Plastic the Way Nature Intended?

Total Page:16

File Type:pdf, Size:1020Kb

Plastic the Way Nature Intended? POLYHYDROXYALKANOATES: PLASTIC THE WAY NATURE INTENDED? INDUSTRIAL AND ENERGY POLYHYDROXYALKANOATES: PLASTIC THE WAY NATURE INTENDED? WHITE PAPER EXECUTIVE SUMMARY Plastic accumulation in the natural environment is one of the most visible forms of environmental pollution caused by business. As a result of continual exposure to images of oceans full of plastic, consumers are becoming increasingly concerned about single-use disposable plastic items and plastic packaging. For brands and manufacturers, the search is on for alternatives in a wide range of applications. In particular, the superior to conventional plastics – solutions that bring all of the cost, high temperature performance of PHAs significantly extends marketing and convenience benefits of plastic, without the the addressable number of applications for bioplastics, environmental baggage. beyond those which can be served by the most common bioplastic PLA. Polyhyroxyalkanoates (PHAs) are a class of bio-derived, biodegradable polymers which could fit the bill. PHAs provide With costs now approaching parity with conventional a tunable property set which provides unparalleled potential polymers, overcoming manufacturing challenges is the last for a bioplastic to substitute fossil fuel derived plastics major hurdle preventing wide scale adoption of PHAs. 01 WHITE PAPER POLYHYDROXYALKANOATES: PLASTIC THE WAY NATURE INTENDED? PHAS ARE BIO-BASED, BIODEGRADABLE Bioplastics are bio-based, biodegradable or both (European Bioplastics) PLASTICS, PRODUCED BY FERMENTATION FROM BIO-BASED A RANGE OF FEEDSTOCKS, INCLUDING WASTE. Are bio-based Are biodegradable and bio-based The term bioplastics is an umbrella term which describes: Bioplastics Bioplastics e.g. Bio-based PE e.g. PLA, PET, PTT PHA, PBS, conventional polymers derived all or in part using drop-in, Starch blends bio-based feedstocks, NOT BIODEGRADABLE BIODEGRADABLE polymers which are fossil fuel derived but are biodegradable Conventional plastics Bioplastics nearly all conventional e.g. PBAR, PCL plastics e.g. PBAR, PCL polymers which are both bio-derived and biodegradable. Polyhydroxyalkanoates or PHAs are an emerging class of Are biodegradable bioplastics in the latter category, i.e. they are bio-based and biodegradeable. PHAs are produced by bacterial fermentation using bio-derived feedstocks – including waste – and thus are Figure 1: Types of bioplastics. Reproduced with permission from an alternative to fossil fuel-derived plastics. European Bioplastics https://www.european-bioplastics.org/ Input for plant growth Input for production WASTE OR BIO-BASED FEEDSTOCKS COMPOST ENERGY Fermentation Incineration or anaerobic digestion PHA-ENRICHED Compositing BACTERIA PRODUCTS PHA BIOPLASTIC Reuse Refining Product manufacture Figure 2: PHA lifecycle 02 POLYHYDROXYALKANOATES: PLASTIC THE WAY NATURE INTENDED? WHITE PAPER THERE ARE MANY DIFFERENT PHAS WITH A VERY produced PHAs are limited to using P3HB and one other WIDE RANGE OF PROPERTIES, EXPANDING THE PHA as the co-monomer (the other monomer present in the RANGE OF APPLICATIONS BEYOND THOSE THAT copolymer). CAN BE SERVED BY MORE COMMON BIOPLASTICS. These various PHAs have a wide range of properties which can be tailored to different applications. In general, PHAs are The chemical composition of PHAs can be tuned depending biodegradable, compostable thermoplastics. on the monomer subunits used and in which combinations. PHAs are produced either as homopolymers or copolymers. Because the PHA family contains a wide variety of different Homopolymers consist of one type of PHA throughout polymers which can be co-polymerised and blended, the the entire structure – such as pure P3HB or P4HB (see design space of this material class is very large. Figure 4 and Figure 1). Copolymers on the other hand