The Transparency of Ocean Barriers to Rossby Waves: the Rossby Slit Problem*

Total Page:16

File Type:pdf, Size:1020Kb

The Transparency of Ocean Barriers to Rossby Waves: the Rossby Slit Problem* 336 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 31 The Transparency of Ocean Barriers to Rossby Waves: The Rossby Slit Problem* JOSEPH PEDLOSKY Department of Physical Oceanography, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts (Manuscript received 6 August 1999, in ®nal form 29 February 2000) ABSTRACT The transmission of barotropic Rossby wave energy through a meridional barrier pierced only by narrow gaps is studied with a quasigeostrophic model. The incident Rossby wave has the form of either a plane wave or a localized beam of wave energy. The application of Kelvin's theorem on a contour girdling the separated segments of the barrier demonstrate the necessity for wave transmission and helps determine the amplitude of the transmitted wave. When the meridional scale of the incident wave is much larger than the gaps in the barrier, the transmission becomes independent of the gap width. The problem of a barrier with two or three gaps is discussed. In the former case a single bubble of wave energy issues from the region spanned by the separated barrier segment. When a third gap or slit is allowed, the structure of the transmitted wave alters depending on the symmetry of the wave ®eld and the angle of the incidence of the ray trajectory of the incident wave. 1. Introduction is rendered problematic by several complicating factors. For large-scale oceanic motions for which the earth's The pure Rossby wave exists in a ¯at-bottomed ocean rotation is a dominant factor in the dynamics, the mes- in the absence of an advecting mean ¯uid ¯ow. For the senger of energy and vorticity is the Rossby wave. These more rapidly propagating barotropic Rossby wave the waves, which owe their existence to the variation of the neglect of the mean ¯ow is plausible, less so for the local normal component of the earth's rotation, the so- baroclinic modes. Perhaps of equal importance for the called-beta effect, have periods much longer than a day. possible modi®cation of the simple theory for the Ross- In the presence of density strati®cation, baroclinic Ross- by wave is the presence of uneven bottom topography. by waves may have timescales of months or years while If the bottom slope is mild enough, the effect on the the depth-independent, barotropic Rossby wave may wave is a quantitative distortion of the wave's propa- have timescales of the order of weeks or less. Obser- gation rather than a qualitative change in the underlying vations of Rossby waves in the oceans are rendered physics. However, in the actual ocean the presence of dif®cult because of the large space scales and the need very steep topography such as the midocean ridge sys- for nearly synoptic observation, but recent evidence tem or extensive island arcs (such as that separating the from satellite altimeter data has given ample evidence Caribbean from the Atlantic) present potentially signif- for their presence and their ability to propagate great icant barriers to the propagation of the Rossby waves. distances across the ocean basins (see, e.g., Jacobs et Indeed, such steep topographic or island barriers might, al. 1993; Chelton and Schlax 1996). at ®rst sight, appear to present an impenetrable barrier The theory of Rossby waves has a long history start- to the propagation of those waves whose spatial scales ing with the seminal paper by Rossby et al. (1939) and are much larger than the gaps between the segments of much of the basic nature of the wave's dynamics can the island arc or, for motion in the deep ocean, for mo- be found in current textbooks (e.g., Pedlosky 1987). The tions with scales larger than the gaps formed by trans- application of the simplest theory to the natural ocean form faults between segments of the midocean ridge system. Very little work has been done theoretically to ex- amine such problems in the context of midlatitude * Woods Hole Oceanographic Institution Contribution Number 9928. Rossby waves (for the equatorial zone, however, see Clarke 1991). In a recent paper (Pedlosky and Spall 1999) the linear Rossby normal modes of basin scale Corresponding author address: Dr. Joseph Pedlosky, Woods Hole were examined for a rectangular ocean basin that was Oceanographic Institution, Dept. of Physical Oceanography, Clark 363 MS #21, Woods Hole, MA 02543. nearly divided in two by a barrier meant to represent E-mail: [email protected] a segment of a midocean ridge. Surprisingly, normal q 2001 American Meteorological Society Unauthenticated | Downloaded 09/25/21 05:20 PM UTC FEBRUARY 2001 PEDLOSKY 337 modes were found whose frequencies were very close to the normal modes of the full basin in the absence of the barrier