Catalogue 2017 Ion Channels and Gpcrs

Total Page:16

File Type:pdf, Size:1020Kb

Catalogue 2017 Ion Channels and Gpcrs Catalogue 2017 Ion Channels and GPCRs February 2017 Glossary ION CHANNEL .................................................................................... 3 PROTEINASE ACTIVATED ...................................................... 33 GABA ................................................................................... 3 PURINERGIC ...................................................................... 33 3 GLYCINE ............................................................................... RELAXIN ......................................................................... 34 4 POTASSIUM CHANNEL ............................................................. RETINOID ACIDE INDUCED GENE ........................................... 35 PURINOCEPTOR ...................................................................... 5 RHODOPSIN ...................................................................... 35 SEROTONIN ........................................................................... 6 SECRETIN ......................................................................... 35 ZINC ACTIVATED ION CHANNEL ................................................. 7 SEROTONIN ...................................................................... 35 GPCR .................................................................................................... 8 SOMATOSTATIN ................................................................. 37 ADENOSINE ........................................................................... 8 SPHINGOSINE 1-PHOSPHATE ................................................ 37 ADRENERGIC ......................................................................... 8 TACHYKININ ...................................................................... 38 ANGIOTENSIN ........................................................................ 9 THYROTROPIN .................................................................... 39 BOMBESIN ............................................................................ 10 TRACE AMINE .................................................................... 39 BRADYKININ .......................................................................... 10 VASOPRESSIN .................................................................... 39 CALCITONIN .......................................................................... 10 VIP ................................................................................. 40 CALCIUM SENSING .................................................................. 10 CANNABINOID ....................................................................... 11 CHEMOKINE .......................................................................... 11 CHOLECYSTOKININ .................................................................. 13 COMPLEMENT PEPTIDE ............................................................ 14 CORTICOTROPIN -RELEASING FACTOR .......................................... 14 DOPAMINE ............................................................................ 14 ENDOTHELIN.......................................................................... 15 ESTROGEN ............................................................................ 15 FOLLICLE STIMULATING HORMONE ............................................. 16 FORMYLPEPTIDE ..................................................................... 16 FREE FATTY ACID R .................................................................. 16 FRIZZLED ............................................................................... 17 GALANIN .............................................................................. 17 GASTRIN /CHOLECYSTOKININ ..................................................... 17 GLUCAGON ........................................................................... 17 GLUCAGON LIKE PEPTIDE .......................................................... 18 GLUCOSE-DEPENDENT INSULINOTROPIC ...................................... 18 GONADOTROPIN -RELEASING HORMONE ...................................... 18 HISTAMINE ............................................................................ 18 HYDROXYCARBOXYLIC ACID ....................................................... 19 LEUKOTRIENE ......................................................................... 19 LUTROPIN -CHORIOGONADOTROPIC HORMONE ............................. 19 LYSOPHOSPHATIDIC ACID .......................................................... 19 MELANIN -CONCENTRATING HORMONE ....................................... 20 MELANOCORTIN ..................................................................... 20 MELATONIN .......................................................................... 21 METABOTROPIC GLUTAMATE .................................................... 21 METASTIN ............................................................................. 22 MUSCARINIC ACETYLCHOLINE .................................................... 22 NEUROMEDIN U..................................................................... 23 NEUROPEPTIDE Y.................................................................... 23 N-FORMYL PEPTIDE ................................................................ 