Miniaturization of Imaging Systems R

Total Page:16

File Type:pdf, Size:1020Kb

Miniaturization of Imaging Systems R M MST/MEMS FOR PRODUCTION ENGINEERING Miniaturization of Imaging Systems R. Völkel, M. Eisner and K.J. Weible Micro-cameras integrated into mo- How did Mother Nature solve minia- 2) The next step is to derive the max- bile phones or computers are very turization problems in optics? For imum lens diameter of the system popular these days. Such micro- large vertebrates, Nature implement- from the desired overall thickness of cameras operate with low-priced ed single-aperture eyes. Here the vol- the camera system. For an F/2.4 sys- lenses made of plastics and provide ume of the eye is a free design pa- tem, the image distance is 2.4 times a decent image quality. Having a rameter - the optical performance is the aperture diameter. The overall closer look at the camera, we dis- the key issue. For small invertebrates, thickness is the image distance plus cover that the optical part is usually evolution preferred to distribute im- lens and detector thickness. a bulky block of some 5x5x5 mm3 age capturing to a matrix of small on top of a very thin electronic im- eye sensors [1]. Usually the resolution 3) Knowing lens diameter and stop age sensor. Why does optics remain of such so-called compound or fly's number F, the maximum number of so huge compared with highly eyes is pretty poor. For small animals, transferred pixel M is derived. If the miniaturized electronics? Is there a this is the only way to avoid a flood- number of image pixels of one single fundamental problem with the ing of the animal's neural system. imaging channel is not sufficient, miniaturization of a lens system? However, the poor image quality multiple channels have to be used. Yes, there is. The number of image makes the fly's eyes concept useless Each imaging channel should only pixels a lens can transmit scales for technical applications. image a limited angular section. A with the square of the lens diame- superposition of the partial images is ter. If the lens diameter is getting The most promising natural ap- performed either within the signal- smaller, the image quality will be proach for miniaturization is the eye processing unit or by spatial superpo- reduced drastically. This is a funda- system of jumping spiders. Jumping sition in the image plane (see Fig. 1). mental limitation to the further spiders have opted for single-lens For spatial superposition, erect imag- miniaturization of imaging systems. eyes, but eight of them. Jumping spi- ing is required. Only next neighbor Is there any chance to overcome ders have two high-resolution eyes, images should superimpose to limit this problem? A fascinating ap- two wide-angle eyes and four addi- off-axis aberrations. proach is to look how Mother Na- tional side eyes. The two high-resolu- ture has found solutions for very tion eyes provide a magnified image small creatures. Nature has dis- at a high resolution for a rather tributed the imaging task to an ar- small visual field. Jumping spiders ray of lens systems. Microfabrica- use these eyes for detailed inspection tion capabilities now allow imple- of objects of interest. The two wide- mentation of similar design ap- angle eyes provide a large visual proaches to imaging systems used field at a reduced resolution. The e.g. for micro-cameras and pho- four small side eyes cover the large tolithography machines. field left and right of the spider. Figure 1: Miniaturized imaging systems based Jumping spiders do not have com- on spatial superposition of the partial erect im- Miniaturization of Lens Systems pound eyes. Their resolution would ages created by adjacent imaging channels. Both, the stop number F and the be too poor to identify a target Each lens channel images only a limited angu- lar section. diffraction-limited spot size of a lens worth to jump on. To have single- are independent of lens scale. A lens eyes common to vertebrates, spi- Micro-Optics downscaling of a lens does not influ- ders are too small. The spider uses a Today's micro-optical design and ence the size of the image pixel; cluster of single-lens eyes, each pair manufacturing is closely tied to however, downscaling drastically re- tailored for a different task. Spiders ideas, concepts and technologies de- duces the number of transported pix- see almost as sharp as we do and veloped for the semiconductor indus- els. For a diffraction-limited lens sys- likewise have a good idea of what is try [2]. Three main categories of tem, the number of transported im- going on in their surroundings. miniaturized lenses are available: age pixels scales with the square of diffractive, refractive and graded in- the lens diameter. Table 1 gives the Learning from the jumping spider we dex microlenses. number of image pixels M for an can derive the following design strat- F/2.4 diffraction-limited system of egy for miniaturized imaging sys- Although animal eyes are based on different lens