and the modal structure wrapped around the barrier to ®ll the basin allowing a full basin re- sponse in spite of the very narrow passages of com- munication between the subbasins. The ability of the normal modes to involve the entire basin was shown to be related to the constraint on the motion provided by Kelvin's theorem applied on a contour girdling the ridge or island segment. Key to this process is the required presence of at least two gaps in the barrier, so rendering a portion of the ridge a detached ``island.'' While a single narrow gap allows only a small, slow leakage of energy from one subbasin to the adjacent basin (see, e.g., Lamb 1932, para 300), the island char- acter of the segment involves the whole length of the segment as an ef®cient virtual wave maker acting on the ¯uid in the neighboring basin. A related Rossby wave problem in which Kelvin's FIG. 1. Schematic of a Rossby wave, represented by the thick arrow, theorem also applies has recently been treated by Firing as it impinges on a barrier pierced (in this case) by two gaps of equal, et al. (1999) in which the interaction of a Rossby wave small width d. The frequency of the carrier wave of the beam or and an isolated island is considered in the long-wave, packet is v and the direction is determined by the Rossby wave's baroclinic limit. In that case the extension of the God- group velocity. frey Island rule (Godfrey 1989, see also Pedlosky et al. 1997), rather than the direct application of Kelvin's the- orem is pertinent case and the transparency of the multiply pierced barrier In an effort to understand more deeply the apparent to impinging Rossby waves is clearly illustrated. The transparency of such barriers to the propagation of Ross- introduction of additional gaps, as evidenced by the ex- by wave energy the problem of the transmission of an ample where a third gap is added, allows the wave a incident Rossby wave, either as a packet or plane wave, greater variety of passageways through the barrier and is considered here when the wave impinges on a barrier introduces more complex structure to the transmitted consisting of a solid meridional wall pierced by two or signal. The nature of the transmitted signal turns out to three gaps whose widths are small compared to the me- be a simple function of the properties of the oncoming ridional scale of the advancing wave. To ®x ideas we wave. For a wave of a given frequency, the kinematics can consider a wave with frequency v arriving from the of the impinging wave is determined by the direction east, as in Fig. 1, with a group velocity as denoted by of the group velocity of the impinging beam and the the large arrow, heading toward a barrier with, in this resulting transmission is completely determined by the case, two small gaps of width d. We will consider the consequent kinematic structure. Except for special an- case where the ratio gles of incidence to be described, the barrier exhibits a d/L K 1, (1.1) remarkable transparency to the Rossby wave transmis- sion. where L is the characteristic meridional scale of the In section 2 we describe the basic dynamical model approaching wave. and the important role of Kelvin's theorem for the trans- The analysis uses the quasigeostrophic potential vor- mission dynamics. In section 3 the problem of the wave ticity equation as the basic dynamical equation (Ped- impinging on a two-gap barrier is described, while in losky 1987) and the explicit analysis will be limited for section 4 the analysis is extended to describe the nature simplicity to the case of a homogeneous ¯uid so that of the transmission when a third gap is added. Section the motion is barotropic. The baroclinic case, if the gaps 5 discusses the overall character of the results and spec- in the barrier extend over the full depth of the ¯uid, ulates on the implications of the theory for ocean dy- introduces no qualitatively new dynamical element since namics. each baroclinic mode satis®es a wave equation mathe- matically similar to the barotropic model equation. In the case of a barrier with gaps that span only partially 2. The model the depth of a strati®ed ¯uid, vertical mode mixing will For purposes of simplicity we utilize the quasigeo- occur as the wave traverses the barrier and this more strophic potential vorticity equation for a homogeneous complex situation is the subject of future study. ¯uid. Since the bottom of the basin will be idealized as The question of the wave transmission and the struc- ¯at except for the barrier representing the steep topog- ture of the transmitted wave is easily discussed in this raphy of the island arc or the midocean ridge, the gov- Unauthenticated | Downloaded 09/25/21 05:20 PM UTC 338 JOURNAL OF PHYSICAL OCEANOGRAPHY VOLUME 31 erning equation in its linearized, nondimensional form is (Pedlosky 1987): ]]c ¹2c 150.