24 OLFACTORY ........................................................................... 24 OPIOID ................................................................................. 24 OPSIN .................................................................................. 25 OREXIN ................................................................................ 25 ORPHAN ............................................................................... 25 PROKINETICIN ........................................................................ 32 PROLACTIN -RELEASING PEPTIDE ................................................. 32 PROSTANOID ......................................................................... 32 Edito Now that the purifica on of membrane receptors has become a more realis c objec ve due to the progresses made the recent years in new genera on of detergents and addi ves, a robust and compe ve offer was s missing for highly expressing stable cell lines. Theranyx is proud to offer the first catalogue dedicated to receptors over expressing cell lines perfectly suited for structural and biophysical characterisa on applica ons. Our ambi on is to offer you the highest standard of expression level for a broad range of func onal receptors in form of stable cell lines and membrane prepara ons suitable for purifica on and related applica ons, including ligand binding assays, SPR, an ody selec on, RMN and Xray crystallography. CHO/HEK tetracycline inducible cell lines All our cell line references are tetracycline inducible. This offers many advantages over classical CMV promoter based cell line including lower toxicity induced by the receptor expression during the cell growth phase, a more stable expression over the me and a higher level of expression for most of our products (over million receptors per cell). Inducible cell lines are also well suited for 13C 15N labelling on a short period of me with a limited background labelling. Our receptor constructs are carrying a double twin-strep-tag at the N-Terminus and a 10 his dine tag at the C-Terminus thus permi ng affinity purifica on on streptac and/or nickel/cobalt column but also immobilisa on of the receptors on beads or coated surface. Two TEV cleavage sites inserted between the tags and the receptor for tags removal. Moreover, customized constructs cell lines with alterna e tags can be developed at very a rac ve prices within 6 weeks for any reference of our catalogue. Cell line for receptors not available in our catalogue offer can be developed for the same price within 2 months. Scale-up : Our CHO and HEK cell lines are well suited for scale-up expression in roller bo les allowing to collect 1 to 2 g of cell pellet/bo le (detailed protocols are delivered with the cell lines). Bulk orders can be places for cell pellet or membrane prepara ons at compe ve prices. Consignment and prices Our stable cell lines are delivered either in frozen vials (worldwide) or in culture flasks at room temperature (Europe only). In both cases we also supply 100 ml of serum which has been validated for our cell lines, we leave to our customers to validate various serum lots from their usual suppliers. The prices of our cell line are fixed according to the following criteria: - 10 000 € for the cell lines produced upon order (delivery me 6 to 8 weeks) - 8 000 € for the cell lines immediately available. Notice! All our stable cell lines are characterised by radio ligand binding as soon as a radio ligand is commercially available. This policy has the following consequences: - You will pay a non characterised cell line for a lower price than the characterised ones. - If the characterisa on by radio ligand does not lead to significant specific binding (more than 1000 specific DPM for 10 µg of membrane prepara on issued from the cell line), the cell line will be reimbursed. -1- Applications Radio binding Western-blot Membrane preparation/solubilization/purification Phage display selection (antibody or peptide) Functional assay Flow cytometry Immuno staining‏ NMR SPR Receptor enriched membrane preparations Our receptor enriched membrane preparations are produced from highly expressing cell lines and thus guaranty a very good specific binding ratio. All our membrane preparations are delivered in consignments of 1000 units. For all membrane preparations for
Recommended publications
  • Edinburgh Research Explorer
    Edinburgh Research Explorer International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list Citation for published version: Davenport, AP, Alexander, SPH, Sharman, JL, Pawson, AJ, Benson, HE, Monaghan, AE, Liew, WC, Mpamhanga, CP, Bonner, TI, Neubig, RR, Pin, JP, Spedding, M & Harmar, AJ 2013, 'International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands', Pharmacological reviews, vol. 65, no. 3, pp. 967-86. https://doi.org/10.1124/pr.112.007179 Digital Object Identifier (DOI): 10.1124/pr.112.007179 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Pharmacological reviews Publisher Rights Statement: U.S. Government work not protected by U.S. copyright General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 1521-0081/65/3/967–986$25.00 http://dx.doi.org/10.1124/pr.112.007179 PHARMACOLOGICAL REVIEWS Pharmacol Rev 65:967–986, July 2013 U.S.