are made up of two Figure 5 show the most important thermal and mechanical or more different PHAs, randomly distributed throughout the properties of the PHA family with respect to other common structure of the polymer chain. Most common industrially consumer polymers. H C H C O 3 O 3 CH O 3 H O OH P(3HB-co-4HB) H3C m n O CH3 O H PHBHp O CH O PHBO O CH O PHBOd CH 3 3 3 O O OH H H m n O CH3 O O O OH O O OH H m n m n O O OH PHBV H C m n 3 H C Copolymers 3 CH3 H3C CH3 CH3 O CH O O CH3 O O O 3 O H O O H O PHBH PHBD H PHVVB OH H P(3HO-3HH) O O OH O O O O OH m n O O OH m n CH p 3 m n m n Short Chain Length (SCLs) Medium Chain Length (MCLs) INCREASING CHAIN LENGTH CH O H 3 O OH P3HB n O O Homopolymers H OH P4HB n Figure 3: The PHA family POLYMER CODE POLYMER NAME MATERIAL CLASS PROPERTIES P3HB Poly(3-hydroxybutyrate) Semi-crystalline thermoplastic Strong Brittle Small thermal processing window High softening temperature P4HB Poly(4-hydroxybutyrate) Thermoplastic elastomer Strong Flexible Ductile High melt viscosity P(3HB-co-4HB) Poly(3-hydroxybutyrate-co-4- Semi-crystalline thermoplastic/ Strong hydroxybutyrate) thermoplastic elastomer Tough Large thermal processing window Ductile PHBV Poly(3-hydroxyalkanoate-3- Semi-crystalline thermoplastic Strong hydroxyvalerate) Brittle Large thermal processing window High softening temperature PBHH Poly(3-hydroxybutyrate- Semi-crystalline thermoplastic Flexible hexanoate) Ductile Easy to process Low softening and melting temperature Table 1: Summary of properties of some common PHAs 03 WHITE PAPER POLYHYDROXYALKANOATES: PLASTIC THE WAY NATURE INTENDED? Acrylonitrile-Butiadene-Styrene – ABS 3.5 High Density Poly(ethylene) – HDPE PLA Low Density Poly(ethylene) – LDPE Poly(amide) 6 – PA6 PVC Poly(carbonate) – PC 3 PET Poly(ethylene terephthalate) – PET PS Poly(ethylene terephthalate) Glycol Modidified – PETG Poly(hydroxyalkanoates) – PHAs 2.5 PMMA Poly(lactic acid) – PLA ) ABS Poly(methylmethacrylate) – PMMA a PC Poly(propylene) – PP Poly(styrene) – PS PETG 2 Poly(vynil chloride) – PVC Thermoplastic Starch – TPS PHAs PP 1.5 TENSILE MODULUS (GP HDPE 1 PA6 TPS Stiff 0.5 Flexible LDPE 0 40 60 80 100 120 140 160 MAXIMUM OPERATING TEMPERATURE (˚C) Figure 4: The PHA thermomechanical design space for stiffness (tensile modulus) against maximum operating temperature. Other oil based (orange) and bio based (blue) thermoplastic design spaces have been included for comparison Acrylonitrile-Butiadene-Styrene – ABS High Density Poly(ethylene) – HDPE HDPE 1000 Low Density Poly(ethylene) – LDPE Poly(amide) 6 – PA6 Poly(carbonate) – PC Poly(ethylene terephthalate) – PET Poly(ethylene terephthalate) Glycol Modidified – PETG LDPE Poly(hydroxyalkanoates) – PHAs Poly(lactic acid) – PLA Poly(methylmethacrylate) – PMMA 100 PETG Poly(propylene) – PP PC Poly(styrene) – PS PVC PET Poly(vynil chloride) – PVC PP PA6 Thermoplastic Starch – TPS PHAs TPS ABS ELONGATION AT BREAK (%) AT ELONGATION Ductile 10 Brittle PLA PMMA PS 1 0 20 40 60 80 TENSILE STRENGTH (MPa) Figure 5: The PHA mechanical design space for elongation at break against tensile strength. Other oil based (orange) and bio based (blue) thermoplastic design spaces have been included for comparison 04 POLYHYDROXYALKANOATES: PLASTIC THE WAY NATURE INTENDED? WHITE PAPER PHAS COULD SUBSTITUTE CONVENTIONAL cannot be made from compostable plastics. In fact, as we PLASTICS IN A WIDE RANGE OF APPLICATIONS. illustrate in Figure 7, compostable plastics can be suitable for manufacturing products with a range of life expectancies END OF LIFE CONSIDERATIONS ARE AN from disposable to products designed to last for a significant IMPORTANT FACTOR IN DETERMINING WHICH number of years such as automotive components and toys. APPLICATIONS ARE SUITABLE. PHA manufacturers are developing a diverse range of end markets, including environmental services, automotive, electronics and energy. The versatility of PHAs lends