Recommended publications
  • Baroclinic Instability, Lecture 19
    19. Baroclinic Instability In two-dimensional barotropic flow, there is an exact relationship between mass 2 streamfunction ψ and the conserved quantity, vorticity (η)given by η = ∇ ψ.The evolution of the conserved variable η in turn depends only on the spatial distribution of η andonthe flow, whichisd erivable fromψ and thus, by inverting the elliptic relation, from η itself. This strongly constrains the flow evolution and allows one to think about the flow by following η around and inverting its distribution to get the flow. In three-dimensional flow, the vorticity is a vector and is not in general con­ served. The appropriate conserved variable is the potential vorticity, but this is not in general invertible to find the flow, unless other constraints are provided. One such constraint is geostrophy, and a simple starting point is the set of quasi-geostrophic equations which yield the conserved and invertible quantity qp, the pseudo-potential vorticity. The same dynamical processes that yield stable and unstable Rossby waves in two-dimensional flow are responsible for waves and instability in three-dimensional baroclinic flow, though unlike the barotropic 2-D case, the three-dimensional dy­ namics depends on at least an approximate balance between the mass and flow fields. 97 Figure 19.1 a. The Eady model Perhaps the simplest example of an instability arising from the interaction of Rossby waves in a baroclinic flow is provided by the Eady Model, named after the British mathematician Eric Eady, who published his results in 1949. The equilibrium flow in Eady’s idealization is illustrated in Figure 19.1.
    [Show full text]
  • ATMS 310 Rossby Waves Properties of Waves in the Atmosphere Waves
    ATMS 310 Rossby Waves Properties of Waves in the Atmosphere Waves – Oscillations in field variables that propagate in space and time. There are several aspects of waves that we can use to characterize their nature: 1) Period – The amount of time it takes to complete one oscillation of the wave\ 2) Wavelength (λ) – Distance between two peaks of troughs 3) Amplitude – The distance between the peak and the trough of the wave 4) Phase – Where the wave is in a cycle of amplitude change For a 1-D wave moving in the x-direction, the phase is defined by: φ ),( = −υtkxtx − α (1) 2π where φ is the phase, k is the wave number = , υ = frequency of oscillation (s-1), and λ α = constant determined by the initial conditions. If the observer is moving at the phase υ speed of the wave ( c ≡ ), then the phase of the wave is constant. k For simplification purposes, we will only deal with linear sinusoidal wave motions. Dispersive vs. Non-dispersive Waves When describing the velocity of waves, a distinction must be made between the group velocity and the phase speed. The group velocity is the velocity at which the observable disturbance (energy of the wave) moves with time. The phase speed of the wave (as given above) is how fast the constant phase portion of the wave moves. A dispersive wave is one in which the pattern of the wave changes with time. In dispersive waves, the group velocity is usually different than the phase speed. A non- dispersive wave is one in which the patterns of the wave do not change with time as the wave propagates (“rigid” wave).
    [Show full text]
  • TTL Upwelling Driven by Equatorial Waves
    TTL Upwelling driven by Equatorial Waves L09804 LIUWhat drives the annual cycle in TTL upwelling? ET AL.: START OF WATER VAPOR AND CO TAPE RECORDERS L09804 Liu et al. (2007) Ortland, D. and M. J. Alexander, The residual mean circula8on in the TTL driven by tropical waves, JAS, (in review), 2013. Figure 1. (a) Seasonal variation of 10°N–10°S mean EOS MLS water vapor after dividing by the mean value at each level. (b) Seasonal variation of 10°N–10°S EOS MLS CO after dividing by the mean value at each level. represented in two principal ways. The first is by the area of [8]ConcentrationsofwatervaporandCOnearthe clouds with low infrared brightness temperatures [Gettelman tropical tropopause are available from retrievals of EOS et al.,2002;Massie et al.,2002;Liu et al.,2007].Thesecond MLS measurements [Livesey et al.,2005,2006].Monthly is by the area of radar echoes reaching the tropopause mean water vapor and CO mixing ratios at 146 hPa and [Alcala and Dessler,2002;Liu and Zipser, 2005]. In this 100 hPa in the 10°N–10°Sand10° longitude boxes are study, we examine the areas of clouds that have TRMM calculated from one full year (2005) of version 1.5 MLS Visible and Infrared Scanner (VIRS) 10.8 mmbrightness retrievals. In this work, all MLS data are processed with temperatures colder than 210 K, and the area of 20 dBZ requirements described by Livesey et al. [2005]. Tropopause echoes at 14 km measured by the TRMM Precipitation temperature is averaged from the 2.5° resolution NCEP Radar (PR).
