Экологическая Эволюция Ранних Cetartiodactyla И Реконструкция Ее Пропущенного Начального Звена © 2013 Г

Total Page:16

File Type:pdf, Size:1020Kb

Экологическая Эволюция Ранних Cetartiodactyla И Реконструкция Ее Пропущенного Начального Звена © 2013 Г ПАЛЕОНТОЛОГИЧЕСКИЙ ЖУРНАЛ, 2013, № 5, с. 72–88 УДК 569.73 ЭКОЛОГИЧЕСКАЯ ЭВОЛЮЦИЯ РАННИХ CETARTIODACTYLA И РЕКОНСТРУКЦИЯ ЕЕ ПРОПУЩЕННОГО НАЧАЛЬНОГО ЗВЕНА © 2013 г. И. А. Вислобокова Палеонтологический институт им. А.А. Борисяка РАН e%mail: [email protected] Поступила в редакцию 05.07.2012 г. Принята к печати 10.11.2012 г. Анализ биоразнообразия и экологической эволюции эоценовых Cetartiodactyla на фоне изменений биосферы, биоты и палеогеографии позволил разработать модель происхождения, становления и расселения группы. Прослежены основные направления экогенеза, данные по распространению, связь основных событий в эволюции группы с крупными абиотическими и биотическими событи% ями и подтверждена возможность происхождения Сetartiodactyla в мелу, предполагаемая молекуляр% ными данными. Показано, что Cetartiodactyla могли появиться в позднем мелу Азии на уровне 30°– 40° с.ш. или на юге Индокитая и рано дивергировали на Cetacea и Artiodactyla. Предлагаемая модель подтверждает монофилетичность Сetartiodactyla, Artiodactyla и Cetacea. Наличие пропущенного на% чального звена объясняет значительные изменения в строении Archaeoceti (в частности, зубной си% стемы) по сравнению с Artiodactyla. По экологии эоценовые Artiodactyla были ближе к исходному типу меловых эутериев. DOI: 10.7868/S0031031X13050127 ВВЕДЕНИЕ эволюции Cetartiodactyla и данные по экологии и распространению палеогеновых форм позволяют Среди млекопитающих группа Cetartiodactyla – реконструировать начальные этапы становления одна из самых многочисленных и разнообразных. группы, пока не представленные в ископаемом Cetartiodactyla известны в ископаемом состоянии ∼ состоянии. Значительный прогресс в изучении с эоцена ( 56 млн. л.н.). Они доминировали во эволюции биосферы, палеогеографии, природ% многих экосистемах палеогена, неогена и плей% но%климатических обстановок и растительного стоцена и очень разнообразны и ныне. Три чет% покрова, в частности, в мелу и палеогене, гло% верти из 330 современных видов Cetartiodactyla бальные палеогеографические, климатические и принадлежит к отряду Artiodactyla (парнопалые), а одна четверть – к отряду Cetacea (китообраз% фитогеографические схемы, в том числе создан% ные). Палеонтологическая история этой группы, ные на основе обработки компьютерных баз дан% освоившей все пространство планеты от тропи% ных, обеспечивают большую надежность такой ков до полюсов, может быть ценным материалом реконструкции. для изучения эволюции биосферы и биоразнооб% Предки Artiodactyla и Cetacea неизвестны. разия, а также для биостратиграфии. Ископаемые Предками Cetacea считали меловых Eutheria Artiodactyla и Cetacea относятся к числу наиболее (Simpson, 1945; Dechaseaux, 1961; Мчедлидзе, хорошо изученных групп. Получено много сведе% 1970) и более поздние группы: Mesonychia ний по их индивидуальному и историческому (Van Valen, 1966; Luo, Gingerich, 1999), Artiodactyla развитию, генетике, экологии, распространению, (Gingerich et al., 2001; Rose, 2001; Geisler et al., коэволюции c окружающей средой. Изотопные 2007), Suiformes семейства Raoellidae (Thewissen анализы эмали зубов используются для рекон% et al., 2009) или каких%то вымерших Artiodactyla, струкции палеообстановок. похожих на современных африканских оленьков Экологическая эволюция и распространение рода Hyemoschus (Thewissen et al., 2009). Проис% Artiodactyla тесно связаны с эволюцией и экспан% хождение отряда Artiodactyla связывали с мело% сией покрытосеменных, ведущей наземной фор% выми Eutheria (Kowalevsky, 1873–1874, 1875; No% мы растений, активно модифицирующей био% vacek, 1986, 1992; Prothero, 1993; Janis et al., 