Operating System Extensions to Support Host Based Virtual Machines
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Kutrace: Where Have All the Nanoseconds Gone?
KUTrace: Where have all the nanoseconds gone? Richard Sites, Invited Professor EPFL 2017.10.27 Tracing Summit 2017, Prague Richard Sites 2017.10.27 Outline Observability problem statement KUTrace solution Tracing design goals Goals drive the design Results Display Design Comparisons Conclusions Richard Sites 2017.10.27 Observability problem statement Richard Sites 2017.10.27 3 Problem statement This talk is about tail latency in real user-facing datacenter transactions. It is not about batch processing throughput, nor about benchmarks. Context: A datacenter of perhaps 20,000 servers running software services that spread work for a user-facing transaction across a few hundred or thousand machines in parallel. Each server handles hundreds of transactions per second. Some transactions are unusually slow, but not repeatably. Slow transactions occur unpredictably, but there are several per minute. We wish to observe where all the time goes in such transactions, and observe why they are slow. Richard Sites 2017.10.27 Problem statement ☞ Some transactions are unusually slow, but not repeatably. ∴ There is some source of interference just before or during a slow transaction. Understanding tail latency requires complete traces of CPU events over a few minutes, with small enough CPU and memory overhead to be usable under busiest-hour live load. Existing tracing tools have much-too-high overhead. Problem: build better tail-latency observation tools Richard Sites 2017.10.27 KUTrace solution Richard Sites 2017.10.27 6 KUTrace solution KUTrace uses minimal Linux kernel patches on a single server to trace every transition between kernel- and user-mode execution, on every CPU core, with small enough overhead to use routinely on live loads. -
University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Science
University of California at Berkeley College of Engineering Department of Electrical Engineering and Computer Science EECS 61C, Fall 2003 Lab 2: Strings and pointers; the GDB debugger PRELIMINARY VERSION Goals To learn to use the gdb debugger to debug string and pointer programs in C. Reading Sections 5.1-5.5, in K&R GDB Reference Card (linked to class page under “resources.”) Optional: Complete GDB documentation (http://www.gnu.org/manual/gdb-5.1.1/gdb.html) Note: GDB currently only works on the following machines: • torus.cs.berkeley.edu • rhombus.cs.berkeley.edu • pentagon.cs.berkeley.edu Please ssh into one of these machines before starting the lab. Basic tasks in GDB There are two ways to start the debugger: 1. In EMACS, type M-x gdb, then type gdb <filename> 2. Run gdb <filename> from the command line The following are fundamental operations in gdb. Please make sure you know the gdb commands for the following operations before you proceed. 1. How do you run a program in gdb? 2. How do you pass arguments to a program when using gdb? 3. How do you set a breakpoint in a program? 4. How do you set a breakpoint which which only occurs when a set of conditions is true (eg when certain variables are a certain value)? 5. How do you execute the next line of C code in the program after a break? 1 6. If the next line is a function call, you'll execute the call in one step. How do you execute the C code, line by line, inside the function call? 7. -
Tricore™ Tricore™ V1.6 Microcontrollers User Manual
TriCore™ 32-bit TriCore™ V1.6 Core Architecture 32-bit Unified Processor Core User Manual (Volume 1) V1.0, 2012-05 Microcontrollers Edition 2012-05 Published by Infineon Technologies AG 81726 Munich, Germany © 2012 Infineon Technologies AG All Rights Reserved. Legal Disclaimer The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party. Information For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com). Warnings Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office. Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered. -
PRE LIM INARY KDII-D Processor Manual (PDP-Ll/04)
PRE LIM I N A R Y KDII-D Processor Manual (PDP-ll/04) The information in this document is subject to change without notice and should not be construed as a commitment by Digital Equipment Corporation. Digital Equipment Corporation assumes no responsibility for any errors that may appear in this manual. Copyright C 1975 by Digital Equipment Corporation Written by PDP-II Engineering PREFACE OVE~ALt DESCRIPTION 3 8 0 INsT~UCTION SET 3~1 Introduction 1~2 Addressing ModIs 3.3 Instruction Timing l@4 In~truet1on Dtlcriptlonl le!5 Dlffer~ncei a,tween KOlle and KOllS ]0 6 Programming Diftereneel B~twlen pepita ).7 SUI L~tency Tim@1 CPu OPERlTING 5PECIFICATID~S 5 e 0 DETAILED HARDWARE DESC~ltTION 5.1 IntrOduction 5 m2 Data path Circuitry 5.2g1 General D~serlpt1on 5.2,,2 ALU 5,2 .. 