Historical and technical developments of potassium resources The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Ciceri, Davide, David A.C. Manning, and Antoine Allanore. “Historical and Technical Developments of Potassium Resources.” Science of The Total Environment 502 (January 2015): 590–601. As Published http://dx.doi.org/10.1016/j.scitotenv.2014.09.013 Publisher Elsevier B.V. Version Author's final manuscript Citable link http://hdl.handle.net/1721.1/106614 Terms of Use Creative Commons Attribution-NonCommercial-NoDerivs License Detailed Terms http://creativecommons.org/licenses/by-nc-nd/4.0/ 1 Historical and technical developments of potassium resources 2 3 Davide Ciceria, David A.C. Manningb and Antoine Allanorec 4 5 a Department of Materials Science & Engineering. Room 13-5066 Massachusetts Institute of Technology. 77 6 Massachusetts Avenue, Cambridge, MA 02139-4307, USA. Email:
[email protected] 7 8 b School of Civil Engineering and Geosciences Room 3.01 Drummond Building. Newcastle University. Newcastle 9 upon Tyne NE1 7RU, UK. Email:
[email protected] 10 11 c Corresponding author: Department of Materials Science & Engineering. Room 13-5066 Massachusetts Institute 12 of Technology. 77 Massachusetts Avenue, Cambridge, MA 02139-4307, USA. Email:
[email protected] 13 1 1 ABSTRACT 2 3 The mining of soluble potassium salts (potash) is essential for manufacturing fertilizers required to ensure 4 continuous production of crops and hence global food security. As of 2014, potash is mined predominantly in the 5 northern hemisphere, where large deposits occur. Production tonnage and prices do not take into account the 6 needs of the farmers of the poorest countries.