them to a wide range of potential market applications. The main markets where End-of-life considerations are important when considering PHAs have already achieved some degree of penetration are which applications are suitable for designing with PHA. packaging, food service, agriculture and medical products. PHA products can either be designed to enter the natural PHAs are penetrating in both low value, high volume markets environment (e.g. mulching films ploughed back into the (such as compost bin liners) as well as low volume, high soil) or to be treated in industrial composting facilities. Care value markets (such as absorbable surgical film). Figure 6 must be taken not to contaminate existing recycling systems illustrates a number of the current and future applications for conventional polymers; for this reason PHAs would not be of PHAs. A common misconception is that durable products suitable replacements for PET water bottles. CURRENT FUTURE Refuse sacks, compost bin liners, carrier bags, PACKAGING gift bags, shrink wrap Bottles, laminate foils Disposable gloves, disposable aprons, liners for FOOD SERVICE Food containers and utensils coffee cups, foam packaging Mulching film, plant pots AGRICULTURE Slow release of fertilizers, etc. into soil Microencapsulation, slow release drug formulations, Absorbable sutures, absorbable mesh, absorbable MEDICAL cartilage engineering, stents, wound dressings, bone plates, surgical film, composite mesh high performance filters, syringes, gowns, gloves Phone case, furniture CONSUMER PRODUCTS Sanitary goods, wipes, textiles, toys, cosmetics (microbeads), interior design Plastic additives CHEMICALS Adhesives, paints, coatings, fine chemicals ENVIRONMENTAL SERVICES Oil slick remediation, denitrification (water treatment) AUTOMOTIVE Automotive parts ELECTRONICS Pressure sensors for
Recommended publications
  • Shrink Wrap Packaging
    Shrink Wrap Packaging Versatile Shrink Wrap Solutions pacmachinery.com Shrink Packaging Basics Shrink packaging encapsulates a product with- in a tightly adhering layer of film. The process may Clamco 6800CS Side Sealer be accomplished by hand, or by using automatic or Intermittent motion, automatic side seal shrink wrapper semi-automatic packaging equipment. Creating a that offers exceptional return on investment. strong seal in the film is the first step. To achieve this, a hot knife or hot wire is pressed against the film to weld the seal together. The seal process has three variables: time, temperature, and pressure. Each may be adjusted to suit different film types. Once sealed in a film envelope, the package is passed through a heated shrink tunnel. When heated, the film softens and expands, and as the film cools it shrinks tight. The package exits the tunnel wrapped in a taught, secure, attractive film. There are several films from which you may Clamco 6700GLX Automatic L-Bar Sealer choose. Polyethylene is often used for bulk packaging; Outstanding speed, throughput and performance. Sealer Polyolefin is common in retail applications where allows for fast setup, alignment, and product transfer. crystal clarity is important. Polyvinyl Chloride (PVC) can be used as a pre-formed sleeve that is placed around a package and shrinks to conform. Ideal for bundling multiple parts in one secure package, shrink wrapping enhances visual appeal, maintains quality, and protects against tampering. Specifications 6700GLX 6800CS Speed (up to) 40 pkg/min 70 pkg/min Seal length (side) 18” 19.75” Seal length (front) 23” unlimited Maximum film width 23” 23.5” Maximum product height 7.5” 7.85” Sleve Wrappers Automatic Shrink Systems 7002ASW Automatic Sleeve Wrapper With ever-increasing production demands, Clamco This versatile automatic, sleeve wrapper-bundler can be used for meets the need with a family of automatic, high-speed, wrapping a wide range of products, from trays to cartons or bottles.
