Long Waves and Ocean Tides Around 1940, and Then to Indi- Cate How the Subject Has Developed Since Then, with Myrl C

Total Page:16

File Type:pdf, Size:1020Kb

Long Waves and Ocean Tides Around 1940, and Then to Indi- Cate How the Subject Has Developed Since Then, with Myrl C IO 10.1 Introduction Long Waves and The main purpose of this chapter is to summarize what Ocean Tides was generally known to oceanographers about long waves and ocean tides around 1940, and then to indi- cate how the subject has developed since then, with Myrl C. Hendershott particular emphasis upon those aspects that have had significance for oceanography beyond their importance in understanding tides themselves. I have begun with a description of astronomical and radiational tide-gen- erating potentials (section 10.2), but say no more than is necessary to make this chapter self-contained. Cart- wright (1977) summarizes and documents recent de- velopments, and I have followed his discussion closely. The fundamental dynamic equations governing tides and long waves, Laplace's tidal equations (LTE), re- mained unchanged and unchallenged from Laplace's formulation of them in 1776 up to the early twentieth century. By 1940 they had been extended to allow for density stratification (in the absence of bottom relief) and criticized for their exclusion of half of the Coriolis forces. Without bottom relief this exclusion has re- cently been shown to be a good approximation; the demonstration unexpectedly requires the strong strat- ification of the ocean. Bottom relief appears able to make long waves in stratified oceans very different from their flat-bottom counterparts (section 10.4); a definitive discussion has not yet been provided. Finally, LTE have had to be extended to allow for the gravita- tional self-attraction of the oceans and for effects due to the tidal yielding of the solid earth. I review these matters in section 10.3. Laplace's study of the free oscillations of a global ocean governed by LTE was the first study of oceanic long waves. Subsequent nineteenth- and twentieth- century explorations of the many free waves allowed by these equations, extended to include stratification, have evolved into an indispensible part of geophysical fluid dynamics. By 1940, most of the flat-bottom so- lutions now known had, at least in principle, been constructed. But Rossby's rediscovery and physical in- terpretation, in 1939, of Hough's oscillations of the second class began the modem period of studying so- lutions of the long-wave equations by inspired or sys- tematic approximation and of seeking to relate the results to nontidal as well as tidal motions. Since then, flat-bottom barotropic and baroclinic solutions of LTE have been obtained in mid-latitude and in equatorial approximation, and Laplace's original global problem has been completely solved. The effects of bottom re- lief on barotropic motion are well understood. Signifi- cant progress has been made in understanding the ef- fects of bottom relief on baroclinic motions. I have attempted to review all those developments in a self- contained manner in section 10.4. In order to treat this 292 Myrl C. Hendershott 1 _· IC _ ___ vast subject coherently, I have had to impose my own Many features of the presentday view of ocean cir- view of its development upon the discussion. I have culation have some precedent in tidal and long-wave cited observations when they appear to illustrate some studies, although often unacknowledged and appar- property of the less familiar solutions, but the central ently not always recognized. The question of which theme is a description of the properties of theoretically parts of the study of tides have in fact influenced the possible waves of long period (greater than the buoy- subsequent development of studies of ocean circulation ancy period) and, consequently, of length greater than is a question for the history of science. In some cases, the ocean's mean depth. developments in the study of ocean circulation subse- Although the study of ocean surface tides was the quently have been applied to ocean tides. In section original study of oceanic response to time-dependent 10.7 I have pointed out some of the connections of forcing, tidal studies have largely proceeded in isolation which I am aware. from modem developments in oceanography on ac- count of the strength of the tide-generating forces, their 10.2 Astronomical Tide-Generating Forces well-defined discrete frequencies, and the proximity of these to the angular frequency of the earth's rotation. Although correlations between ocean tides and the po- A proper historical discussion of the subject, although sition and phase of the moon have been recognized and of great intellectual interest, is beyond the scope of utilized since ancient times, the astronomical tide-gen- this chapter. To my mind the elements of such a dis- erating force (ATGF) was first explained by Newton in cussion, probably reasonably complete through the the Principia in 1687. Viewed in an accelerated coor- first decade of this century, are given in Darwin's 1911 dinate frame that