diameters. A miniatur- tems: graded index lenses, the difficult ized imaging system is able to image manufacturing process severely limits fine details of a scene, but not many. 1) The first step is to choose the F- their availability for technical imag- number on the basis of the ing. For diffractive microlenses, focal detector resolution, the length and efficiency depend strong- desired light gathering ly on the wavelength. The use of ability and the numerical diffractive lenses is restricted to aperture of the available monochromatic imaging applica- Table 1: Number of image pixels for an F/2.4 diffraction-limit- ed single-aperture system of different lens diameters. optical sub-components. tions. Refractive microlenses seem to mstnews 2/03 36 MST/MEMS FOR PRODUCTION ENGINEERING M be the best solution. A standard "classical" mounting is not practical sition of the partial images created manufacturing technique for refrac- and is too expensive. The preferred by adjacent imaging channels seems tive microlens arrays is the reflow solution is manufacturing on the ba- to be a promising approach. Each technique. Photoresist is micro-struc- sis of a wafer-scale and a wafer-level imaging channel images only a very tured by photolithography and melt- packaging approach for mounting. A limited angular section. Elliptical lens ed. The lens profile is formed by sur- Mask Aligner is used to align a stack bases are used to correct astigmatism face tension during melting. The of planar wafers containing both im- for oblique incidence. Wafer-scale melted resist lens serves as a master age sensors and optics. The different lens manufacturing and wafer-level for subsequent transfer processes layers are bonded together by using packaging are the key objectives of like reactive ion etching or replica- epoxy, thermal or fusion bonding, or this project (see Figure 2). tion. Aspheric lens profiles are ob- thick-film solder glass bonding. A tained by varying the etch parame- subsequent dicing step is used to ters. separate the wafer stack into the in- dividual systems or modules. This Apertures, stops, baffles and filters method allows a cost-efficient are other essential parts of every op- mounting of some hundreds of mi- Figure 2: Wafer-scale lens manufacturing and wafer-level packaging for imaging system. tical system. They are necessary to cro-cameras in one step. improve the image contrast by block- Microlens Projection Lithography ing aberrant rays, adapting the In the following we will give two ex- Microlens Projection Lithography wavelength spectra and reducing amples of miniaturized imaging sys- (MPL) is a contact-less photolitho- straylight. For miniaturized imaging tems based on the array concept. graphic technique that has been de- systems, structured wavelength fil- veloped for SUSS MicroTec Mask ters (IR- or color filters) and aperture Miniaturized Imaging System Aligners [4]. MPL uses an ultra-flat arrays are realized by thin film depo- Wafer Level Optics for CMOS Imagers microlens-based projection system sition, photolithography and conse- Miniaturized imaging systems based consisting of some 100,000 side-by- quent etch or lift-off steps. on the above design rules and multi- side identical lens channels. Each lens Packaging and alignment of minia- ple imaging channels are currently channel consists of 4 microlens layers turized lens systems is a rather diffi- being investigated within the EU-IST (see Figure 3). Wafer-level packaging cult task. For micro-optics, standard Project WALORI [3]. Spatial superpo- of the different optical layers ensures Advertisement mstnews 2/03 37 M MST/MEMS FOR PRODUCTION ENGINEERING square of the lens diameter. If the lens diameter is getting too small, the image quality will be reduced drastically. A possible way out of this dilemma is to use bio-inspired array imaging systems. Highly miniaturized imaging systems based on this con- cept offer an enormous potential for applications from electronic imaging to high-resolution photolithography. Figure 4: Ultra-flat microlens projection system integrated into the SUSS MicroTec MA150-MPL References Mask Aligner. Microlens Projection Lithogra- [1]M. F. Land, D. E. Nilson, "Animal phy allows photolithography on curved or Eyes", Oxford Animal Biology Se- non-planar substrates, in V-grooves, and holes. Figure 3: A microlens based projection system ries, ISBN 0 19 8575645 (2002). projects a photomask onto a resist layer. Each images from different channels over- [2]H. P. Herzig (editor), "Micro-op- lens channel images a small part of the pho- lap consistently and form a complete tics", Taylor & Francis, ISBN 0- tomask pattern onto the wafer. The partial im- ages overlap consistently and form a complete aerial image of the photomask. 7484-0481-3 (1997). aerial image of the photomask. Front- and [3]European Commission, Project backside telecentricity provides equal line Microlens Projection Lithography No.: IST-2001-34646, WALORI - width over the whole depth of focus DOF.