    [Show full text]
  • Leaky Slope Waves and Sea Level: Unusual Consequences of the Beta Effect Along Western Boundaries with Bottom Topography and Dissipation
    JANUARY 2020 W I S E E T A L . 217 Leaky Slope Waves and Sea Level: Unusual Consequences of the Beta Effect along Western Boundaries with Bottom Topography and Dissipation ANTHONY WISE National Oceanography Centre, and Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom CHRIS W. HUGHES Department of Earth, Ocean and Ecological Sciences, University of Liverpool, and National Oceanography Centre, Liverpool, United Kingdom JEFF A. POLTON AND JOHN M. HUTHNANCE National Oceanography Centre, Liverpool, United Kingdom (Manuscript received 5 April 2019, in final form 29 October 2019) ABSTRACT Coastal trapped waves (CTWs) carry the ocean’s response to changes in forcing along boundaries and are important mechanisms in the context of coastal sea level and the meridional overturning circulation. Motivated by the western boundary response to high-latitude and open-ocean variability, we use a linear, barotropic model to investigate how the latitude dependence of the Coriolis parameter (b effect), bottom topography, and bottom friction modify the evolution of western boundary CTWs and sea level. For annual and longer period waves, the boundary response is characterized by modified shelf waves and a new class of leaky slope waves that propagate alongshore, typically at an order slower than shelf waves, and radiate short Rossby waves into the interior. Energy is not only transmitted equatorward along the slope, but also eastward into the interior, leading to the dissipation of energy locally and offshore. The b effectandfrictionresultinshelfandslope waves that decay alongshore in the direction of the equator, decreasing the extent to which high-latitude variability affects lower latitudes and increasing the penetration of open-ocean variability onto the shelf—narrower conti- nental shelves and larger friction coefficients increase this penetration.
    [Show full text]
  • The Counter-Propagating Rossby-Wave Perspective on Baroclinic Instability
    Q. J. R. Meteorol. Soc. (2005), 131, pp. 1393–1424 doi: 10.1256/qj.04.22 The counter-propagating Rossby-wave perspective on baroclinic instability. Part III: Primitive-equation disturbances on the sphere 1∗ 2 1 3 CORE By J. METHVEN , E. HEIFETZ , B. J. HOSKINS and C. H. BISHOPMetadata, citation and similar papers at core.ac.uk 1 Provided by Central Archive at the University of Reading University of Reading, UK 2Tel-Aviv University, Israel 3Naval Research Laboratories/UCAR, Monterey, USA (Received 16 February 2004; revised 28 September 2004) SUMMARY Baroclinic instability of perturbations described by the linearized primitive equations, growing on steady zonal jets on the sphere, can be understood in terms of the interaction of pairs of counter-propagating Rossby waves (CRWs). The CRWs can be viewed as the basic components of the dynamical system where the Hamil- tonian is the pseudoenergy and each CRW has a zonal coordinate and pseudomomentum. The theory holds for adiabatic frictionless flow to the extent that truncated forms of pseudomomentum and pseudoenergy are globally conserved. These forms focus attention on Rossby wave activity. Normal mode (NM) dispersion relations for realistic jets are explained in terms of the two CRWs associated with each unstable NM pair. Although derived from the NMs, CRWs have the conceptual advantage that their structure is zonally untilted, and can be anticipated given only the basic state. Moreover, their zonal propagation, phase-locking and mutual interaction can all be understood by ‘PV-thinking’ applied at only two ‘home-bases’— potential vorticity (PV) anomalies at one home-base induce circulation anomalies, both locally and at the other home-base, which in turn can advect the PV gradient and modify PV anomalies there.