moves with the center of the earth Encyclopedia Britannica article "Tides." Thereafter, but that does not rotate with respect to the fixed stars, with a few notable exceptions, real progress had to the lunar (solar) ATGF at any point on the earth's await modem computational techniques both for solv- surface is the difference between lunar (solar) gravita- ing LTE and for making more complete use of tide tional attraction at that point and at the earth's center. gauge observations. Cartwright (1977) has recently re- The daily rotation of the earth about its axis carries a viewed the entire subject, and therefore I have given a terrestrial observer successively through the longitude discussion in section 1].0.5that, although self-con- of the sublunar or subsolar point [at which the lunar tained, emphasizes primarily changes of motivation (solar) ATGF is toward the moon (sun)] and then half and viewpoint in tidal studies rather than recapitulates a day later through the longitude of the antipodal point Cartwright's or other recent reviews. [at which the ATGF is away from the moon (sun)]. In This discussion of tides as long waves continuously Newton's words, "It appears that the waters of the sea forced by lunar and solar gravitation logically could be ought twice to rise and twice to fall every day, as well followed by a discussion of tsunamis impulsively lunar or solar" [Newton, 1687, proposition 24, theorem forced by submarine earthquakes. But lack of both 19]. space and time has forced omission of this topic. The ATGF is thus predominantly semidiurnal with Internal tides were first reported at the beginning of respect to both the solar and the lunar day. But it is this century. By 1940 a theoretical framework for their not entirely so. Because the tide-generating bodies are discussion had been supplied by the extension of LTE not always in the earth's equatorial plane, the terres- to include stratification, and their generation was trial observer [who does not change latitude while (probably properly) ascribed to scattering of barotropic being carried through the longitude of the sublunar tidal energy from bottom relief. The important devel- (solar) point or its antipode] sees a difference in ampli- opments since then are recognition of the intermittent tude between the successive semidiumal maxima of narrow-band nature of internal tides (as opposed to the the ATGF at his location. This difference or "daily near-line spectrum of surface tides) plus the beginnings inequality" means that the ATGF must be thought of of a statistically reliable characterization of the inter- as having diurnal as well as semidiurnal time variation. nal tidal spectrum and its variation in space and time. Longer-period variations are associated with period- The subject has recently been reviewed by Wunsch icities in the orbital motion of earth and moon. The (1975). Motivation for studying internal tides has astronomical variables displaying these long-period shifted from the need for an adequate description of variations appear nonlinearly in the ATGF. The long- them through exploration of their role in global tidal period orbital variations thus interact nonlinearly both dissipation (now believed to be under 10%) to specu- with themselves and with the short-period diurnal and lation about their importance as energy sources for semidiurnal variation of the ATGF to make the local oceanic mixing. In section 10.6 I have summarized ATGF a sum of three narrow-band processes centered modem observational studies and their implications about 0, 1, and 2 cycles per day (cpd), each process for tidal mixing of the oceans. being a sum of motions harmonic at multiples 0,1,2 of the frequencies corresponding to a lunar or a solar day 293 Long Waves and Ocean Tides plus sums of multiples of the frequencies of long-period the N}'1 are sets of small integers (effectively the Dood- orbital variations. son numbers); and the S,(t) are secular arguments that A complete derivation of the ATGF is beyond the increase almost linearly in time with the associated scope of this discussion. Cartwright (1977) reviews the periodicity of a lunar day, a sidereal month, a tropical subject and supplies references documenting its mod- year, 8.847 yr (period of lunar perigee), 18.61 yr (period ern development. For a discussion that concentrates of lunar node), 2.1 x 104yr (period of perihelion), re- upon ocean dynamics (but not necessarily for a prac- spectively. tical tide prediction), the most convenient representa- The frequencies of the arguments XNi' Sj(t) fall into tion of the ATGF is as a harmonic decomposition of the three "species"-long period, diurnal, and semidi- the tide-generating potential whose spatial gradient is urnal-which are centered, respectively, about 0, 1, and the ATGF. Because only the horizontal components of 2 cpd (N1 = 0,1,2). Each species is split into "groups" the ATGF are of dynamic importance, it is convenient separated by about 1 cycle per month, groups are split to represent the tide-generating potential by its hori- into "constituents" separated by one cyle per year, etc.