Recommended publications
  • Imperial College London Department of Physics Graphene Field Effect
    Imperial College London Department of Physics Graphene Field Effect Transistors arXiv:2010.10382v2 [cond-mat.mes-hall] 20 Jul 2021 By Mohamed Warda and Khodr Badih 20 July 2021 Abstract The past decade has seen rapid growth in the research area of graphene and its application to novel electronics. With Moore's law beginning to plateau, the need for post-silicon technology in industry is becoming more apparent. Moreover, exist- ing technologies are insufficient for implementing terahertz detectors and receivers, which are required for a number of applications including medical imaging and secu- rity scanning. Graphene is considered to be a key potential candidate for replacing silicon in existing CMOS technology as well as realizing field effect transistors for terahertz detection, due to its remarkable electronic properties, with observed elec- tronic mobilities reaching up to 2 × 105 cm2 V−1 s−1 in suspended graphene sam- ples. This report reviews the physics and electronic properties of graphene in the context of graphene transistor implementations. Common techniques used to syn- thesize graphene, such as mechanical exfoliation, chemical vapor deposition, and epitaxial growth are reviewed and compared. One of the challenges associated with realizing graphene transistors is that graphene is semimetallic, with a zero bandgap, which is troublesome in the context of digital electronics applications. Thus, the report also reviews different ways of opening a bandgap in graphene by using bi- layer graphene and graphene nanoribbons. The basic operation of a conventional field effect transistor is explained and key figures of merit used in the literature are extracted. Finally, a review of some examples of state-of-the-art graphene field effect transistors is presented, with particular focus on monolayer graphene, bilayer graphene, and graphene nanoribbons.
    [Show full text]
  • From Sand to Circuits
    From sand to circuits By continually advancing silicon technology and moving the industry forward, we help empower people to do more. To enhance their knowledge. To strengthen their connections. To change the world. How Intel makes integrated circuit chips www.intel.com www.intel.com/museum Copyright © 2005Intel Corporation. All rights reserved. Intel, the Intel logo, Celeron, i386, i486, Intel Xeon, Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other countries. *Other names and brands may be claimed as the property of others. 0605/TSM/LAI/HP/XK 308301-001US From sand to circuits Revolutionary They are small, about the size of a fingernail. Yet tiny silicon chips like the Intel® Pentium® 4 processor that you see here are changing the way people live, work, and play. This Intel® Pentium® 4 processor contains more than 50 million transistors. Today, silicon chips are everywhere — powering the Internet, enabling a revolution in mobile computing, automating factories, enhancing cell phones, and enriching home entertainment. Silicon is at the heart of an ever expanding, increasingly connected digital world. The task of making chips like these is no small feat. Intel’s manufacturing technology — the most advanced in the world — builds individual circuit lines 1,000 times thinner than a human hair on these slivers of silicon. The most sophisticated chip, a microprocessor, can contain hundreds of millions or even billions of transistors interconnected by fine wires made of copper. Each transistor acts as an on/off switch, controlling the flow of electricity through the chip to send, receive, and process information in a fraction of a second.
    [Show full text]
  • Part III. Functional Polymers for Semiconductor Applications Outline
    Functional Polymer/1st Semester, 2006 _________________________________________ Part III. Functional Polymers for Semiconductor Applications Outline of Part Photoresist for Semiconductor Applications Introduction of photolithography Photoresist Materials for Exposure at 193 nm Wavelength Chemically Amplified Resists for F2 Excimer laser Lithography Prof. Jin-Heong Yim Motivations Creation of integrated circuits, which are a major component in computer technology An extension of photolithography processes are used to create standard semiconductor chips Play a key role in the production of technically demanding components of advanced microsensors Used to make adhesives in electronics Prof. Jin-Heong Yim History Historically, lithography is a type of printing technology that is based on the chemical repellence of oil and water. Photo-litho-graphy: latin: light-stone-writing In 1826, Joseph Nicephore Niepce, in Chalon, France, takes the first photograph using bitumen of Judea on a pewter plate, developed using oil of lavender and mineral spirits In 1935 Louis Minsk of Eastman Kodak developed the first negative photoresist In 1940 Otto Suess developed the first positive photoresist. In 1954, Louis Plambeck, Jr., of Du Pont, develops the Dycryl polymeric letterpress plate Prof. Jin-Heong Yim Microlithography A process that involves transferring an integrated circuit pattern into a polymer film and subsequently replicating that pattern in an underlying thin conductor or dielectric film Prof. Jin-Heong Yim How Small Can We Print ? SEM picture of typical lithographic pattern Comparison of the dimensions of lithographic images and familiar objects Thompson, L. F.; Willson, C. G.; Bowden, M. J. Introduction to Microlithography; 2nd Ed; ACS Professional Reference Book; American Chemical Society; Washington, DC, 1994 Prof.
