastation 600 5-Series Workstation by John H
    The Design and Verification of the AlphaStation 600 5-series Workstation by John H. Zurawski, John E. Murray, and Paul J. Lemmon ABSTRACT The AlphaStation 600 5-series workstation is a high-performance, uniprocessor design based on the Alpha 21164 microprocessor and on the PCI bus. Six CMOS ASICs provide high-bandwidth, low-latency interconnects between the CPU, the main memory, and the I/O subsystem. The verification effort used directed, pseudorandom testing on a VERILOG software model. A hardware-based verification technique provided a test throughput that resulted in a significant improvement over software tests. This technique currently involves the use of graphics cards to emulate generic DMA devices. A PCI hardware demon is under development to further enhance the capability of the hardware-based verification. INTRODUCTION The high-performance AlphaStation 600 5-series workstation is based on the fastest Alpha microprocessor to date -- the Alpha 21164.[1] The I/O subsystem uses the 64-bit version of the Peripheral Component Interconnect (PCI) and the Extended Industry Standard Architecture (EISA) bus. The AlphaStation 600 supports three operating systems: Digital UNIX (formerly DEC OSF/1), OpenVMS, and Microsoft's Windows NT. This workstation series uses the DECchip 21171 chip set designed and built by Digital. These chips provide high-bandwidth, low-latency interconnects between the CPU, the main memory, and the PCI bus. This paper describes the architecture and features of the AlphaStation 600 5-series workstation and the DECchip 21171 chip set. The system overview is first presented, followed by a detailed discussion of the chip set. The paper then describes the cache and memory designs, detailing how the memory design evolved from the workstation's requirements.
    [Show full text]
  • 6 Preparing to Port Applications 6.1 Ada
    Porting Applications from HP OpenVMS Alpha to HP OpenVMS Industry Standard 64 for Integrity Servers Order Number: BA442–90001 January 2005 This manual provides a framework for application developers who are migrating applications from HP OpenVMS Alpha to HP OpenVMS Industry Standard 64 for Integrity Servers. Revision/Update Information: This is a new manual. Software Version: OpenVMS I64 Version 8.2 OpenVMS Alpha Version 8.2 Hewlett-Packard Company Palo Alto, California © Copyright 2005 Hewlett-Packard Development Company, L.P. Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor’s standard commercial license. The information contained herein is subject to change without notice. The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein. Intel, Itanium, and Xeon are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. Java is a U.S. trademark of Sun Microsystems, Inc. UNIX is a registered trademark of The Open Group. Printed in the US ZK6673 This document was prepared using DECdocument, Version 3.3-1b. Contents Preface ............................................................ ix 1 Introduction 1.1 OpenVMS Industry Standard 64 for Integrity Servers . ............... 1–1 1.2 Overview of the Porting Process .
    [Show full text]
  • Computer Organization EECC 550 • Introduction: Modern Computer Design Levels, Components, Technology Trends, Register Transfer Week 1 Notation (RTN)
    Computer Organization EECC 550 • Introduction: Modern Computer Design Levels, Components, Technology Trends, Register Transfer Week 1 Notation (RTN). [Chapters 1, 2] • Instruction Set Architecture (ISA) Characteristics and Classifications: CISC Vs. RISC. [Chapter 2] Week 2 • MIPS: An Example RISC ISA. Syntax, Instruction Formats, Addressing Modes, Encoding & Examples. [Chapter 2] • Central Processor Unit (CPU) & Computer System Performance Measures. [Chapter 4] Week 3 • CPU Organization: Datapath & Control Unit Design. [Chapter 5] Week 4 – MIPS Single Cycle Datapath & Control Unit Design. – MIPS Multicycle Datapath and Finite State Machine Control Unit Design. Week 5 • Microprogrammed Control Unit Design. [Chapter 5] – Microprogramming Project Week 6 • Midterm Review and Midterm Exam Week 7 • CPU Pipelining. [Chapter 6] • The Memory Hierarchy: Cache Design & Performance. [Chapter 7] Week 8 • The Memory Hierarchy: Main & Virtual Memory. [Chapter 7] Week 9 • Input/Output Organization & System Performance Evaluation. [Chapter 8] Week 10 • Computer Arithmetic & ALU Design. [Chapter 3] If time permits. Week 11 • Final Exam. EECC550 - Shaaban #1 Lec # 1 Winter 2005 11-29-2005 Computing System History/Trends + Instruction Set Architecture (ISA) Fundamentals • Computing Element Choices: – Computing Element Programmability – Spatial vs. Temporal Computing – Main Processor Types/Applications • General Purpose Processor Generations • The Von Neumann Computer Model • CPU Organization (Design) • Recent Trends in Computer Design/performance • Hierarchy