Recommended publications
  • Of Universal Gravitation and of the Theory of Relativity
    ASTRONOMICAL APPLICATIONS OF THE LAW OF UNIVERSAL GRAVITATION AND OF THE THEORY OF RELATIVITY By HUGH OSCAR PEEBLES Bachelor of Science The University of Texas Austin, Texas 1955 Submitted to the faculty of the Graduate School of the Oklahoma State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE August, 1960 ASTRONOMICAL APPLICATIONS OF THE LAW OF UNIVERSAL GRAVITATION AND OF THE THEORY OF RELATIVITY Report Approved: Dean of the Graduate School ii ACKNOWLEDGEMENT I express my deep appreciation to Dr. Leon w. Schroeder, Associate Professor of Physics, for his counsel, his criticisms, and his interest in the preparation of this study. My appre­ ciation is also extended to Dr. James H. Zant, Professor of Mathematics, for his guidance in the development of my graduate program. iii TABLE OF CONTENTS Chapter Page I. INTRODUCTION. 1 II. THE EARTH-MOON T"EST OF THE LAW OF GRAVITATION 4 III. DERIVATION OF KEPLER'S LAWS OF PLAN.ET.ARY MOTION FROM THE LAW OF UNIVERSAL GRAVITATION. • • • • • • • • • 9 The First Law-Law of Elliptical Paths • • • • • 10 The Second Law-Law of Equal Areas • • • • • • • 15 The Third Law-Harmonic Law • • • • • • • 19 IV. DETERMINATION OF THE MASSES OF ASTRONOMICAL BODIES. 20 V. ELEMENTARY THEORY OF TIDES. • • • • • • • • • • • • 26 VI. ELEMENTARY THEORY OF THE EQUATORIAL BULGE OF PLANETS 33 VII. THE DISCOVERY OF NEW PLANETS. • • • • • • • • • 36 VIII. ASTRONOMICAL TESTS OF THE THEORY OF RELATIVITY. 40 BIBLIOGRAPHY . 45 iv LIST OF FIGURES Figure Page 1. Fall of the Uoon Toward the Earth • • • • • • • • • • 6 2. Newton's Calculation of the Earth's Gravitational Ef- fect on the Moon.
    [Show full text]
  • An Application of Kelvin Wave Expansion to Model Flow Pattern Using in Oil Spill Simulation M
    Brigham Young University BYU ScholarsArchive 6th International Congress on Environmental International Congress on Environmental Modelling and Software - Leipzig, Germany - July Modelling and Software 2012 Jul 1st, 12:00 AM An Application of Kelvin Wave Expansion to Model Flow Pattern Using in Oil Spill Simulation M. A. Badri Follow this and additional works at: https://scholarsarchive.byu.edu/iemssconference Badri, M. A., "An Application of Kelvin Wave Expansion to Model Flow Pattern Using in Oil Spill Simulation" (2012). International Congress on Environmental Modelling and Software. 323. https://scholarsarchive.byu.edu/iemssconference/2012/Stream-B/323 This Event is brought to you for free and open access by the Civil and Environmental Engineering at BYU ScholarsArchive. It has been accepted for inclusion in International Congress on Environmental Modelling and Software by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. International Environmental Modelling and Software Society (iEMSs) 2012 International Congress on Environmental Modelling and Software Managing Resources of a Limited Planet, Sixth Biennial Meeting, Leipzig, Germany R. Seppelt, A.A. Voinov, S. Lange, D. Bankamp (Eds.) http://www.iemss.org/society/index.php/iemss-2012-proceedings ١ ٢ ٣ ٤ An Application of Kelvin Wave Expansion ٥ to Model Flow Pattern Using in Oil Spill ٦ Simulation ٧ ٨ 1 M.A. Badri ٩ Subsea R&D center, P.O.Box 134, Isfahan University of Technology, Isfahan, Iran ١٠ [email protected] ١١ ١٢ ١٣ Abstract: In this paper, data of tidal constituents from co-tidal charts are invoked to ١٤ determine water surface level and velocity.