    [Show full text]
  • MAST602: Introduction to Physical Oceanography (Andreas Münchow) (Closed Book In-Class Rossby Wave Exercise, Oct.-21, 2008)
    MAST602: Introduction to Physical Oceanography (Andreas Münchow) (Closed book in-class Rossby Wave Exercise, Oct.-21, 2008) In a series of papers published in the 1930ies Carl-Gustaf Rossby introduced a strange new wave form whose existence has not been confirmed observationally until the late 1990ies. A debate is presently raging if and how these waves may impact ecosystems in the ocean, e.g., “Killworth et al., 2003: Physical and biological mechanisms for planetary waves observed in satellite-derived chlorophyll, J. Geophys. Res.” and “Dandonneau et al., 2003: Oceanic Rossby waves acting as a “Hay Rake” for ecosystem floating by- products, Science” as well as a flurry of comments generated by these papers. These peculiar waves originate from a linear balance between local acceleration, Coriolis acceleration, and pressure gradients as well as continuity of mass, that is, East-west momentum balance: ∂u/∂t – fv = -g ∂η/∂x North-south momentum balance: ∂v/∂t + fu = -g ∂η/∂y Continuity: ∂η/∂t + H (∂u/∂x+∂v/∂y) = 0 where the Coriolis parameter f = 2 Ω sin(latitude) is no longer a constant, but is approximated locally as f ≈ f0 + βy. The rotational rate of the earth is Ω=2π/day and at the -4 -1 -11 -1 -1 latitude of Lewes, DE (39N), f0~0.9×10 s and β~2×10 m s . A number of peculiar properties can be inferred from its dispersion relation: σ = − β κ / (κ2+l2+R-2) where σ is the wave frequency, κ is the wave number in the east-west direction, l is the wave number in the north-south direction, β is a constant (the so-called beta-parameter 1/2 that incorporates Coriolis effects that changes with latitude), and R=(g’H) /f0 is a constant (the so-called Rossby radius of deformation, the same as the lateral decay scale of the Kelvin wave, where g’~9.81×10-3m/s2 is the constant of “reduced” gravity, and H~1000 m is the depth of the pycnocline (density interface).
    [Show full text]
  • El Niño: the Ocean in Climate El Niño: the Ocean in Climate
    El Niño: The ocean in climate We live in the atmosphere: where is it sensitive to the ocean? ➞ The tropics! El Niño is the most spectacular short-term climate oscillation. It affects weather around the world, and illustrates the many aspects of O-A interaction Most of the poleward heat transport is by the atmosphere First hint that this may all be myth comes from using observations to estimate atmosphere and ocean(except heat in the tropics) transports Ocean and atmosphere heat transports Heat transport is poleward in &'()*('&+,-.,/01,2%""34,-5.67/.-5,89:,;9:.<=/:>,<-/.,.:/;5?9:.5 # both ocean and atmosphere: )D(B,E('1,F&G (DGCH,E('1,F&G )D(B,E('1,ID(F) Atmosphere (DGCH,E('1,ID(F) The role of the O-A system is $ Net radiation at Atmosphere (line) to move excess heat from the top of atmosphere tropics to the poles, where it Ocean (Dashed) Ocean = divergence of % is radiated to space. (AHT + OHT) " BC Net radiation Northward transport (PW) !% from satellites, AHT from weather obs !$ and models, OHT from residual Trenberth et al (2001) !# 80°S!!" 60°S!#" 40°S!$" 20°S!%" 0°" 20°N%" 40°N$" 60°N#" 80°N!" @/.6.A>- Most of the poleward transport occurs in mid-latitude winter storms near 40°S/N. Only in the tropics is the ocean really important. Much recent interest in the “global conveyor belt” But the timescales are very slow Does the Gulf Stream warm Europe? An example of the (largely) passive effect of the ocean Why is Ireland warmer than Labrador in winter? Because of need to conserve angular momentum, Rockies force a stationary wave in the westerlies with northerly flow (cooling) over eastern N.