3 Scratch Pad Mtmory 5.2,.3.1 Scratch P~d Circuitry 5.2.3.2 SCrateh P~d Addr~11 MUltlplex.r 5.2.3.3 SCrateh Pad Regilter 5 0 2 .. 4 B J:H'!qilil ter 5.2 .. 4.1 B ReQister CircuItry 5.2 .. 4.2 8 L~G MUltl~lex@r 5,2.5 AMUX 5.2.6 Pfoeellof statuI Word (PSW) 5.3 Con<Htion COd@i 5.3.1 G~neral De~erl~tlon 5.3.2 Carry and overflow Decode 5.3.3 Ayte Multiplexing 5.4 UNIBUS Addf@$5 and Data Interfaces S.4 g 1 U~IBUS Dr1v~rl and ~lee1Vtrl 5.4@2 Bus Addr~s~ Generation 5 8 4111 Internal Addrf$$ D@coder 5 0 4,.4 Bus Data Line Interface S.5 Instruet10n DeCoding 5.5,,1 General De~er1pt1nn 5;5.2 Instruction Re91lt~r 5.5,,3 Instruetlon Decoder 5.5.3 0 1 Doubl~ O~erand InltrYetions 5.5.3.2 Single Operand Inltruetlons 5,5.3.3 Branch In$truetionl 5 8 5.3 6 4 Op~rate rn~truet1ons 5.6 Auil11ary ALU Control 5.6.1 G~ntral Delcrlptlon 5.6.2 COntrol Circuitry 5.6.2.1 Double Op@rand Instructions 5.6.2.2 Singl@ nDef~nd Instruet10ns PaQe 3 5.7 Data Transfer Control 5,7,1 General Descr1ption 5,7,2 Control CIrcuItry 5,7,2,1 Procelsor Cloek Inhibit 5,7,2.2 UNIBUS Synchronization 5,7.2,3 BUs Control 5.7,2.4 MSyN/SSYN Timeout 5,7.2.5 Bus Error. -
Debugging Kernel Problems
Debugging Kernel Problems by GregLehey Edition for AsiaBSDCon 2004 Taipei, 13 March 2004 Debugging Kernel Problems by GregLehey([email protected]) Copyright © 1995-2004 GregLehey 3Debugging Kernel Problems Preface Debugging kernel problems is a black art. Not manypeople do it, and documentation is rare, in- accurate and incomplete. This document is no exception: faced with the choice of accuracyand completeness, I chose to attempt the latter.Asusual, time was the limiting factor,and this draft is still in beta status. This is a typical situation for the whole topic of kernel debugging: building debug tools and documentation is expensive,and the people who write them are also the people who use them, so there'satendencytobuild as much of the tool as necessary to do the job at hand. If the tool is well-written, it will be reusable by the next person who looks at a particular area; if not, it might fall into disuse. Consider this book a starting point for your own develop- ment of debugging tools, and remember: more than anywhere else, this is an area with ``some as- sembly required''. Debugging Kernel Problems 4 1 Introduction Operating systems fail. All operating systems contain bugs, and theywill sometimes cause the system to behave incorrectly.The BSD kernels are no exception. Compared to most other oper- ating systems, both free and commercial, the BSD kernels offer a large number of debugging tools. This tutorial examines the options available both to the experienced end user and also to the developer. In this tutorial, we’ll look at the following topics: • Howand whykernels fail. -
Chapter 1. Origins of Mac OS X
1 Chapter 1. Origins of Mac OS X "Most ideas come from previous ideas." Alan Curtis Kay The Mac OS X operating system represents a rather successful coming together of paradigms, ideologies, and technologies that have often resisted each other in the past. A good example is the cordial relationship that exists between the command-line and graphical interfaces in Mac OS X. The system is a result of the trials and tribulations of Apple and NeXT, as well as their user and developer communities. Mac OS X exemplifies how a capable system can result from the direct or indirect efforts of corporations, academic and research communities, the Open Source and Free Software movements, and, of course, individuals. Apple has been around since 1976, and many accounts of its history have been told. If the story of Apple as a company is fascinating, so is the technical history of Apple's operating systems. In this chapter,[1] we will trace the history of Mac OS X, discussing several technologies whose confluence eventually led to the modern-day Apple operating system. [1] This book's accompanying web site (www.osxbook.com) provides a more detailed technical history of all of Apple's operating systems. 1 2 2 1 1.1. Apple's Quest for the[2] Operating System [2] Whereas the word "the" is used here to designate prominence and desirability, it is an interesting coincidence that "THE" was the name of a multiprogramming system described by Edsger W. Dijkstra in a 1968 paper. It was March 1988. The Macintosh had been around for four years. -
Optimization of System's Performance with Kernel Tracing by Cohort Intelligence