1998; сферу с конца мела. Покрытосеменные – среда Vislobokova, 1998, 2001; Vislobokova, Trovimov, обитания и основной корм Artiodactyla. Вместе с 2002), архаичными копытными Condylarthra или ними Artiodactyla активно влияют на ландшафт и Arctocyonidae (Van Valen, 1966), формами, близки% климат Земли и на все сообщество жизни на суше. ми к Ungulatomorpha (Nessov et al., 1998). По мо% Cetacea с эоцена влияют на сообщество жизни в лекулярным данным, Cetartiodactyla появились в морях и океанах. Знание основных направлений мелу (Shimamura et al., 1997; Zhou et al., 2011; Has% 72 ЭКОЛОГИЧЕСКАЯ ЭВОЛЮЦИЯ РАННИХ CETARTIODACTYLA 73 sanin et al., 2012). По данным филогенетических нама, где я была с Советско%Вьетнамской биоло% анализов, Cetaceа и Artiodactyla являются сест% гической экспедицией. ринскими группами (Thewissen et al., 2001; Gin% gerich et al., 2001; и др.), или Cetacea оказываются среди Artiodactyla и проявляют наибольшее род% ОСНОВНЫЕ ЭТАПЫ ЭКОЛОГИЧЕСКОЙ ство с разными группами (от Hippopotamidae до ЭВОЛЮЦИИ РАННИХ CETARTIODACTYLA Ruminantia) (Milinkovitch et al., 1998; Geisler et al., Основные события в эволюции Cetartiodactyla 2007; Spaulding et al., 2009; Hassanin et al., 2012; связаны с глобальными изменениями климата и и др.). Филогенетическая неопределенность поло% палеогеографии, а Artiodactyla и ранних Cetacea – жения Cetacea отразилось в выделении разных и с изменениями климата, географии и биоты ма% кластеров, например: Whippomorpha (Ancodonta + териков Северного полушария. История станов% + Cetacea), Сеtancodonta, Cetancodontomorpha ления и расселения Cetartiodactyla отражала на% (Cetacea + Hippopotamidae) и Cetruminantia (An% правленность биосферных, в том числе климати% codonta, Cetacea и Ruminantia). ческих изменений, их колебательный характер и В предыдущей статье о происхождении Cetar% протекала с закономерностями, прослеживаю% tiodactyla (Вислобокова, 2013) проанализированы щимися и в истории позднекайнозойской биоты. данные филогенетики и предложена модель на% В мелу и палеогене крупные перестройки в назем% чального этапа истории Cetartiodactyla на основе ных сообществах растительноядных Eutheria про% палеонтологических (сравнительно%морфологи% исходили на рубежах мел/палеоцен, палео% ческих) данных. Показано, что корни Cetartiodac% цен/эоцен и эоцен/олигоцен. Они сопровожда% tyla идут к меловым наземным Eutheria генерали% лись появлением новых экологических типов и зованного типа, а предковой для отрядов Artio% миграционными волнами, тесно связанными с dactyla и Cetacea могла быть гипотетическая изменениями растительных сообществ и биомов. базальная группа Cetartiodactyla. Дивергенцию Колебания широтного положения биомов и их Artiodactyla%Cetacea и адаптивную радиацию Ar% площадного распространения во времени сопро% tiodactyla с появлением подотрядов Ruminantia, вождались обновлениями флоры и фауны, мас% Tylopoda и Suiformes я отношу к доэоценовому штаб которых зависел от амплитуды изменений времени (>55 млн. л.н.). Молекулярное сходство биосферы. В процессе экологической эволюции Hippopotamidae и Cetacea, по моему мнению, от% пространство обитания растительноядных Euthe% ражает общность происхождения Artiodactyla и ria расширялось, а их размеры увеличивались, Cetacea и адаптации к водной среде, а разнообра% главным образом, в связи с изменением условий зие Artiodactyla и Cetacea в начале эоцена – не обитания, гомеостаза и прессом хищников. первое появление этих групп, а лишь начало их Artiodactyla и Cetacea – морфологически хоро% широкой экспансии. шо очерченные группы и представляют разные направления экологической эволюции. Данные Цель настоящей работы – дать реконструкцию по экогенезу этих групп в эоцене служат хорошей доэоценового этапа экологической эволюции Ce% основой для реконструкции начального недоста% tartiodactyla, проанализировав динамику разно% ющего звена