    [Show full text]
  • Anti-GPR15, N-Terminal (G4283)
    Anti-GPR15, N-Terminal produced in rabbit, affinity isolated antibody Catalog Number G4283 Synonym: Anti-BOB Product Profile Immunoblotting: a working dilution of 1:500-1:2,000 is Product Description recommended using human heart tissue lysate, Jurkat Anti-GPR15, N-Terminal is produced in rabbit using a (human T cell leukemic) cell lysate, or A549 (human peptide corresponding to the N-terminal amino acids lung alveolar epithelial) cell lysate. A band of ~50 kDa 13-28 of human GPR15 (BOB) as immunogen.1 The is detected. sequence differs from African green monkey and pig- tailed macaque BOB by one amino acid.2 Note: In order to obtain best results in different tech- niques and preparations we recommend determining Anti-GPR15, N-Terminal recognizes GPR15 by optimal working concentrations by titration test. immunoblotting. It is reactive in human, mouse, and rat. References GRP15 (BOB) and STRL33.3 (Bonzo) are seven- 1. Heiber, M., et al., A novel human gene encoding a transmembrane, G-protein-coupled receptors with G-protein-coupled receptor (GPR15) is located on sequence similarity to chemokine receptors and to chromosome 3. Genomics, 32, 462-465 (1996). chemokine receptor-like orphan receptors.1, 2, 3 The 2. Deng, J.K., et al., Expression cloning of new DNA sequence of human and monkey GPR15 receptors used by simian and human immuno- (G protein-coupled receptor 15) /BOB (brother of deficiency viruses. Nature, 388, 296-300 (1997). Bonzo) has been cloned.1, 2 GRP15 (BOB) functions as 3. Liao, F., et al., STRL33, A novel chemokine a co-receptor for simian immunodeficiency virus (SIV), receptor-like protein, functions as a fusion cofactor strains of HIV-2, and M-tropic HIV-1.2, 4, 5, 6 GPR15 for both macrophage-tropic and T cell line-tropic (BOB) is expressed in lymphoid tissues and colon.1, 2 HIV-1.
    [Show full text]
  • G Protein-Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading.
    [Show full text]
  • Biased Signaling of G Protein Coupled Receptors (Gpcrs): Molecular Determinants of GPCR/Transducer Selectivity and Therapeutic Potential
    Pharmacology & Therapeutics 200 (2019) 148–178 Contents lists available at ScienceDirect Pharmacology & Therapeutics journal homepage: www.elsevier.com/locate/pharmthera Biased signaling of G protein coupled receptors (GPCRs): Molecular determinants of GPCR/transducer selectivity and therapeutic potential Mohammad Seyedabadi a,b, Mohammad Hossein Ghahremani c, Paul R. Albert d,⁎ a Department of Pharmacology, School of Medicine, Bushehr University of Medical Sciences, Iran b Education Development Center, Bushehr University of Medical Sciences, Iran c Department of Toxicology–Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Iran d Ottawa Hospital Research Institute, Neuroscience, University of Ottawa, Canada article info abstract Available online 8 May 2019 G protein coupled receptors (GPCRs) convey signals across membranes via interaction with G proteins. Origi- nally, an individual GPCR was thought to signal through one G protein family, comprising cognate G proteins Keywords: that mediate canonical receptor signaling. However, several deviations from canonical signaling pathways for GPCR GPCRs have been described. It is now clear that GPCRs can engage with multiple G proteins and the line between Gprotein cognate and non-cognate signaling is increasingly blurred. Furthermore, GPCRs couple to non-G protein trans- β-arrestin ducers, including β-arrestins or other scaffold proteins, to initiate additional signaling cascades. Selectivity Biased Signaling Receptor/transducer selectivity is dictated by agonist-induced receptor conformations as well as by collateral fac- Therapeutic Potential tors. In particular, ligands stabilize distinct receptor conformations to preferentially activate certain pathways, designated ‘biased signaling’. In this regard, receptor sequence alignment and mutagenesis have helped to iden- tify key receptor domains for receptor/transducer specificity.
    [Show full text]
  • G Protein‐Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: G protein-coupled receptors. British Journal of Pharmacology (2019) 176, S21–S141 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein-coupled receptors Stephen PH Alexander1 , Arthur Christopoulos2 , Anthony P Davenport3 , Eamonn Kelly4, Alistair Mathie5 , John A Peters6 , Emma L Veale5 ,JaneFArmstrong7 , Elena Faccenda7 ,SimonDHarding7 ,AdamJPawson7 , Joanna L Sharman7 , Christopher Southan7 , Jamie A Davies7 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia 3Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK 4School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 5Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 6Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 7Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website.