    [Show full text]
  • Developing Bioprospecting Strategies for Bioplastics Through the Large-Scale Mining of Microbial Genomes
    fmicb-12-697309 July 6, 2021 Time: 18:39 # 1 ORIGINAL RESEARCH published: 12 July 2021 doi: 10.3389/fmicb.2021.697309 Developing Bioprospecting Strategies for Bioplastics Through the Large-Scale Mining of Microbial Genomes Paton Vuong1, Daniel J. Lim2, Daniel V. Murphy1, Michael J. Wise3,4, Andrew S. Whiteley5 and Parwinder Kaur1* 1 UWA School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia, 2 Department of Physics and Astronomy, Curtin University, Perth, WA, Australia, 3 School of Physics, Mathematics and Computing, The University of Western Australia, Perth, WA, Australia, 4 Marshall Centre for Infectious Disease Research and Training, University of Western Australia, Perth, WA, Australia, 5 Centre for Environment and Life Sciences, CSIRO, Floreat, WA, Australia The accumulation of petroleum-based plastic waste has become a major issue for the environment. A sustainable and biodegradable solution can be found in Polyhydroxyalkanoates (PHAs), a microbially produced biopolymer. An analysis of the global phylogenetic and ecological distribution of potential PHA producing bacteria and Edited by: archaea was carried out by mining a global genome repository for PHA synthase (PhaC), Obulisamy Parthiba Karthikeyan, University of Houston, United States a key enzyme involved in PHA biosynthesis. Bacteria from the phylum Actinobacteria Reviewed by: were found to contain the PhaC Class II genotype which produces medium-chain Rajesh K. Sani, length PHAs, a physiology until now only found within a few Pseudomonas species. South Dakota School of Mines Further, several PhaC genotypes were discovered within Thaumarchaeota, an archaeal and Technology, United States Vijay Kumar, phylum with poly-extremophiles and the ability to efficiently use CO2 as a carbon Institute of Himalayan Bioresource source, a significant ecological group which have thus far been little studied for PHA Technology (CSIR), India production.
    [Show full text]
  • Extrusion Foaming of Bioplastics for Lightweight Structure in Food Packaging
    EXTRUSION FOAMING OF BIOPLASTICS FOR LIGHTWEIGHT STRUCTURE IN FOOD PACKAGING A thesis submitted for the degree of Doctor of Philosophy by Sitthi Duangphet School of Engineering and Design Brunel University December 2012 i Abstract This thesis reports the systematic approaches to overcome the key drawbacks of the pure PHBV, namely low crystallisation rate, tensile strength, ductility, melt viscosity, thermal stability and high materials cost. The physical, mechanical, thermal, and rheological properties of the pure PHBV were studied systematically first to lay a solid foundation for formulation development. The influence of blending with other biopolymers, inclusion of filler, and chain extender additives in terms of mechanical properties, rheology, thermal decomposition and crystallization kinetics were then followed. Creating lightweight structures by foaming is considered to be one of the effective ways to reduce material consumption, hence the reduction of density and morphology of PHBV-based foams using extrusion foaming technique were studied comprehensively in terms of extrusion conditions (temperature profiles, screw speed and material feeding rate) and the blowing agent content. The material cost reduction was achieved by adding low-cost filler (e.g. CaCO3) and reduction of density by foaming. The thermal instability was enhanced by incorporation of chain extender (e.g. Joncryl) and blending with a high thermal stability biopolymer (e.g. PBAT). The polymer blend also improved the ductility. Adding nucleation agent enhanced the crystallization rate to reduce stickiness of extruded sheet. The final formulation (PHBV/PBAT/CaCO3 composite) was successfully extruded into high quality sheet and thermoformed to produce prototype trays in an industrial scale trial. The effect of the extrusion conditions (temperature profiles, screw speed and material feeding rate) and the blowing agent content are correlated to the density reduction of the foams.