истории Cetartiodactyla. Особенно% образия, направления экогенеза, особенности сти экогенеза эоценовых Cetartiodactyla, состоя% расселения в эоцене и их зависимость от крупных ние климата и растительного покрова подтвер% биотических и абиотических событий, а также ждают возможность появления и существования данные по современным видам Cetartiodactyla и Cetartiodactyla в мелу, предполагаемую сравни% меловым Eutheria. В работе предложена модель тельно%морфологическими и молекулярными ис% доэцен%эоценовой экологической эволюции, следованиями. Они также показывают, что разно% происхождения и истории расселения группы с образие Artiodactyla и Cetacea в раннем эоцене – учетом данных по изменениям биосферы, поло% это начало очередного этапа эволюции Cetartio% жения и очертаний континентов, климата, атмо% dactyla при глобальном климатическом потепле% сферы, ландшафтов, фауны и флоры. Показано, нии на рубеже палеоцена и эоцена, характеризу% где и когда Cetartiodactyla могли появиться, какие ющегося широкой экспансией этих групп. из известных меловых Eutheria наиболее близки к гипотетическим предкам Cetartiodactyla. Предла% Низкие темпы эволюции генеральных линий гаемая модель не поддерживает достаточно ши% млекопитающих на ранних этапах их развития в роко распространившееся предположение о па% сравнительно мало изменявшейся теплой био% рафилетичности отряда Artiodactyla. сфере позволяют предполагать, что эоценовые формы Сetacea и Artiodactyla не являлись началь% Работа выполнена в рамках программ “Проис% ными формами своих линий. Между первыми хождение жизни и становление биосферы”, Сetacea и Artiodactyla и раннеэоценовыми пред% “Биологическое разнообразие”, при поддержке ставителями этих двух отрядов, скорее всего, был РФФИ №№ 11%04%00933%а, 11%06%12030%офи%м% длительный промежуток (~20–30 млн. лет), пока 2011. Ценные сведения об экологии и анатомии не отраженный в их палеонтологической летопи% оленьков были получены мной в тропиках Вьет% си. Такая разница во времени между первым по% ПАЛЕОНТОЛОГИЧЕСКИЙ ЖУРНАЛ № 5 2013 74 ВИСЛОБОКОВА явлением предков группы и самой группы вполне Западный Внутренний пролив
Recommended publications
  • Artiodactyla and Perissodactyla (Mammalia) from the Early-Middle Eocene Kuldana Formation of Kohat (Pakistan)
    CO"uTK1BL 11015 FKOLI IHt \lC5tLL1 OF I' ALEO\ IOLOG1 THE UNIVERSITY OF IVICHIGAN VOI 77 Lo 10 p 717-37.1 October 33 1987 ARTIODACTYLA AND PERISSODACTYLA (MAMMALIA) FROM THE EARLY-MIDDLE EOCENE KULDANA FORMATION OF KOHAT (PAKISTAN) BY J. G. M. THEWISSEN. P. D. GINGERICH and D. E. RUSSELL MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN ANN ARBOR CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY Charles B. Beck, Director Jennifer A. Kitchell, Editor This series of contributions from the Museum of Paleontology is a medium for publication of papers based chiefly on collections in the Museum. When the number of pages issued is sufficient to make a volume, a title page and a table of contents will be sent to libraries on the mailing list, and to individuals upon request. A list of the separate issues may also be obtained by request. Correspond- ence should be directed to the Museum of Paleontology, The University of Michigan, Ann Arbor, Michigan 48109. VOLS. II-XXVII. Parts of volumes may be obtained if available. Price lists are available upon inquiry. I ARTIODACTI L .-I A\D PERISSODACTYL4 (kl.iihlhlAL1A) FROM THE EARLY-h1IDDLE EOCEUE KCLD..I\4 FORMATIO\ OF KOHAT (PAKISTAY) J. G. M. THEWISSEN. P. D. GINGERICH AND D. E. RUSSELL Ah.strcict.-Chorlakki. yielding approximately 400 specimens (mostly isolated teeth and bone fragments). is one of four major early-to-middle Eocene niammal localities on the Indo-Pakistan subcontinent. On the basis of ung~~latesclescribed in this paper we consider the Chorlakki fauna to be younger than that from Barbora Banda.