    [Show full text]
  • Digital Semiconductor Alpha 21064 and Alpha 21064A Microprocessors Hardware Reference Manual
    Digital Semiconductor Alpha 21064 and Alpha 21064A Microprocessors Hardware Reference Manual Order Number: EC–Q9ZUC–TE Abstract: This document contains information about the following Alpha microprocessors: 21064-150, 21064-166, 21064-200, 21064A-200, 21064A-233, 21064A-275, 21064A-275-PC, and 21064A-300. Revision/Update Information: This manual supersedes the Alpha 21064 and Alpha 21064A Microprocessors Hard- ware Reference Manual (EC–Q9ZUB–TE). Digital Equipment Corporation Maynard, Massachusetts June 1996 While Digital believes the information included in this publication is correct as of the date of publication, it is subject to change without notice. Digital Equipment Corporation makes no representations that the use of its products in the manner described in this publication will not infringe on existing or future patent rights, nor do the descriptions contained in this publication imply the granting of licenses to make, use, or sell equipment or software in accordance with the description. © Digital Equipment Corporation 1996. All rights reserved. Printed in U.S.A. AlphaGeneration, Digital, Digital Semiconductor, OpenVMS, VAX, VAX DOCUMENT, the AlphaGeneration design mark, and the DIGITAL logo are trademarks of Digital Equipment Corporation. Digital Semiconductor is a Digital Equipment Corporation business. GRAFOIL is a registered trademark of Union Carbide Corporation. Windows NT is a trademark of Microsoft Corporation. All other trademarks and registered trademarks are the property of their respective owners. This document was prepared using VAX DOCUMENT Version 2.1. Contents Preface ..................................................... xix 1 Introduction to the 21064/21064A 1.1 Introduction ......................................... 1–1 1.2 The Architecture . ................................... 1–1 1.3 Chip Features ....................................... 1–2 1.4 Backward Compatibility ...............................
    [Show full text]
  • Alpha 21064A Microprocessors Data Sheet
    Alpha 21064A Microprocessors Data Sheet Order Number: EC–QFGKC–TE This document contains information about the following Alpha micro- processors: 21064A–200, 21064A–233, 21064A–275, 21064A–275–PC, and 21064A–300. Revision/Update Information: This document supersedes the Alpha 21064A–233, –275 Microprocessor Data Sheet, EC–QFGKB–TE. Digital Equipment Corporation Maynard, Massachusetts January 1996 While Digital believes the information included in this publication is correct as of the date of publication, it is subject to change without notice. Digital Equipment Corporation makes no representations that the use of its products in the manner described in this publication will not infringe on existing or future patent rights, nor do the descriptions contained in this publication imply the granting of licenses to make, use, or sell equipment or software in accordance with the description. © Digital Equipment Corporation 1995, 1996. All rights reserved. Printed in U.S.A. AlphaGeneration, Digital, Digital Semiconductor, OpenVMS, VAX, VAX DOCUMENT, the AlphaGeneration design mark, and the DIGITAL logo are trademarks of Digital Equipment Corporation. Digital Semiconductor is a Digital Equipment Corporation business. GRAFOIL is a registered trademark of Union Carbide Corporation. Windows NT is a trademark of Microsoft Corporation. All other trademarks and registered trademarks are the property of their respective owners. This document was prepared using VAX DOCUMENT Version 2.1. Contents 1 Overview ........................................... 1 2 Signal Names and Functions . ........................... 6 3 Instruction Set ....................................... 17 3.1 Instruction Summary ............................... 17 3.2 IEEE Floating-Point Instructions . ................... 23 3.3 21064A IEEE Floating-Point Conformance .............. 25 3.4 VAX Floating-Point Instructions . ................... 28 3.5 Required PALcode Function Codes .