    [Show full text]
  • PROKR2 Gene Prokineticin Receptor 2
    PROKR2 gene prokineticin receptor 2 Normal Function The PROKR2 gene provides instructions for making a protein called prokineticin receptor 2. This receptor interacts with a protein called prokineticin 2 (produced from the PROK2 gene). On the cell surface, prokineticin 2 attaches to the receptor like a key in a lock. When the two proteins are connected, they trigger a series of chemical signals within the cell that regulate various cell functions. Prokineticin 2 and its receptor are produced in many organs and tissues, including the small intestine, certain regions of the brain, and several hormone-producing (endocrine) tissues. Prokineticin 2 and its receptor play a role in the development of a group of nerve cells that are specialized to process smells (olfactory neurons). These neurons move ( migrate) from the developing nose to a structure in the front of the brain called the olfactory bulb, which is critical for the perception of odors. Prokineticin 2 and its receptor are also involved in the migration of nerve cells that produce gonadotropin-releasing hormone (GnRH). GnRH controls the production of several hormones that direct sexual development before birth and during puberty. These hormones are also important for the normal function of the ovaries in women and the testes in men. Several additional functions of prokineticin 2 and its receptor have been discovered. These proteins help stimulate the movement of food through the intestine and are likely involved in the formation of new blood vessels (angiogenesis). They also play a role in coordinating daily (circadian) rhythms, such as the sleep-wake cycle and regular changes in body temperature.
    [Show full text]
  • Techniques for Immune Function Analysis Application Handbook 1St Edition
    Techniques for Immune Function Analysis Application Handbook 1st Edition BD Biosciences For additional information please access the Immune Function Homepage at www.bdbiosciences.com/immune_function For Research Use Only. Not for use in diagnostic or therapeutic procedures. Purchase does not include or carry any right to resell or transfer this product either as a stand-alone product or as a component of another product. Any use of this product other than the permitted use without the express written authorization of Becton Dickinson and Company is strictly prohibited. All applications are either tested in-house or reported in the literature. See Technical Data Sheets for details. BD, BD Logo and all other trademarks are the property of Becton, Dickinson and Company. ©2003 BD Table of Contents Preface . 4 Chapter 1: Immunofluorescent Staining of Cell Surface Molecules for Flow Cytometric Analysis . 9 Chapter 2: BD™ Cytometric Bead Array (CBA) Multiplexing Assays . 35 Chapter 3: BD™ DimerX MHC:Ig Proteins for the Analysis of Antigen-specific T Cells. 51 Chapter 4: Immunofluorescent Staining of Intracellular Molecules for Flow Cytometric Analysis . 61 Chapter 5: BD FastImmune™ Cytokine Flow Cytometry. 85 Chapter 6: BD™ ELISPOT Assays for Cells That Secrete Biological Response Modifiers . 109 Chapter 7: ELISA for Specifically Measuring the Levels of Cytokines, Chemokines, Inflammatory Mediators and their Receptors . 125 Chapter 8: BD OptEIA™ ELISA Sets and Kits for Quantitation of Analytes in Serum, Plasma, and Cell Culture Supernatants. 143 Chapter 9: BrdU Staining and Multiparameter Flow Cytometric Analysis of the Cell Cycle . 155 Chapter 10: Cell-based Assays for Biological Response Modifiers . 177 Chapter 11: BD RiboQuant™ Multi-Probe RNase Protection Assay System .