    [Show full text]
  • Bibliography
    1 Bibliography 1. Datopian (n.d.). Global Temperature Time Series. Author. Retrieved from https://datahub.io/core/global-temp#data 2. Adibekyan, V. (2019). Heavy Metal Rules. I. Exoplanet Incidence and Metallicity. Geosciences, 9(3), 105. doi:10.3390/geosciences9030105 3. Allen, J. F., Thake, B., & Martin, W. F.(2019). Nitrogenase Inhibition Limited Oxygenation of Earth’s Proterozoic Atmosphere. Trends in Plant Science, 24(11), 1022–1031. doi:10.1016/j.tplants.2019.07.007 4. Anderson, H. M., Barbacka, M. K., Bamford, M. K., Holmes, W. B. K., & An- derson, J. M. (2019). Umkomasia (megasporophyll): Part 1 of a Reassess- ment of Gondwana Triassic Plant Genera and a Reclassification of Some Previously Attributed. Alcheringa: An Australasian Journal of Palaeon- tology, 43(1), 43–70. doi:10.1080/03115518.2018.1554748 5. Budde, G., Burkhardt, C., & Kleine, T. (2019). Molybdenum Isotopic Evi- dence for the Late Accretion of Outer Solar System Material to Earth. Na- ture Astronomy, 3(8), 736–741. doi:10.1038/s41550-019-0779-y 6. Cabral, N., Lagarde, N., Reylé, C., Guilbert-Lepoutre, A., & Robin, A. (2019). The Chemical Composition of Planet Building Blocks As Predicted by Stellar Population Synthesis. Astronomy & Astrophysics, 622, A49. doi :10.1051/0004-6361/201833750 7. Clement, M. S., Kaib, N. A., Raymond, S. N., Chambers, J. E., & Walsh, K. J. (2019). The Early Instability Scenario: Terrestrial Planet Formation dur- ing the Giant Planet Instability, and the Effect of Collisional Fragmenta- tion. Icarus, 321, 778–790. doi:10.1016/j.icarus.2018.12.033 8. Doyle, A. E., Young,E. D., Klein, B., Zuckerman, B., & Schlichting, H.
    [Show full text]
  • PDF of Manuscript and Figures
    The triple origin of whales DAVID PETERS Independent Researcher 311 Collinsville Avenue, Collinsville, IL 62234, USA [email protected] 314-323-7776 July 13, 2018 RH: PETERS—TRIPLE ORIGIN OF WHALES Keywords: Cetacea, Mysticeti, Odontoceti, Phylogenetic analyis ABSTRACT—Workers presume the traditional whale clade, Cetacea, is monophyletic when they support a hypothesis of relationships for baleen whales (Mysticeti) rooted on stem members of the toothed whale clade (Odontoceti). Here a wider gamut phylogenetic analysis recovers Archaeoceti + Odontoceti far apart from Mysticeti and right whales apart from other mysticetes. The three whale clades had semi-aquatic ancestors with four limbs. The clade Odontoceti arises from a lineage that includes archaeocetids, pakicetids, tenrecs, elephant shrews and anagalids: all predators. The clade Mysticeti arises from a lineage that includes desmostylians, anthracobunids, cambaytheres, hippos and mesonychids: none predators. Right whales are derived from a sister to Desmostylus. Other mysticetes arise from a sister to the RBCM specimen attributed to Behemotops. Basal mysticetes include Caperea (for right whales) and Miocaperea (for all other mysticetes). Cetotheres are not related to aetiocetids. Whales and hippos are not related to artiodactyls. Rather the artiodactyl-type ankle found in basal archaeocetes is also found in the tenrec/odontocete clade. Former mesonychids, Sinonyx and Andrewsarchus, nest close to tenrecs. These are novel observations and hypotheses of mammal interrelationships based on morphology and a wide gamut taxon list that includes relevant taxa that prior studies ignored. Here some taxa are tested together for the first time, so they nest together for the first time. INTRODUCTION Marx and Fordyce (2015) reported the genesis of the baleen whale clade (Mysticeti) extended back to Zygorhiza, Physeter and other toothed whales (Archaeoceti + Odontoceti).