    [Show full text]
  • Topographic Rossby Waves in the Arctic Ocean's Beaufort Gyre
    Journal of Geophysical Research: Oceans RESEARCH ARTICLE Topographic Rossby Waves in the Arctic Ocean’s Beaufort Gyre 10.1029/2018JC014233 Bowen Zhao1 and Mary-Louise Timmermans1 Special Section: Forum for Arctic Modeling 1Department of Geology & Geophysics, Yale University, New Haven, CT, USA and Observational Synthesis (FAMOS) 2: Beaufort Gyre phenomenon Abstract A 5-year long time series of temperature and horizontal velocity in the Arctic Ocean’s Key Points: Beaufort Gyre is analyzed with the aim of understanding the mechanism driving the observed variability • Beaufort Gyre mooring on timescales of tens of days (i.e., subinertial). We employ a coherency/phase analysis on the temperature measurements of velocity and and horizontal velocity signals, which indicates that subinertial temperature variations arise from vertical temperature are analyzed for subinertial signal excursions of the water column that are driven by horizontal motions across the sloping seafloor. The • Observations are consistent vertical displacements of the water column (recorded by the temperature signal) show a bottom-intensified with topographic Rossby waves signature (i.e., decay toward the surface), while horizontal velocity anomalies are approximately barotropic propagating on sloping seafloor • Topographic Rossby waves play a role below the main halocline. We show that the different characteristics in vertical and horizontal velocities are in Beaufort Gyre stabilization consistent with topographic Rossby wave theory in the limit of weak vertical decay. In essence, a linearly decaying vertical velocity profile implies that the whole water column is stretched/squashed uniformly with Correspondence to: depth when water moves horizontally across the bottom slope. Thus, for the uniform stratification of the B.
    [Show full text]
  • Lecture 5: the Spectrum of Free Waves Possible Along Coasts
    Lecture 5: The Spectrum of Free Waves Possible along Coasts Myrl Hendershott 1 Introduction In this lecture we discuss the spectrum of free waves that are possible along the straight coast in shallow water approximation. 2 Linearized shallow water equations The linearized shallow water equations(LSW) are u fv = gζ ; (1) t − − x v + fu = gζ ; (2) t − y ζt + (uD)x + (vD)y = 0: (3) where D; η are depth and free surface elevations respectively. 3 Kelvin Waves Kelvin waves require the support of a lateral boundary and it occurs in the ocean where it can travel along coastlines. Consider the case when u = 0 in the linearized shallow water equations with constant depth. In this case we have that the Coriolis force in the offshore direction is balanced by the pressure gradient towards the coast and the acceleration in the Longshore direction is gravitational. Substituting u = 0 in equation (1) through (3) (assuming constant depth D) gives fv = gζx; (4) v = gζ ; (5) t − y ζt + Dvy = 0; (6) eliminating ζ between equation (4) through equation (6) gives vtt = (gD)vyy: (7) The general wave solution can be written as v = V (x; y + ct) + V (x; y ct); (8) 1 2 − 63 2 where c = gD and V1; V2 are arbitrary functions. Now note that ζ satisfies ζtt = (gD)ζyy: (9) Hence we can try ζ = AV (x; y + ct) + BV (x; y ct). From equation (4) or equation (5) 1 2 − we get A = H=g , b = H=g. V and V can be determined as follows.
    [Show full text]
  • Detection of Rossby Wave Breaking and Its Response to Shifts of the Midlatitude Jet with Climate Change
    JOURNAL OF GEOPHYSICAL RESEARCH, VOL. ???, XXXX, DOI:10.1029/, Detection of Rossby wave breaking and its response to shifts of the midlatitude jet with climate change 1 1 Elizabeth A. Barnes and Dennis L. Hartmann Elizabeth A. Barnes, Department of Atmospheric Sciences, University Washington, Box 351640, Seattle, WA 98195. ([email protected]) Dennis L. Hartmann, Department of Atmospheric Sciences, University Washington, Box 351640, Seattle, WA 98195. ([email protected]) 1Department of Atmospheric Science, University of Washington, Seattle, Washington, USA. D R A F T March 5, 2012, 10:18am D R A F T X-2 BARNES AND HARTMANN: WAVE BREAKING AND CLIMATE CHANGE Abstract. A Rossby wave breaking identification method is presented which searches for overturning of absolute vorticity contours on pressure sur- faces. The results are compared to those from an analysis of isentropic po- tential vorticity, and it is demonstrated that both yield similar wave break- ing distributions. As absolute vorticity is easily obtained from most model output, we present wave breaking frequency distributions from the ERA-Interim data set, thirteen general circulation models (GCMs) and a barotropic model. We demonstrate that a poleward shift of the Southern Hemisphere midlat- itude jet is accompanied by a decrease in poleward wave breaking in both the barotropic model and all GCMs across three climate forcing scenarios. In addition, it is shown that while anticyclonic wave breaking shifts poleward with the jet, cyclonic wave breaking shifts less than half as much and reaches a poleward limit near 60 degrees S. Comparison of the observed distribution of Southern Hemisphere wave breaking with those from the GCMs suggests that wave breaking on the poleward flank of the jet has already reached its poleward limit and will likely become less frequent if the jet migrates any further poleward with climate change.