    [Show full text]
  • The Role of the Alternative Coreceptor GPR15 in SIV Tropism for Human Cells
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Virology 433 (2012) 73–84 Contents lists available at SciVerse ScienceDirect Virology journal homepage: www.elsevier.com/locate/yviro The role of the alternative coreceptor GPR15 in SIV tropism for human cells Miriam Kiene a,b, Andrea Marzi c,1, Andreas Urbanczyk c, Stephanie Bertram d, Tanja Fisch c,2, Inga Nehlmeier d, Kerstin Gnirß d, Christina B. Karsten d,e, David Palesch f, Jan Munch¨ f, Francesca Chiodi b, Stefan Pohlmann¨ a,c,d,n, Imke Steffen a,g,h a Institute of Virology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany b Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, S-17177 Stockholm, Sweden c Institute of Clinical and Molecular Virology, Friedrich-Alexander-University Erlangen-Nurnberg,¨ 91054 Erlangen, Germany d Infection Biology Unit, German Primate Center, Kellnerweg 4, 37077 Gottingen,¨ Germany e Department of Cellular Chemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany f Institute of Molecular Virology, Ulm University Medical Center, Meyerhofstrasse 1, 89081 Ulm, Germany g Blood Systems Research Institute, 270 Masonic Avenue, San Francisco, CA 94118, USA h Department of Laboratory Medicine, University of California, San Francisco, CA 94143, USA article info abstract Article history: Many SIV isolates can employ the orphan receptor GPR15 as coreceptor for efficient entry into Received 4 April 2012 transfected cell lines, but the role of endogenously expressed GPR15 in SIV cell tropism is largely Returned to author for revisions unclear. Here, we show that several human B and T cell lines express GPR15 on the cell surface, 25 April 2012 including the T/B cell hybrid cell line CEMx174, and that GPR15 expression is essential for SIV infection Accepted 13 July 2012 of CEMx174 cells.
    [Show full text]
  • The in Vitro Effect of Prostaglandin E2 and F2α on the Chemerin System In
    International Journal of Molecular Sciences Article The In Vitro Effect of Prostaglandin E2 and F2α on the Chemerin System in the Porcine Endometrium during Gestation , Kamil Dobrzyn * y, Marta Kiezun y , Ewa Zaobidna, Katarzyna Kisielewska, Edyta Rytelewska, Marlena Gudelska, Grzegorz Kopij, Kinga Bors, Karolina Szymanska, Barbara Kaminska, Tadeusz Kaminski and Nina Smolinska * Department of Animal Anatomy and Physiology, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Oczapowskiego 1A, 10-719 Olsztyn-Kortowo, Poland; [email protected] (M.K.); [email protected] (E.Z.); [email protected] (K.K.); [email protected] (E.R.); [email protected] (M.G.); [email protected] (G.K.); [email protected] (K.B.); [email protected] (K.S.); [email protected] (B.K.); [email protected] (T.K.) * Correspondence: [email protected] (K.D.); [email protected] (N.S.) These authors contributed equally to this work. y Received: 21 May 2020; Accepted: 21 July 2020; Published: 23 July 2020 Abstract: Chemerin belongs to the group of adipocyte-derived hormones known as adipokines, which are responsible mainly for the control of energy homeostasis. Adipokine exerts its influence through three receptors: Chemokine-like receptor 1 (CMKLR1), G protein-coupled receptor 1 (GPR1), and C-C motif chemokine receptor-like 2 (CCRL2). A growing body of evidence indicates that chemerin participates in the regulation of the female reproductive system. According to the literature, the expression of chemerin and its receptors in reproductive structures depends on the local hormonal milieu.