    [Show full text]
  • B.Sc. II YEAR CHORDATA
    B.Sc. II YEAR CHORDATA CHORDATA 16SCCZO3 Dr. R. JENNI & Dr. R. DHANAPAL DEPARTMENT OF ZOOLOGY M. R. GOVT. ARTS COLLEGE MANNARGUDI CONTENTS CHORDATA COURSE CODE: 16SCCZO3 Block and Unit title Block I (Primitive chordates) 1 Origin of chordates: Introduction and charterers of chordates. Classification of chordates up to order level. 2 Hemichordates: General characters and classification up to order level. Study of Balanoglossus and its affinities. 3 Urochordata: General characters and classification up to order level. Study of Herdmania and its affinities. 4 Cephalochordates: General characters and classification up to order level. Study of Branchiostoma (Amphioxus) and its affinities. 5 Cyclostomata (Agnatha) General characters and classification up to order level. Study of Petromyzon and its affinities. Block II (Lower chordates) 6 Fishes: General characters and classification up to order level. Types of scales and fins of fishes, Scoliodon as type study, migration and parental care in fishes. 7 Amphibians: General characters and classification up to order level, Rana tigrina as type study, parental care, neoteny and paedogenesis. 8 Reptilia: General characters and classification up to order level, extinct reptiles. Uromastix as type study. Identification of poisonous and non-poisonous snakes and biting mechanism of snakes. 9 Aves: General characters and classification up to order level. Study of Columba (Pigeon) and Characters of Archaeopteryx. Flight adaptations & bird migration. 10 Mammalia: General characters and classification up
    [Show full text]
  • Thewissen Et Al. Reply Replying To: J
    NATURE | Vol 458 | 19 March 2009 BRIEF COMMUNICATIONS ARISING Hippopotamus and whale phylogeny Arising from: J. G. M. Thewissen, L. N. Cooper, M. T. Clementz, S. Bajpai & B. N. Tiwari Nature 450, 1190–1194 (2007) Thewissen etal.1 describe new fossils from India that apparentlysupport fossils, Raoellidae or the raoellid Indohyus is more closely related to a phylogeny that places Cetacea (that is, whales, dolphins, porpoises) as Cetacea than is Hippopotamidae (Fig. 1). Hippopotamidae is the the sister group to the extinct family Raoellidae, and Hippopotamidae exclusive sister group to Cetacea plus Raoellidae in the analysis that as more closely related to pigs and peccaries (that is, Suina) than to down-weights homoplastic characters, althoughin the equallyweighted cetaceans. However, our reanalysis of a modified version of the data set analysis, another topology was equally parsimonious. In that topology, they used2 differs in retaining molecular characters and demonstrates Hippopotamidae moved one node out, being the sister group to an that Hippopotamidae is the closest extant family to Cetacea and that Andrewsarchus, Raoellidae and Cetacea clade. In neither analysis is raoellids are the closest extinct group, consistent with previous phylo- Hippopotamidae closer to the pigs and peccaries than to Cetacea, the genetic studies2,3. This topology supports the view that the aquatic result obtained by Thewissen et al.1. In all our analyses, pachyostosis adaptations in hippopotamids and cetaceans are inherited from their (thickening) of limb bones and bottom walking, which occur in hippo- common ancestor4. potamids9,10, are interpreted to have evolved before the pachyostosis of To conduct our analyses, we started with the same published matrix the auditory bulla, as seen in raoellids and cetaceans1.