I.J. Information Technology and Computer Science, 2017, 6, 59-66 Published Online June 2017 in MECS (http://www.mecs-press.org/) DOI: 10.5815/ijitcs.2017.06.08 Optimization of System’s Performance with Kernel Tracing by Cohort Intelligence Aniket B. Tate Dept. of Computer Engineering, Vishwakarma Institute of Information Technology, Pune, 411048, India E-mail: [email protected] Laxmi A. Bewoor Dept. of Computer Engineering, Vishwakarma Institute of Information Technology, Pune, 411048, India E-mail: [email protected] Abstract—Linux tracing tools are used to record the execution time etc. which shows better results. While events running in the background on the system. But scheduling a process on one of the cores, the scheduler these tools lack to analyze the log data. In the field of considers the average waiting time, turnaround time, time Artificial Intelligence Cohort Intelligence (CI) is recently quantum for a process, number of context switches, proposed technique, which works on the principle of self- earliness, the tardiness of process etc. But the scheduler learning within a cohort. This paper presents an approach does not take CPU load into consideration. As a result of to optimize the performance of the system by tracing the this, the cores get unevenly loaded and many of the cores system, then extract the information from trace data and will be kept in ideal state. Cohort Intelligence (CI) is pass it to cohort intelligence algorithm. The output of recently introduced meta-heuristics [6][7] it works on cohort intelligence algorithm shows, how the load of the self-supervised learning behavior in a cohort. -
BSD UNIX Toolbox 1000+ Commands for Freebsd, Openbsd
76034ffirs.qxd:Toolbox 4/2/08 12:50 PM Page iii BSD UNIX® TOOLBOX 1000+ Commands for FreeBSD®, OpenBSD, and NetBSD®Power Users Christopher Negus François Caen 76034ffirs.qxd:Toolbox 4/2/08 12:50 PM Page ii 76034ffirs.qxd:Toolbox 4/2/08 12:50 PM Page i BSD UNIX® TOOLBOX 76034ffirs.qxd:Toolbox 4/2/08 12:50 PM Page ii 76034ffirs.qxd:Toolbox 4/2/08 12:50 PM Page iii BSD UNIX® TOOLBOX 1000+ Commands for FreeBSD®, OpenBSD, and NetBSD®Power Users Christopher Negus François Caen 76034ffirs.qxd:Toolbox 4/2/08 12:50 PM Page iv BSD UNIX® Toolbox: 1000+ Commands for FreeBSD®, OpenBSD, and NetBSD® Power Users Published by Wiley Publishing, Inc. 10475 Crosspoint Boulevard Indianapolis, IN 46256 www.wiley.com Copyright © 2008 by Wiley Publishing, Inc., Indianapolis, Indiana Published simultaneously in Canada ISBN: 978-0-470-37603-4 Manufactured in the United States of America 10 9 8 7 6 5 4 3 2 1 Library of Congress Cataloging-in-Publication Data is available from the publisher. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600. Requests to the Publisher for permis- sion should be addressed to the Legal Department, Wiley Publishing, Inc., 10475 Crosspoint Blvd., Indianapolis, IN 46256, (317) 572-3447, fax (317) 572-4355, or online at http://www.wiley.com/go/permissions. -
Debugging a Program
Debugging a Program SunPro A Sun Microsystems, Inc. Business 2550 Garcia Avenue Mountain View, CA 94043 U.S.A. Part No: 801-5106-10 Revision A December 1993 1993 Sun Microsystems, Inc. 2550 Garcia Avenue, Mountain View, California 94043-1100 U.S.A. All rights reserved. This product and related documentation are protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or related documentation may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Portions of this product may be derived from the UNIX® and Berkeley 4.3 BSD systems, licensed from UNIX System Laboratories, Inc. and the University of California, respectively. Third-party font software in this product is protected by copyright and licensed from Sun’s Font Suppliers. RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the United States Government is subject to the restrictions set forth in DFARS 252.227-7013 (c)(1)(ii) and FAR 52.227-19. The product described in this manual may be protected by one or more U.S. patents, foreign patents, or pending applications. TRADEMARKS Sun, Sun Microsystems, the Sun logo, SunPro, SunPro logo, Sun-4, SunOS, Solaris, ONC, OpenWindows, ToolTalk, AnswerBook, and Magnify Help are trademarks or registered trademarks of Sun Microsystems, Inc. UNIX and OPEN LOOK are registered trademarks of UNIX System Laboratories, Inc., a wholly owned subsidiary of Novell, Inc. All other product names mentioned herein are the trademarks of their respective owners. All SPARC trademarks, including the SCD Compliant Logo, are trademarks or registered trademarks of SPARC International, Inc. -
Exceptions and Processes
Exceptions and Processes! Jennifer Rexford! The material for this lecture is drawn from! Computer Systems: A Programmerʼs Perspective (Bryant & O"Hallaron) Chapter 8! 1 Goals of this Lecture! •#Help you learn about:! •# Exceptions! •# The process concept! … and thereby…! •# How operating systems work! •# How applications interact with OS and hardware! The process concept is one of the most important concepts in systems programming! 2 Context of this Lecture! Second half of the course! Previously! Starting Now! C Language! Application Program! language! service! levels! Assembly Language! levels! Operating System! tour! tour! Machine Language! Hardware! Application programs, OS,! and hardware interact! via exceptions! 