    [Show full text]
  • The Economic Impact of Moore's Law: Evidence from When It Faltered
    The Economic Impact of Moore’s Law: Evidence from when it faltered Neil Thompson Sloan School of Management, MIT1 Abstract “Computing performance doubles every couple of years” is the popular re- phrasing of Moore’s Law, which describes the 500,000-fold increase in the number of transistors on modern computer chips. But what impact has this 50- year expansion of the technological frontier of computing had on the productivity of firms? This paper focuses on the surprise change in chip design in the mid-2000s, when Moore’s Law faltered. No longer could it provide ever-faster processors, but instead it provided multicore ones with stagnant speeds. Using the asymmetric impacts from the changeover to multicore, this paper shows that firms that were ill-suited to this change because of their software usage were much less advantaged by later improvements from Moore’s Law. Each standard deviation in this mismatch between firm software and multicore chips cost them 0.5-0.7pp in yearly total factor productivity growth. These losses are permanent, and without adaptation would reflect a lower long-term growth rate for these firms. These findings may help explain larger observed declines in the productivity growth of users of information technology. 1 I would like to thank my PhD advisors David Mowery, Lee Fleming, Brian Wright and Bronwyn Hall for excellent support and advice over the years. Thanks also to Philip Stark for his statistical guidance. This work would not have been possible without the help of computer scientists Horst Simon (Lawrence Berkeley National Lab) and Jim Demmel, Kurt Keutzer, and Dave Patterson in the Berkeley Parallel Computing Lab, I gratefully acknowledge their overall guidance, their help with the Berkeley Software Parallelism Survey and their hospitality in letting me be part of their lab.
    [Show full text]
  • Nanoelectronics
    Highlights from the Nanoelectronics for 2020 and Beyond (Nanoelectronics) NSI April 2017 The semiconductor industry will continue to be a significant driver in the modern global economy as society becomes increasingly dependent on mobile devices, the Internet of Things (IoT) emerges, massive quantities of data generated need to be stored and analyzed, and high-performance computing develops to support vital national interests in science, medicine, engineering, technology, and industry. These applications will be enabled, in part, with ever-increasing miniaturization of semiconductor-based information processing and memory devices. Continuing to shrink device dimensions is important in order to further improve chip and system performance and reduce manufacturing cost per bit. As the physical length scales of devices approach atomic dimensions, continued miniaturization is limited by the fundamental physics of current approaches. Innovation in nanoelectronics will carry complementary metal-oxide semiconductor (CMOS) technology to its physical limits and provide new methods and architectures to store and manipulate information into the future. The Nanoelectronics Nanotechnology Signature Initiative (NSI) was launched in July 2010 to accelerate the discovery and use of novel nanoscale fabrication processes and innovative concepts to produce revolutionary materials, devices, systems, and architectures to advance the field of nanoelectronics. The Nanoelectronics NSI white paper1 describes five thrust areas that focus the efforts of the six participating agencies2 on cooperative, interdependent R&D: 1. Exploring new or alternative state variables for computing. 2. Merging nanophotonics with nanoelectronics. 3. Exploring carbon-based nanoelectronics. 4. Exploiting nanoscale processes and phenomena for quantum information science. 5. Expanding the national nanoelectronics research and manufacturing infrastructure network.
    [Show full text]
  • Biocompatibility of SU-8 and Its Biomedical Device Applications
    micromachines Review Biocompatibility of SU-8 and Its Biomedical Device Applications Ziyu Chen and Jeong-Bong Lee * Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA; [email protected] * Correspondence: [email protected]; Tel.: +1-972-883-2893; Fax: +1-972-883-5842 Abstract: SU-8 is an epoxy-based, negative-tone photoresist that has been extensively utilized to fabricate myriads of devices including biomedical devices in the recent years. This paper first reviews the biocompatibility of SU-8 for in vitro and in vivo applications. Surface modification techniques as well as various biomedical applications based on SU-8 are also discussed. Although SU-8 might not be completely biocompatible, existing surface modification techniques, such as O2 plasma treatment or grafting of biocompatible polymers, might be sufficient to minimize biofouling caused by SU-8. As a result, a great deal of effort has been directed to the development of SU-8-based functional devices for biomedical applications. This review includes biomedical applications such as platforms for cell culture and cell encapsulation, immunosensing, neural probes, and implantable pressure sensors. Proper treatments of SU-8 and slight modification of surfaces have enabled the SU-8 as one of the unique choices of materials in the fabrication of biomedical devices. Due to the versatility of SU-8 and comparative advantages in terms of improved Young’s modulus and yield strength, we believe that SU-8-based biomedical devices would gain wider proliferation among the biomedical community in the future. Keywords: SU-8; biocompatibility; biosensing; biomedical; implantable Citation: Chen, Z.; Lee, J.-B.