    [Show full text]
  • Contributions from the Museum of Paleontology
    CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN Vol. 25, No. 6, p. 117-124 (2 text-figs.; 1 plate) January 26,1979 CHORLAKKZA HASSANZ, A NEW MIDDLE EOCENE DICHOBUNID (MAMMALIA, ARTIODACTYLA) FROM THE KULDANA FORMATION OF KOHAT (PAKISTAN) PHILIP D. GINGERICH, DONALD E. RUSSELL, DENISE SIGOGNEAU-RUSSELL, AND J.-L. HARTENBERGER MUSEUM OF PALEONTOLOGY THE UNIVERSITY OF MICHIGAN ANN ARBOR CONTRIBUTIONS FROM THE MUSEUM OF PALEONTOLOGY Gerald R. Smith, Director Robert V. Kesling, Editor Diane Wurzinger, Editor for this number The series of contributions from the Museum of Paleontology is a medium for the publication of papers based chiefly upon the collection in the Museum. When the num- ber of pages issued is sufficient to make a volume, a title page and a table of contents will be sent to libraries on the mailing list, and to individuals upon request. A list of the separate papers may also be obtained. Correspondence should be directed to the Museum of Paleontology, The University of Michigan, Ann Arbor, Michigan, 48109. VOLS. 11-XXV. Parts of volumes may be obtained if available. Price lists available upon inquiry. CHORLAKKLl HASSANZ, A NEW MIDDLE EOCENE DICHOBUNID (MAMMALIA, ARTIODACTYLA) FROM THE KULDANA FORMATION OF KOHAT (PAKISTAN) Philip D. Gingerich' ,Donald E. c us sell^, Denise Sigogneau-Russell2,and J.-L. Hartenberger3 Abstract.- A new genus and species of artiodactyl, Chorlakkia hassani, is de- scribed from the middle Eocene Kuldana Formation in the Kohat District of Pakistan. This is the smallest artiodactyl described from the Paleogene of Asia, and it is one of the smallest artiodactyls yet known.
    [Show full text]
  • Resolving the Relationships of Paleocene Placental Mammals
    Biol. Rev. (2015), pp. 000–000. 1 doi: 10.1111/brv.12242 Resolving the relationships of Paleocene placental mammals Thomas J. D. Halliday1,2,∗, Paul Upchurch1 and Anjali Goswami1,2 1Department of Earth Sciences, University College London, Gower Street, London WC1E 6BT, U.K. 2Department of Genetics, Evolution and Environment, University College London, Gower Street, London WC1E 6BT, U.K. ABSTRACT The ‘Age of Mammals’ began in the Paleocene epoch, the 10 million year interval immediately following the Cretaceous–Palaeogene mass extinction. The apparently rapid shift in mammalian ecomorphs from small, largely insectivorous forms to many small-to-large-bodied, diverse taxa has driven a hypothesis that the end-Cretaceous heralded an adaptive radiation in placental mammal evolution. However, the affinities of most Paleocene mammals have remained unresolved, despite significant advances in understanding the relationships of the extant orders, hindering efforts to reconstruct robustly the origin and early evolution of placental mammals. Here we present the largest cladistic analysis of Paleocene placentals to date, from a data matrix including 177 taxa (130 of which are Palaeogene) and 680 morphological characters. We improve the resolution of the relationships of several enigmatic Paleocene clades, including families of ‘condylarths’. Protungulatum is resolved as a stem eutherian, meaning that no crown-placental mammal unambiguously pre-dates the Cretaceous–Palaeogene boundary. Our results support an Atlantogenata–Boreoeutheria split at the root of crown Placentalia, the presence of phenacodontids as closest relatives of Perissodactyla, the validity of Euungulata, and the placement of Arctocyonidae close to Carnivora. Periptychidae and Pantodonta are resolved as sister taxa, Leptictida and Cimolestidae are found to be stem eutherians, and Hyopsodontidae is highly polyphyletic.
    [Show full text]
  • Does Evolution Make Big Changes? 150 Years After the “Origin
    150 years after the “Origin” Does Evolution Make Big Changes? I Most modern evolution skeptics acknowledge that evolution makes small changes Alan R. Rogers I They maintain that it does not make new families, classes, and phyla. I Each of these were created separately. August 30, 2016 1 / 40 2 / 40 Progressive Creationism Idea goes back at least to 1931 In 1982, Millard Erickson (a baptist theologian) proposed that It may be held that each kingdom originated is a separate creation, I God created many kinds of plant and animal, or that each phylum, or class, or order, or family, or genus, is an I then let them evolve. independent creation, which may have undergone differentiation or I Species evolve, but only in small ways. evolution since its creation. (Dewar, 1931. Difficulties of the Evolution Theory, p. 5) I Big differences reflect separate creation This idea now prominent among evolution skeptics in the USA. 3 / 40 4 / 40 And was discussed in 1866 “Science shows that whether they are vertebrates (finches), No doubt, any number of intermediate hypotheses might be invertebrates (walking sticks), or even bacteria—any observed framed, imagining separate ancestors for every genus, every order, change is minor and horizontal in nature, with no net increase in every class, and so on. But in point of fact, no one does attempt genetic information leading to large (vertical) change, or these compromises. macroevolution.” (J.J. Murphy, 19 Nov 1866. Northern Whig Frank Sherwin (2003) 5 / 40 6 / 40 How can we tell? Whales If evolution never makes big changes, then I There should be no intermediate fossils linking major taxa.