3 Motivation! Question:! •# How does a program get input from the keyboard?! •# How does a program get data from a (slow) disk?! Question:! •# Executing program thinks it has exclusive control of CPU! •# But multiple programs share one CPU (or a few CPUs)! •# How is that illusion implemented?! Question:! •# Executing program thinks it has exclusive use of memory! •# But multiple programs must share one memory! •# How is that illusion implemented?! Answers: Exceptions…! 4 Exceptions! •# Exception! •# An abrupt change in control flow in response to a change in processor state! •# Examples:! •# Application program:! •# Requests I/O! •# Requests more heap memory! •# Attempts integer division by 0! •# Attempts to access privileged memory! Synchronous! •# Accesses variable that is not$ in real memory (see upcoming $ “Virtual Memory” lecture)! •# User presses key on keyboard! Asynchronous! •# Disk controller finishes reading data! 5 Exceptions Note! •# Note:! ! !Exceptions in OS % exceptions in Java! Implemented using! try/catch! and throw statements! 6 Exceptional Control Flow! Application! Exception handler! program! in operating system! exception! exception! processing! exception! return! (optional)! 7 Exceptions vs. -
Providing Memory Performance Feedback in Modern Processors
Informing Memory Operations: Providing Memory Performance Feedback in Modern Processors Mark Horowitz Margaret Martonosi Todd C. Mowry Michael D. Smith Computer Systems Department of Department of Electrical Division of Laboratory Electrical Engineering and Computer Engineering Applied Sciences Stanford University Princeton University University of Toronto Harvard University [email protected] [email protected] [email protected] [email protected] Abstract other purely hardware-based mechanisms (e.g., stream buffers [Jou90]) are complete solutions. Memory latency is an important bottleneck in system performance that cannot be adequately solved by hardware alone. Several prom- In addition to hardware mechanisms, a number of promising soft- ising software techniques have been shown to address this problem ware techniques have been proposed to avoid or tolerate memory successfully in specific situations. However, the generality of these latency. These software techniques have resorted to a variety of software approaches has been limited because current architectures different approaches for gathering information and reasoning about do not provide a fine-grained, low-overhead mechanism for memory performance. Compiler-based techniques, such as cache observing and reacting to memory behavior directly. To fill this blocking [AKL79,GJMS87,WL91] and prefetching [MLG92, need, we propose a new class of memory operations called inform- Por89] use static program analysis to predict which references are ing memory operations, which essentially consist of a memory likely to suffer misses. Memory performance tools have relied on operation combined (either implicitly or explicitly) with a condi- sampling or simulation-based approaches to gather memory statis- tional branch-and-link operation that is taken only if the reference tics [CMM+88,DBKF90,GH93,LW94,MGA95]. -
Absolute BSD—The Ultimate Guide to Freebsd Table of Contents Absolute BSD—The Ultimate Guide to Freebsd
Absolute BSD—The Ultimate Guide to FreeBSD Table of Contents Absolute BSD—The Ultimate Guide to FreeBSD............................................................................1 Dedication..........................................................................................................................................3 Foreword............................................................................................................................................4 Introduction........................................................................................................................................5 What Is FreeBSD?...................................................................................................................5 How Did FreeBSD Get Here?..................................................................................................5 The BSD License: BSD Goes Public.......................................................................................6 The Birth of Modern FreeBSD.................................................................................................6 FreeBSD Development............................................................................................................7 Committers.........................................................................................................................7 Contributors........................................................................................................................8 Users..................................................................................................................................8