    [Show full text]
  • Design of the RISC-V Instruction Set Architecture
    Design of the RISC-V Instruction Set Architecture Andrew Waterman Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No. UCB/EECS-2016-1 http://www.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-1.html January 3, 2016 Copyright © 2016, by the author(s). All rights reserved. Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission. Design of the RISC-V Instruction Set Architecture by Andrew Shell Waterman A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Computer Science in the Graduate Division of the University of California, Berkeley Committee in charge: Professor David Patterson, Chair Professor Krste Asanovi´c Associate Professor Per-Olof Persson Spring 2016 Design of the RISC-V Instruction Set Architecture Copyright 2016 by Andrew Shell Waterman 1 Abstract Design of the RISC-V Instruction Set Architecture by Andrew Shell Waterman Doctor of Philosophy in Computer Science University of California, Berkeley Professor David Patterson, Chair The hardware-software interface, embodied in the instruction set architecture (ISA), is arguably the most important interface in a computer system. Yet, in contrast to nearly all other interfaces in a modern computer system, all commercially popular ISAs are proprietary.
    [Show full text]
  • Computer Architectures an Overview
    Computer Architectures An Overview PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Sat, 25 Feb 2012 22:35:32 UTC Contents Articles Microarchitecture 1 x86 7 PowerPC 23 IBM POWER 33 MIPS architecture 39 SPARC 57 ARM architecture 65 DEC Alpha 80 AlphaStation 92 AlphaServer 95 Very long instruction word 103 Instruction-level parallelism 107 Explicitly parallel instruction computing 108 References Article Sources and Contributors 111 Image Sources, Licenses and Contributors 113 Article Licenses License 114 Microarchitecture 1 Microarchitecture In computer engineering, microarchitecture (sometimes abbreviated to µarch or uarch), also called computer organization, is the way a given instruction set architecture (ISA) is implemented on a processor. A given ISA may be implemented with different microarchitectures.[1] Implementations might vary due to different goals of a given design or due to shifts in technology.[2] Computer architecture is the combination of microarchitecture and instruction set design. Relation to instruction set architecture The ISA is roughly the same as the programming model of a processor as seen by an assembly language programmer or compiler writer. The ISA includes the execution model, processor registers, address and data formats among other things. The Intel Core microarchitecture microarchitecture includes the constituent parts of the processor and how these interconnect and interoperate to implement the ISA. The microarchitecture of a machine is usually represented as (more or less detailed) diagrams that describe the interconnections of the various microarchitectural elements of the machine, which may be everything from single gates and registers, to complete arithmetic logic units (ALU)s and even larger elements.
    [Show full text]
  • Alpha AXP Firmware Porting Guide Revision/Update Information: Version 1.0
    Alpha AXP Firmware Porting Guide Revision/Update Information: Version 1.0 Order Number: EK-AXFRM-PG. A01 November, 1994 Digital Equipment Corporation makes no representations that the use of its products in the manner described in this publication will not infringe on existing or future patent rights, nor do the descriptions contained in this publication imply the granting of licenses to make, use, or sell equipment or software in accordance with the description. Reproduction or duplication of this courseware in any form, in whole or in part, is prohibited without the prior written permission of Digital Equipment Corporation. Possession, use, or copying of the software described in this publication is authorized only pursuant to a valid written license from Digital or an authorized sublicensor. © Digital Equipment Corporation 1994. All Rights Reserved. Printed in U.S.A. The following are trademarks of Digital Equipment Corporation: Alpha AXP, AXP, Bookreader, DEC, DECchip, DEC OSF/1, DECwindows, Digital, OpenVMS, VAX, VMS, VMScluster, the DIGITAL logo and the AXP mark. MIPS is a trademark of MIPS Computer Systems, Inc. NCR is a registered trademark of the NCR Corporation. NetWare is a registered trademark of Novell, Inc. OSF/1 is a registered trademark of the Open Software Foundation, Inc. UNIX is a registered trademark in the United States and other countries licensed exclusively through X/Open Company Ltd. Windows NT is a registered trademark of the Microsoft Corporation. All other trademarks and registered trademarks are the property of their respective holders. This document was prepared using VAX DOCUMENT Version 2.1. Contents Preface ............................................................ xiii 1 Porting Strategy Overview .......................................................