    [Show full text]
  • Contributions in BIOLOGY and GEOLOGY
    MILWAUKEE PUBLIC MUSEUM Contributions In BIOLOGY and GEOLOGY ~umber 56 March 21, 1984 Paleontology and Geology of the Bridger Formation, ,outhern Green River Basin, Southwestern Wyoming. Part 7. Survey of Bridgerian Artiodactyla, including description of a skull and partial skeleton of Antiacodon pygmaeus. Robert M. West REVIEWERS FOR THIS PUBLICATION: Robert J. Emry, National Museum of Natural History Peter Sheehan, Milwaukee Public Museum John A. Wilson, Balcones Research Center, Austin, Texas ISBN 0-89326-099-1 © 1984Milwaukee Public Museum Published by the order of the Board of Trustees Paleontology and Geology of the Bridger Formation, Southern Green River Basin, Southwestern Wyoming. Part 7. Survey of Bridgerian Artiodactyla, including description of a skull and partial skeleton of Antiacodon pygmaeus. Robert M. West Carnegie Museum of Natural History Pittsburgh, PA 15213 ACKNOWLEDGMENTS I am grateful to Robert J. Emry, U.S. National Museum of Natural His- tory, Washington, D.C.; Mary R. Dawson, Carnegie Museum of Natural History, Pittsburgh, PA; Richard H. Tedford, American Museum of Natural History, New York, NY; Leo J. Hickey and Mary Anne Turner, Yale Peabody Museum of Natural History, New Haven, CT; Donald Baird, Princeton Uni- versity, Princeton, NJ; and William D. Turnbull, Field Museum of Natural History, Chicago, IL, for access to and loan of specimens in their respective charges. Margery C. Coombs, University of Massachusetts, Amherst, MA, provided pre-publication information on her study of artiodactyl ear regions, and Kenneth D. Rose, The Johns Hopkins University, commented on the postcranial anatomy of Antiacodon and allowed me to examine material of Diacodexis. The drawings of Antiacodon were prepared by Susan D.
    [Show full text]
  • Paleontological Research
    Paleontological Research Vol. 6 No.4 December 2002 The Palaeontological Society 0 Co-Editors Kazushige Tanabe and Tomoki Kase Language Editor Martin Janal (New York, USA) Associate Editors Alan G. Beu (Institute of Geological and Nuclear Sciences, Lower Hutt, New Zealand), Satoshi Chiba (Tohoku University, Sendai, Japan), Yoichi Ezaki (Osaka City University, Osaka, Japan), James C. Ingle, Jr. (Stanford University, Stanford, USA), Kunio Kaiho (Tohoku University, Sendai, Japan), Susan M. Kidwell (University of Chicago, Chicago, USA), Hiroshi Kitazato (Shizuoka University, Shizuoka, Japan), Naoki Kohno (National Science Museum, Tokyo, Japan), Neil H. Landman (Amemican Museum of Natural History, New York, USA), Haruyoshi Maeda (Kyoto University, Kyoto, Japan), Atsushi Matsuoka (Niigata University, Niigata, Japan), Rihito Morita (Natural History Museum and Institute, Chiba, Japan), Harufumi Nishida (Chuo University, Tokyo, Japan), Kenshiro Ogasawara (University of Tsukuba, Tsukuba, Japan), Tatsuo Oji (University of Tokyo, Tokyo, Japan), Andrew B. Smith (Natural History Museum, London, Great Britain), Roger D. K. Thomas (Franklin and Marshall College, Lancaster, USA), Katsumi Ueno (Fukuoka University, Fukuoka, Japan), Wang Hongzhen (China University of Geosciences, Beijing, China), Yang Seong Young (Kyungpook National University, Taegu, Korea) Officers for 2001-2002 Honorary President: Tatsuro Matsumoto President: Hiromichi Hirano Councillors: Shuko Adachi, Kazutaka Amano, Hisao Ando, Masatoshi Goto, Hiromichi Hirano, Yasuo Kondo, Noriyuki Ikeya, Tomoki Kase, Hiroshi Kitazato, Itaru Koizumi, Haruyoshi Maeda, Ryuichi Majima, Makoto Manabe, Kei Mori, Hirotsugu Nishi, Hiroshi Noda, Kenshiro Ogasawara, Tatsuo Oji, Hisatake Okada, Tomowo Ozawa, Takeshi Setoguchi, Kazushige Tanabe, Yukimitsu Tomida, Kazuhiko Uemura, Akira Yao Members of Standing Committee: Makoto Manabe (General Affairs), Tatsuo Oji (Liaison Officer), Shuko Adachi (Finance), Kazushige Tanabe (Editor in Chief.