    [Show full text]
  • Geophysics Fluid Dynamics (ESS228)
    Geophysics Fluid Dynamics (ESS228) . Course Time Lectures: Tu, Th 09:30-10:50 Discussion: 3315 Croul Hall . Text Book J. R. Holton, "An introduction to Dynamic Meteorology", Academic Press (Ch. 1, 2, 3, 4, 6, 8, 11). Adrian E. Gill, "Atmosphere-Ocean Dynamics", Academic Press (Ch. 5, 6, 7, 8, 9, 10, 11, 12). Grade Homework (30%), Midterm (35%), Final (35%) . Homework Issued and due every Thursday ESS227 Prof. Jin-Yi Yu Syllabus ESS227 Prof. Jin-Yi Yu Dynamics and Kinematics • Kinematics: The term kinematics means motion. Kinematics is the study of motion without regard for the cause. • Dynamics: On the other hand, dynamics is the study of the causes of motion. This course discusses the physical laws that govern atmosphere/ocean motions. ESS228 Prof. Jin-Yi Yu Geophysical Fluid Dynamics the study of the causes of motion causes: solar radiation competes with gravity distributions of T and motions governed by conservation laws ESS227 Prof. Jin-Yi Yu Newton’s 2nd Law of Motion Newton’s 2nd Law of Momentum = absolute velocity viewed in an inertial system = rate of change of Ua following the motion in an inertial system • The conservation law for momentum (Newton’s second law of motion) relates the rate of change of the absolute momentum following the motion in an inertial reference frame to the sum of the forces acting on the fluid. ESS228 Prof. Jin-Yi Yu Conservation of Mass • The mathematical relationship that expresses conservation of mass for a fluid is called the continuity equation. (mass divergence form) (velocity divergence form) ESS228 Prof. Jin-Yi Yu The First Law of Thermodynamics • This law states that (1) heat is a form of energy that (2) its conversion into other forms of energy is such that total energy is conserved.
    [Show full text]
  • Influence of Rossby Waves on Primary Production from a Coupled Physical
    Ocean Sci., 4, 199–213, 2008 www.ocean-sci.net/4/199/2008/ Ocean Science © Author(s) 2008. This work is distributed under the Creative Commons Attribution 3.0 License. Influence of Rossby waves on primary production from a coupled physical-biogeochemical model in the North Atlantic Ocean G. Charria1,2, I. Dadou1, P. Cipollini2, M. Drevillon´ 3, and V. Garc¸on1 1Laboratoire d’Etudes en Geophysique´ et Oceanographie´ Spatiales, UMR5566/CNRS, Toulouse, France 2National Oceanography Centre, Southampton, United Kingdom 3CERFACS, MERCATOR-Ocean,´ Toulouse, France Received: 30 October 2007 – Published in Ocean Sci. Discuss.: 29 November 2007 Revised: 9 July 2008 – Accepted: 1 August 2008 – Published: 1 September 2008 Abstract. Rossby waves appear to have a clear signature on actions. Based on remotely sensed data and/or coupled surface chlorophyll concentrations which can be explained physical/biogeochemical modelling, several studies inves- by a combination of vertical and horizontal mechanisms. In tigated the coupled physical/biogeochemical mechanisms this study, we investigate the role of the different physical which might be involved (e.g. Charria et al., 2003, 2006a; processes in the north Atlantic to explain the surface chloro- Killworth et al., 2004). Three main processes were sug- phyll signatures and the consequences on primary produc- gested: (1) the upwelling mechanism associated with nutri- tion, using a 3-D coupled physical/biogeochemical model for ent injection (Cipollini et al., 2001; Uz et al., 2001; Siegel, the year 1998. 2001), (2) the uplifting of a deep chlorophyll maximum to- The analysis at 20 given latitudes, mainly located in the wards the surface (Cipollini et al., 2001; Kawamiya and Os- subtropical gyre, where Rossby waves are strongly correlated chlies, 2001; Charria et al., 2003), and (3) the meridional with a surface chlorophyll signature, shows the important advection of chlorophyll by geostrophic currents associated contribution of horizontal advection and of vertical advec- with baroclinic Rossby waves (Killworth et al., 2004).
    [Show full text]