    [Show full text]
  • FAQ: Sic MOSFET Application Notes
    FAQ SiC MOSFET Description This document introduces the Frequently Asked Questions and answers of SiC MOSFET. © 20 21 2021-3-22 Toshiba Electronic Devices & Storage Corporation 1 Table of Contents Description .............................................................................................................................................................. 1 Table of Contents .................................................................................................................................................... 2 List of Figures / List of Tables ................................................................................................................................ 3 1. What is SiC ? ...................................................................................................................................................... 4 2. Is it possible to connect multiple SiC MOSFETs in parallel ? ........................................................................... 5 ............................................................................... 6 .................................................................................... 7 5. If Si IGBT replaced with SiC MOSFET, what will change ? ............................................................................. 8 6. Is there anything to note about the Gate drive voltage ? ..................................................................................... 9 RESTRICTIONS ON PRODUCT USE ..............................................................................................................
    [Show full text]
  • The Bottom-Up Construction of Molecular Devices and Machines*
    Pure Appl. Chem., Vol. 80, No. 8, pp. 1631–1650, 2008. doi:10.1351/pac200880081631 © 2008 IUPAC Nanoscience and nanotechnology: The bottom-up construction of molecular devices and machines* Vincenzo Balzani‡ Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy Abstract: The bottom-up approach to miniaturization, which starts from molecules to build up nanostructures, enables the extension of the macroscopic concepts of a device and a ma- chine to molecular level. Molecular-level devices and machines operate via electronic and/or nuclear rearrangements and, like macroscopic devices and machines, need energy to operate and signals to communicate with the operator. Examples of molecular-level photonic wires, plug/socket systems, light-harvesting antennas, artificial muscles, molecular lifts, and light- powered linear and rotary motors are illustrated. The extension of the concepts of a device and a machine to the molecular level is of interest not only for basic research, but also for the growth of nanoscience and the development of nanotechnology. Keywords: molecular devices; molecular machines; information processing; photophysics; miniaturization. INTRODUCTION Nanotechnology [1–8] is a frequently used word both in the scientific literature and in the common lan- guage. It has become a favorite, and successful, term among America’s most fraudulent stock promot- ers [9] and, in the venture capital world of start-up companies, is perceived as “the design of very tiny platforms upon which to raise enormous amounts of money” [1]. Indeed, nanotechnology is a word that stirs up enthusiasm or fear since it is expected, for the good or for the bad, to have a strong influence on the future of mankind.
    [Show full text]
  • Micromanufacturing and Fabrication of Microelectronic Devices
    Micromanufacturing and Fabrication of Microelectronic PART Devices •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••V The importance of the topics covered in the following two chapters can best be appreciated by considering the manufacture of a simple metal spur gear. It is impor- tant to recall that some gears are designed to transmit power, such as those in gear boxes, yet others transmit motion, such as in rack and pinion mechanisms in auto- mobile steering systems. If the gear is, say, 100 mm (4 in.) in diameter, it can be produced by traditional methods, such as starting with a cast or forged blank, and machining and grinding it to its final shape and dimensions. A gear that is only 2 mm (0.080 in.) in diameter, on the other hand, can be difficult to produce by these meth- ods. If sufficiently thin, the gear could, for example, be made from sheet metal, by fine blanking, chemical etching, or electroforming. If the gear is only a few micrometers in size, it can be produced by such tech- niques as optical lithography, wet and dry chemical etching, and related processes. A gear that is only a nanometer in diameter would, however, be extremely difficult to produce; indeed, such a gear would have only a few tens of atoms across its surface. The challenges faced in producing gears of increasingly smaller sizes is highly informative, and can be put into proper perspective by referring to the illustration of length scales shown in Fig. V.1. Conventional manufacturing processes, described in Chapters 11 through 27, typically produce parts that are larger than a millimeter or so, and can be described as visible to the naked eye.