    [Show full text]
  • Not for Sale
    NOT FOR SALE © Roberts and Company Publishers, ISBN: 9781936221448, due August 23, 2013, For examination purposes only FINAL PAGES NOT FOR SALE The earliest whales, such as the 47-million-year-old Ambulocetus, still had legs. Their anatomy gives us clues to how whales made the transition from land to sea. © Roberts and Company Publishers, ISBN: 9781936221448, due August 23, 2013, For examination purposes only FINAL PAGES NOT FOR SALE Walking 1 Whales Introducing Evolution ne of the best feelings paleontologists can ever have is to realize that they’ve just found a fossil that will fll an empty space in our understanding Oof the history of life. Hans Thewissen got to enjoy that feeling one day in 1993, as he dug a 47-million-year-old fossil out of a hillside in Pakistan. As he picked away the rocks surrounding the FIGURE 1.1 bones of a strange mammal, he suddenly realized what he had Paleontologist Hans Thewissen has discovered many of the bones of found: a whale with legs. Ambulocetus in Pakistan. A hundred million years ago, not a single whale swam in all the world’s oceans. Whales did not yet exist, but their ancestors did. At the time, they were small, furry mammals that walked on land. Over millions of years, some of the descendants of those ancestors underwent a mind-boggling transformation. They lost their legs, traded their nostrils for a blowhole, and became crea- tures of the sea. This profound change was the result of evolution. 3 © Roberts and Company Publishers, ISBN: 9781936221448, due August 23, 2013, For examination purposes only FINAL PAGES NOTThis bookFOR is an introduction to that SALE process.
    [Show full text]
  • A Brief History of Whale Evolution: As Supported by The
    A Brief History of Whale Evolution As Supported By the Fossil Record BIOB 272 – Genetics and Evolution Presented by Mindy Flanders Presented for Rick Henry December 8, 2017 Cetaceans—whales, dolphins, and porpoises—are so different from other animals that, until recently, scientists were unable to identify their closest relatives. As any elementary student knows, a whale is not a fish. That means that despite the similarities in where they live and how they look, whales are not at all like salmon or even sharks. Carolus Linnaeus, known for classifying plants and animals, noted in the 1750s that “whales breathe air through lungs not gills; are warm blooded; and have many other anatomical differences that distinguish them from fish” (Prothero, 2015). Other characteristics cetaceans share with all other mammals are: they have hair (at some point in their life), they give birth to live young, and they nurse their young with milk. This implies that whales evolved from other mammals and, because ancestral mammals were land animals, that whales had land ancestors (Thewissen & Bajpai, 2001). But before they had land ancestors they had water ancestors. The ancestors of fish lived in water, too. Up until 375 million years ago (mya), everything other than plants and insects lived in water, but it was around that time that fish and land animals began to diverge. A series of fossils represent the fish-to-tetrapod transition that occurred during the Late Devonian Period 359-383 mya (Herron & Freeman, 2014). In search of a new food source, or to escape predators more than twice their size (Prothero, 2015), the first tetrapods pushed themselves out of the swamps and began to live on land (Switek, 2010).
    [Show full text]