    [Show full text]
  • What's What and Who's Who in Compostable Products
    Compostable, Biodegradable Update BAGS, FOODSERVICE WARE, PACKAGING FILMS WHAT’S WHAT AND WHO’S WHO IN COMPOSTABLE PRODUCTS Demand for sustainable packaging, established standards for compostability and biodegradability, and increasing number of organics diversion programs are driving demand for compostable products. Nora Goldstein and Cristina Olivares HESE are, without a doubt, excit- products over the next few years. “So many ing times for companies in the factors are influencing the direction of bio- compostable products industry — materials,” says Bob Findlen, Vice-Presi- from the manufacturers of resins dent of Sales and Marketing of the Natural to the distributors of the end prod- Plastics polymer brand from Metabolix, Inc. ucts. After close to 20 years of “There is the concern around sustainability Tproduct and market development, a num- and the demand and activity that compa- ber of factors are converging to create de- nies like Wal-Mart are bringing to the mar- mand for compostable bags, foodservice ketplace. There is the biodegradability part ware, packaging films and containers. of the market to address issues like litter These include retailer demand for sustain- from traditional plastic bags. Environmen- able packaging, rising cost of petrochemi- tal issues are another driving factor, e.g., cals, expansion of food residuals compost- carbon balance, along with the unsustain- ing and zero waste initiatives, and, most ability of our thirst for oil. All these things recently, passage of an ordinance in San are happening, all at the same time. But Francisco to ban large grocery stores and have we reached a critical mass? If that is pharmacies from giving out traditional defined as starting to have an effect on the plastic shopping bags, which is expected to use of petroleum, we are not there yet.
    [Show full text]
  • The Benchmark for Banknote Packaging in the High-Speed World
    NotaPack®10 The Benchmark for Banknote Packaging in the High-Speed World www.gi-de.com/notapack10 2 NotaPack® 10 3 Concentrated packaging power NotaPack 10 is the leading banknote PHENOMENAL SECURITY MODULAR, COMPACT, FLEXIBLE FULLY AUTOMATIC – INCREASED PRODUCTIVITY – packaging system worldwide for cash Three main factors drive a high level With a high level of product modularity FULLY INTEGRATED INCREASED EFFICIENCY of security: First, intelligent features and optimum flexibility as a result of The G+D High-Speed World is character- NotaPack 10 packages up to 10 bundles centers and banknote printing works, that safeguard the unpackaged bank- over 30 different modules, NotaPack 10 ized by the perfect integration of every of 500 or 1,000 banknotes per minute – engineered in particular for the de- note bundle right up until it is fully can fulfill all key customer requirements. single element, so it is no surprise that quickly, reliably, and to a consistently manding requirements of the industry. shrink-wrapped. These include optical It also offers integration of up to five NotaPack 10 is designed for perfect high level of quality. The system’s energy It is the flawless packaging solution bundle inspection and advanced access BPS systems, and an extremely compact alignment and compatibility with BPS consumption is very low in comparison protection facilitated by continuous design that is suitable for very confined systems and G+D software. Thus, the to other systems. These considerations for the BPS M3, M5, M7, and X9 conveyor covers with locks and log file spaces (taking up floor space of just ideally alligned end-to-end process make the NotaPack 10 a highly efficient, High-Speed Systems, simultaneously writing (p.