    [Show full text]
  • Noise and Interference Management in 3-D Integrated Wireless Systems
    Noise and Interference Management in 3-D Integrated Wireless Systems Emre Salman, Alex Doboli, and Milutin Stanacevic Department of Electrical and Computer Engineering Stony Brook University Stony Brook, New York 11794 [emre, adoboli, milutin]@ece.sunysb.edu Abstract—Three-dimensional (3-D) integration technology is an emerging candidate to alleviate the interconnect bottleneck by utilizing the third dimension. One of the important advantages of the 3-D technology is the capability to stack memory on top of the processor cores, significantly increasing the memory bandwidth. The application of 3-D integration to high perfor- mance processors, however, is limited by the thermal constraints since transferring the heat within a monolithic 3-D system is a challenging task. Alternatively, the application of 3-D integration to life sciences has not yet received much attention. Since typical applications in life sciences consume significantly less energy, the thermal constraints are relatively alleviated. Alternatively, interplane noise coupling emerges as a fundamental limitation in these highly heterogeneous 3-D systems. Various noise coupling paths in a heterogeneous 3-D system are investigated in this paper. Fig. 1. Monolithic 3-D integration technology where through silicon vias Contrary to the general assumption, 3-D systems are shown to (TSVs) are utilized to achieve communication among the planes [2]. be highly susceptible to substrate noise coupling. The effects of through silicon vias (TSVs) on noise propagation are also discussed. Furthermore, design methodologies are proposed to efficiently analyze and reduce noise coupling in 3-D systems. One of the primary limitations of these multi-core proces- sors utilizing 3-D integration technology is the temperature I.
    [Show full text]
  • Nanoelectronics for 2020 and Beyond
    COMMITTEE ON TECHNOLOGY SUBCOMMITTEE ON NANOSCALE SCIENCE, ENGINEERING, AND TECHNOLOGY National Nanotechnology Initiative Signature Initiative: Nanoelectronics for 2020 and Beyond July 2010 Final Draft Collaborating Agencies1: NSF, DOD, NIST, DOE, IC National Need Addressed The semiconductor industry is a major driver of the modern economy and has accounted for a large proportion of the productivity gains that have characterized the global economy since the 1990s. One indication of this industry’s economic importance is that in 2008 it was the second largest exporter of goods in the United States. Recent advances in this area have been fueled by what is known as Moore’s Law scaling, which has successfully predicted the exponential increase in the performance of computing devices for the last 40 years. This gain has been achieved due to ever-increasing miniaturization of semiconductor processing and memory devices (smaller and faster switches or transistors). However, because the physical length scales of these devices are now reaching atomic dimensions, it is widely believed that further progress will be stalled by limits imposed by the fundamental physics of devices [ITRS, 2005]. Continuing to shrink device dimensions is important in order to further increase processing speed, reduce device switching energy, increase system functionality, and reduce manufacturing cost per bit. But as the dimensions of critical elements of devices approach atomic size, quantum tunneling and other quantum effects degrade and ultimately prohibit conventional device operation. Researchers are therefore pursuing somewhat radical approaches to overcome these fundamental physics limitations. Candidate approaches include different types of logic using cellular automata or quantum entanglement and superposition; 3-D spatial architectures; and information-carrying variables other than electron charge such as photon polarization, electron spin, and position and states of atoms and molecules.
    [Show full text]
  • CSET Issue Brief
    SEPTEMBER 2020 The Chipmakers U.S. Strengths and Priorities for the High-End Semiconductor Workforce CSET Issue Brief AUTHORS Will Hunt Remco Zwetsloot Table of Contents Executive Summary ............................................................................................... 3 Key Findings ...................................................................................................... 3 Workforce Policy Recommendations .............................................................. 5 Introduction ........................................................................................................... 7 Why Talent Matters and the American Talent Advantage .............................. 10 Mapping the U.S. Semiconductor Workforce .................................................. 12 Identifying and Analyzing the Semiconductor Workforce .......................... 12 A Large and International Workforce ........................................................... 14 The University Talent Pipeline ........................................................................ 16 Talent Across the Semiconductor Supply Chain .......................................... 21 Chip Design ................................................................................................ 23 Electronic Design Automation ................................................................... 24 Fabrication .................................................................................................. 24 Semiconductor Manufacturing Equipment (SME) Suppliers
    [Show full text]