    [Show full text]
  • Antipsychotics for Amphetamine Psychosis. A
    Antipsychotics for Amphetamine Psychosis. A Systematic Review Dimy Fluyau, Emory University Paroma Mitra, New York University Kervens Lorthe, Miami Regional University Journal Title: Frontiers in Psychiatry Volume: Volume 10 Publisher: Frontiers Media | 2019-10-15, Pages 740-740 Type of Work: Article | Final Publisher PDF Publisher DOI: 10.3389/fpsyt.2019.00740 Permanent URL: https://pid.emory.edu/ark:/25593/v48xp Final published version: http://dx.doi.org/10.3389/fpsyt.2019.00740 Copyright information: © Copyright © 2019 Fluyau, Mitra and Lorthe. This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/). Accessed October 1, 2021 4:49 PM EDT SYSTEMATIC REVIEW published: 15 October 2019 doi: 10.3389/fpsyt.2019.00740 Antipsychotics for Amphetamine Psychosis. A Systematic Review Dimy Fluyau 1*, Paroma Mitra 2 and Kervens Lorthe 3 1 School of Medicine, Emory University, Atlanta, GA, United States, 2 Langone Health, Department of Psychiatry, NYU, New York, NY, United States, 3 Department of Health, Miami Regional University, Miami Springs, FL, United States Background: Among individuals experiencing amphetamine psychosis, it may be difficult to rule out schizophrenia. The use of antipsychotics for the treatment of amphetamine psychosis is sparse due to possible side effects. Some arguments disfavor their use, stating that the psychotic episode is self-limited. Without treatment, some individuals may not fully recover from the psychosis and may develop full-blown psychosis, emotional, and cognitive disturbance. This review aims to investigate the clinical benefits and risks of antipsychotics for the treatment of amphetamine psychosis.
    [Show full text]
  • Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells Amy Sue Bogard University of Tennessee Health Science Center
    University of Tennessee Health Science Center UTHSC Digital Commons Theses and Dissertations (ETD) College of Graduate Health Sciences 12-2013 Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells Amy Sue Bogard University of Tennessee Health Science Center Follow this and additional works at: https://dc.uthsc.edu/dissertations Part of the Medical Cell Biology Commons, and the Medical Molecular Biology Commons Recommended Citation Bogard, Amy Sue , "Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells" (2013). Theses and Dissertations (ETD). Paper 330. http://dx.doi.org/10.21007/etd.cghs.2013.0029. This Dissertation is brought to you for free and open access by the College of Graduate Health Sciences at UTHSC Digital Commons. It has been accepted for inclusion in Theses and Dissertations (ETD) by an authorized administrator of UTHSC Digital Commons. For more information, please contact [email protected]. Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells Document Type Dissertation Degree Name Doctor of Philosophy (PhD) Program Biomedical Sciences Track Molecular Therapeutics and Cell Signaling Research Advisor Rennolds Ostrom, Ph.D. Committee Elizabeth Fitzpatrick, Ph.D. Edwards Park, Ph.D. Steven Tavalin, Ph.D. Christopher Waters, Ph.D. DOI 10.21007/etd.cghs.2013.0029 Comments Six month embargo expired June 2014 This dissertation is available at UTHSC Digital Commons: https://dc.uthsc.edu/dissertations/330 Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells A Dissertation Presented for The Graduate Studies Council The University of Tennessee Health Science Center In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy From The University of Tennessee By Amy Sue Bogard December 2013 Copyright © 2013 by Amy Sue Bogard.
    [Show full text]
  • PROK2 Gene Prokineticin 2
    PROK2 gene prokineticin 2 Normal Function The PROK2 gene provides instructions for making a protein called prokineticin 2. This protein interacts with another protein called prokineticin receptor 2 (produced from the PROKR2 gene). On the cell surface, prokineticin 2 attaches (binds) to the receptor like a key in a lock. When the two proteins are connected, they trigger a series of chemical signals within the cell that regulate various cell functions. Prokineticin 2 and its receptor are produced in many organs and tissues, including the small intestine, certain regions of the brain, and several hormone-producing (endocrine) tissues. Prokineticin 2 and its receptor play a role in the development of a group of nerve cells that are specialized to process smells (olfactory neurons). These neurons move ( migrate) from the developing nose to a structure in the front of the brain called the olfactory bulb, which is critical for the perception of odors. Prokineticin 2 and its receptor are also involved in the migration of nerve cells that produce gonadotropin-releasing hormone (GnRH). GnRH controls the production of several hormones that direct sexual development before birth and during puberty. These hormones are also important for the normal function of the ovaries in women and the testes in men. Several additional functions of prokineticin 2 and its receptor have been discovered. These proteins help stimulate the movement of food through the intestine and are likely involved in the formation of new blood vessels (angiogenesis). They also play a role in coordinating daily (circadian) rhythms, such as the sleep-wake cycle and regular changes in body temperature.
    [Show full text]