    [Show full text]
  • Shrink Wrap Outer Packaging
    GREEN FEATURES Fact Sheet Shrink Wrap Outer Packaging Introduction interference, our manufacturing Life Technologies is committed facility in Warrington, UK, has been to designing products with the shrink wrapping our kits (Figure 1). environment in mind—it’s one more step toward a smaller footprint. By This shrink wrap consists of linear removing the polyolefin shrink wrap low density polyethylene (LLDPE). Green Benefits from some of our products, we can This practice used 950 kg of LLDPE • Less use of non-renewable resources eliminate the material consumption shrink wrap film annually. Due to • Less waste disposal associated with the manufacture of the limited disposal alternatives this plastic and reduce the amount available for this particular material, of waste going to landfills and we presume most, if not all, of this incinerators. This fact sheet provides shrink wrap is scrapped as waste the documentation behind these and not recycled. To minimize the environmental claims. environmental impact of the film, we have replaced it with a small tamper- Product Description proof seal (Figure 2) that fits over the To help ensure products arrive kit container closure tab and can be intact and without any unintended recycled with the kit box. Figure 1. Before: packaged in shrink wrap Figure 2. After: packaged with a simple tamper-proof seal Green Features Reduced Consumption of Non-renewable Resources Based on Lifecycle Inventory (LCI) Data from Plastics Europe’s Eco-profile programme1,2, we estimate that by eliminating the use of 950 kg
    [Show full text]
  • Recyclability in a View
    Recyclability in a View Make the most informed labelling and packaging decision for greater sustainability. Here is an overview of different labelling technologies, the recyclability of various packaging materials, and the global trend in plastic packaging to help you make the right choice. Avery Dennison ClearIntent™ portfolio contains hundreds of products that help reduce material consumption and landfill waste. Benefits of PS labels versus other labelling technologies + No backing liner waste + Easiest separation due to small adhesion zone − Limited material options, lower quality look & feel − Hotmelt contaminant Wrap-around + No backing liner waste + Perforations can be added to provide manual sorting + Container lightweighting / recycled content color Pressure Sensitive variation Labels − 360 coverage impacts optical sorting process − Traditional PETG and PVC sleeves do not separate + CleanFlake™ solution enhances the Shrink Sleeve through PET recycling process (sink / float) recyclability of PET containers by enabling a clean separation duing + No backing liner waste the recycling process − Limited to paper face - can disintegrate and contaminate recycling wash water + Materials from renewable resources − Not proven through plastic recycling process available for facestocks and liners (only glass) Wet Glue + Bio-sourced, compostable, biodegradable materials readily + No backing liner waste available + Single polymer plastic makes recycling easier (container and label are PP) + Liner and matrix recycling programs − Limited availability
    [Show full text]
  • Impacts of a Ban Or Restrictions in Sale of Items in the EU's Single Use Plastics Directive
    SOCIAL RESEARCH NUMBER: 32/2020 PUBLICATION DATE: 19/05/2020 Preliminary Research to Assess the Impacts of a Ban or Restrictions in Sale in Wales of Items in the EU's Single Use Plastics Directive Mae’r ddogfen yma hefyd ar gael yn Gymraeg. This document is also available in Welsh. © Crown Copyright Digital ISBN 978-1-80038-424-8 Title: Preliminary Research to Assess the Impacts of a Ban or Restrictions in Sale in Wales of Items in the EU's Single Use Plastics Directive Author(s): George Cole, Resource Futures Carla Worth, Resource Futures Katie Powell, Resource Futures Sam Reeve, Resource Futures Susie Stevenson, Miller Research (UK) Nick Morgan, Miller Research (UK) Howard Walker, Bridge Economics Full Research Report: Cole, G; Worth, C; Powell, K; Reeve, S; Stevenson, S; Morgan, N; Walker, H (2019). Preliminary Research to Assess the Impacts of a Ban or Restrictions in Sale in Wales of Items in the EU's Single Use Plastics Directive. Cardiff: Welsh Government, GSR report number 32/2020 Available at: https://gov.wales/impacts-ban-or-restrictions-sale-items-eus-single- use-plastics-directive Views expressed in this report are those of the researcher and not necessarily those of the Welsh Government For further information please contact: Isabella Malet-Lambert Knowledge and Analytical Services Welsh Government Cathays Park Cardiff CF10 3NQ 03000 628250 [email protected] Table of contents List of tables ..........................................................................................................................