    [Show full text]
  • HP Openvms MACRO Compiler Porting and User's Guide
    HP OpenVMS MACRO Compiler Porting and User’s Guide Order Number: AA–PV64E–TE January 2005 This manual describes how to port Macro-32 source code written for the VAX MACRO compiler to the MACRO compiler for OpenVMS running on either an HP OpenVMS Industry Standard 64 or HP OpenVMS Alpha system. It also describes how to use the compiler. Revision/Update Information: This revised manual supersedes the OpenVMS MACRO-32 Porting and User’s Guide for OpenVMS Version 7.3. Software Version: OpenVMS I64 Version 8.2 OpenVMS Alpha Version 8.2 Hewlett-Packard Company Palo Alto, California © Copyright 2005 Hewlett-Packard Development Company, L.P. Confidential computer software. Valid license from HP required for possession, use or copying. Consistent with FAR 12.211 and 12.212, Commercial Computer Software, Computer Software Documentation, and Technical Data for Commercial Items are licensed to the U.S. Government under vendor’s standard commercial license. The information contained herein is subject to change without notice. The only warranties for HP products and services are set forth in the express warranty statements accompanying such products and services. Nothing herein should be construed as constituting an additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein. Intel and Itanium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. Printed in the US ZK5601 The HP OpenVMS documentation set is available on CD-ROM. This document was prepared using DECdocument, Version 3.3-1b. Contents Preface ............................................................ ix Part I Concepts and Methodology 1 Preparing to Port Macro-32 Code 1.1 Features of the MACRO Compiler ..............................
    [Show full text]
  • VAX VMS at 20
    1977–1997... and beyond Nothing Stops It! Of all the winning attributes of the OpenVMS operating system, perhaps its key success factor is its evolutionary spirit. Some would say OpenVMS was revolutionary. But I would prefer to call it evolutionary because its transition has been peaceful and constructive. Over a 20-year period, OpenVMS has experienced evolution in five arenas. First, it evolved from a system running on some 20 printed circuit boards to a single chip. Second, it evolved from being proprietary to open. Third, it evolved from running on CISC-based VAX to RISC-based Alpha systems. Fourth, VMS evolved from being primarily a technical oper- ating system, to a commercial operat- ing system, to a high availability mission-critical commercial operating system. And fifth, VMS evolved from time-sharing to a workstation environment, to a client/server computing style environment. The hardware has experienced a similar evolution. Just as the 16-bit PDP systems laid the groundwork for the VAX platform, VAX laid the groundwork for Alpha—the industry’s leading 64-bit systems. While the platforms have grown and changed, the success continues. Today, OpenVMS is the most flexible and adaptable operating system on the planet. What start- ed out as the concept of ‘Starlet’ in 1975 is moving into ‘Galaxy’ for the 21st century. And like the universe, there is no end in sight. —Jesse Lipcon Vice President of UNIX and OpenVMS Systems Business Unit TABLE OF CONTENTS CHAPTER I Changing the Face of Computing 4 CHAPTER II Setting the Stage 6 CHAPTER
    [Show full text]
  • The Alphaserver 4100 Cached Processor Module Maurice B
    I' UI* Qi .H I1 0 &, hi 1, 7 : I . - * -1 ALPHASERVER 4100 SYSTEM -. ORACLE AND SYBASE DATABASE PRODUCTS - - 1 FORVLM .& Digital . &&' *-I INSTRUCTION EXECUTION ON ALPHA PROCESSORS 663***01 c: c: "' ~echn ica l 3 Journal i ri. i . - ,.i;' F ,. ! , 14 )-? ".,' & I-, 1 *,< .- , ',,I"',., , '*a, ,...,- csa y -p~ iic Editorial The Digital TechnicalJournalis a refereed The following are trademarks of Digital Jane C. Blake, Managing Editor journal published quarterly by Digital Equipment Corporation: AlphaServer, Kathleen M. Stetson, Editor Equipment Corporation, 50 Nagog Park, Alphastation, DEC, DECnet, DIGITAL, Helen L. Patterson, Editor AK02-3/B3, Acton, MA 01720-9843. the DIGITAL logo, VAX, VMS, and Hard-copy subscriptions can be ordered by ULTRIX. Circulation sending a check in U.S. hds(made payable AIM is a trademark ofAIM Technology, Inc. Catherine M. Phillips, Administrator to Digital Equipment Corporation) to the CCT is a registered trademark of Cooper Dorothea B. Cassady, Secretary published-by address. General subscription and Chyan Technologies, Inc. CHALLENGE rates are $40.00 (non-U.S. $60) for four and Silicon Graphics are registered trademarks Production issues and $75.00 (non-U.S. $115) for and POWER CHALLENGE is a trademark Christa W. Jessico, Production Editor eight issues. University and college profes- of Silicon Graphics, Inc. Compaq is a regis- Anne S. Katzeff, Typographer sors and Ph.D. students in the electrical tered trademark and ProLiant is a trademark Peter R. Woodbury, Illustrator engineering and computer science fields of Compaq Computer Corporation. HP is receive complimentary subscriptions upon a registered trademark of Hewlett-Packard Advisory Board request.
    [Show full text]