    [Show full text]
  • 1610 8 Shashoua Icomcc 2017
    ICOM-CC 18th Triennial Conference Sustainable future alternatives 2017 Copenhagen to petroleum-based polymeric SCIENTIFIC RESEARCH conservation materials YVONNE SHASHOUA* INTRODUCTION National Museum of Denmark Kongens Lyngby, Denmark [email protected] Conservation treatments often employ petroleum-based plastic materials KATJA JANKOVA ATANASOVA as packaging, adhesives and coatings that are synthesised from non- Technical University of Denmark Kongens Lyngby, Denmark renewable crude oil, a resource at risk of exhaustion within the next [email protected] 100 years. The Going Green conference held at the British Museum in CLAIRE CURRAN ICA Art Conservation April 2009 concluded that conservators are under increasing pressure to Cleveland OH, USA [email protected] review their practices in light of international environmental targets and *Author for correspondence the rising costs of fossil fuels. Biopolymers are considered sustainable either because they are synthesised from renewable sources or because they biodegrade to CO2 and H2O in soil and water after use. The range and KEYWORDS: sustainable, biopolymer, bioplastic quality of bioplastics have increased dramatically since 2006 and, today, polyethylene, polyester, soya, humic acid polyethylenes, polyesters, polyurethanes and polyvinyl alcohols can be fully synthesised from biomass, although their commercial availability ABSTRACT is more limited in Europe than in the USA and South America. While The research described here is the first study extensive research has been conducted into the rates and mechanism of on the use of sustainable, plant-based biopoly- degradation of bioplastics on disposal (Rani et al. 2012), few projects have mers in conservation practice. Two applications of biopolymers to conservation were investi- focused on their chemical and physical properties during use and none gated – in commercial bioplastics as substi- have addressed the application of bioplastics to conservation practice.
    [Show full text]
  • Characterization and Degradation of Polyhydroxyalkanoates (PHA), Polylactides (PLA) and PHA-PLA Blends
    Characterization and Degradation of Polyhydroxyalkanoates (PHA), Polylactides (PLA) and PHA-PLA Blends Rafeya Sohail Microbiology and Molecular Genetics, University of the Punjab, Lahore Nazia Jamil ( [email protected] ) Microbiology and Molecular Genetics, University of the Punjab Lahore Research Keywords: Degradation, FT-IR, Mixed Culture, PHA-PLA blends, Polyhydroxyalkanoates, Polylactides, SEM, Soil Posted Date: December 1st, 2020 DOI: https://doi.org/10.21203/rs.3.rs-113670/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License 1 Characterization and Degradation of Polyhydroxyalkanoates 2 (PHA), Polylactides (PLA) and PHA-PLA blends 3 Rafeya Sohail1, Nazia Jamil1 4 1Department of Microbiology and Molecular Genetics, University of the Punjab, Quaid-e-Azam 5 Campus, Lahore 54590, Punjab, Pakistan 6 Correspondence: 7 Nazia Jamil 8 [email protected] 9 1 10 Abstract 11 Biodegradable biopolymers such as polyhydroxyalkanoates (PHA) and polylactide (PLA) have 12 wide range of applications in almost all sectors. Degradation of these polymers, however 13 efficient, still creates a paradox with green chemistry principles. Blending of these polymers can 14 potentially decrease plastic pollution due to their increased biodegradability. During this study, 15 PHAwas produced using bacterial strains DL3; Bacillus subtilis (MT043898), PWA; Bacillus 16 subtilis (MH142143), PWC; Pseudomonas aeruginosa (MH142144), PWF; Bacillus tequilensis 17 (MH142145) and PWG; Bacillus safensis (MH142146). Corn-based PLA was produced 18 chemically and physically blendedwith PHA (PHA-PLA blends). During molecular studies, 19 PHA, PLA and PHA-PLA blendswere characterized via FT-IR analysis, SEM, and light 20 microscopy indicating successful blending of PHA-PLA samples.
    [Show full text]
  • Operating, Field Maintenance, and Parts Manual Model 998 Metric CE Thank You for Choosing Shrinkfast Products
    Operating, Field Maintenance, and Parts Manual Model 998 Metric CE Thank you for choosing Shrinkfast products. Please visit us on the web at www.shrinkfast998.com for our latest product information and updates. Customer Service Issues: Before returning any Shrinkfast product, please call: (603)863-7719 Email at www.shrinkfasttools.com SAVE THIS MANUAL FOR FUTURE REFERENCE TABLE OF CONTENTS GENERAL SAFETY PRECAUTIONS & CE SAFETY CERTIFICATION .....................pages 2-4 REGULATOR OPERATION & MAINTENANCE ............................................................ pages 5-8 STARTING THE HEAT TOOL ............................................................................................ page 8 REGULATOR MAINTENANCE & SAFETY FEATURES ......................................... pages 9-10 EXCESS FLOW DEVICE .................................................................................................... page 9 CHOOSING THE CORRECT PROPANE TANK ....................................................... pages 11-12 TANK PRESSURE, TEMPERATURE & OPERATION ............................................ pages 13-14 VENTILATION REQUIREMENTS .................................................................................. page 15 GENERAL INFORMATION ON SHRINK FILM & SHRINK BAGS ...................... pages 16-17 SHRINK WRAPPING TECHNIQUES (PALLET BAGS & ODD SHAPED OBJECTS)........ pages 18-22 PRINCIPLES OF OPERATION .................................................................................. pages 23-25 OPERATING OVERVIEW ..........................................................................................
    [Show full text]
  • Biodegradable Packaging Materials from Animal Processing Co-Products and Wastes: an Overview
    polymers Review Biodegradable Packaging Materials from Animal Processing Co-Products and Wastes: An Overview Diako Khodaei, Carlos Álvarez and Anne Maria Mullen * Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Ashtown, Dublin, Ireland; [email protected] (D.K.); [email protected] (C.Á.) * Correspondence: [email protected]; Tel.: +353-(1)-8059521 Abstract: Biodegradable polymers are non-toxic, environmentally friendly biopolymers with con- siderable mechanical and barrier properties that can be degraded in industrial or home composting conditions. These biopolymers can be generated from sustainable natural sources or from the agri- cultural and animal processing co-products and wastes. Animals processing co-products are low value, underutilized, non-meat components that are generally generated from meat processing or slaughterhouse such as hide, blood, some offal etc. These are often converted into low-value products such as animal feed or in some cases disposed of as waste. Collagen, gelatin, keratin, myofibrillar proteins, and chitosan are the major value-added biopolymers obtained from the processing of animal’s products. While these have many applications in food and pharmaceutical industries, a sig- nificant amount is underutilized and therefore hold potential for use in the generation of bioplastics. This review summarizes the research progress on the utilization of meat processing co-products to fabricate biodegradable polymers with the main focus on food industry applications. In addition, the factors affecting the application of biodegradable polymers in the packaging sector, their current industrial status, and regulations are also discussed. Citation: Khodaei, D.; Álvarez, C.; Mullen, A.M. Biodegradable Keywords: biodegradable polymers; packaging materials; meat co-products; animal by-products; Packaging Materials from Animal protein films Processing Co-Products and Wastes: An Overview.
    [Show full text]