    [Show full text]
  • Meteotsunami Generation, Amplification and Occurrence in North-West Europe
    University of Liverpool Doctoral Thesis Meteotsunami generation, amplification and occurrence in north-west Europe Thesis submitted in accordance with the requirements of the University of Liverpool for the degree of Doctor in Philosophy by David Alan Williams November 2019 ii Declaration of Authorship I declare that this thesis titled “Meteotsunami generation, amplification and occurrence in north-west Europe” and the work presented in it are my own work. The material contained in the thesis has not been presented, nor is currently being presented, either wholly or in part, for any other degree or qualification. Signed Date David A Williams iii iv Meteotsunami generation, amplification and occurrence in north-west Europe David A Williams Abstract Meteotsunamis are atmospherically generated tsunamis with characteristics similar to all other tsunamis, and periods between 2–120 minutes. They are associated with strong currents and may unexpectedly cause large floods. Of highest concern, meteotsunamis have injured and killed people in several locations around the world. To date, a few meteotsunamis have been identified in north-west Europe. This thesis aims to increase the preparedness for meteotsunami occurrences in north-west Europe, by understanding how, when and where meteotsunamis are generated. A summer-time meteotsunami in the English Channel is studied, and its generation is examined through hydrodynamic numerical simulations. Simple representations of the atmospheric system are used, and termed synthetic modelling. The identified meteotsunami was partly generated by an atmospheric system moving at the shallow- water wave speed, a mechanism called Proudman resonance. Wave heights in the English Channel are also sensitive to the tide, because tidal currents change the shallow-water wave speed.
    [Show full text]
  • Destructive Meteotsunamis Along the Eastern Adriatic Coast: Overview
    Physics and Chemistry of the Earth 34 (2009) 904–917 Contents lists available at ScienceDirect Physics and Chemistry of the Earth journal homepage: www.elsevier.com/locate/pce Destructive meteotsunamis along the eastern Adriatic coast: Overview Ivica Vilibic´ *, Jadranka Šepic´ Institute of Oceanography and Fisheries, Šetalište I. Meštrovic´a 63, 21000 Split, Croatia article info abstract Article history: The paper overviews meteotsunami events documented in the Adriatic Sea in the last several decades, by Received 10 December 2008 using available eyewitness reports, documented literature, and atmospheric sounding and meteorologi- Accepted 24 August 2009 cal reanalysis data available on the web. The source of all documented Adriatic meteotsunamis was Available online 28 August 2009 examined by assessing the underlying synoptic conditions. It is found that travelling atmospheric distur- bances which generate the Adriatic meteotsunamis generally appear under atmospheric conditions doc- Keywords: umented also for the Balearic meteotsunamis (rissagas). These atmospheric disturbances are commonly Meteotsunami generated by a flow over the mountain ridges (Apennines), and keep their energy through the wave-duct Atmospheric disturbance mechanism while propagating over a long distance below the unstable layer in the mid-troposphere. Resonance Long ocean waves However, the Adriatic meteotsunamis may also be generated by a moving convective storm or gravity Adriatic Sea wave system coupled in the wave-CISK (Conditional Instability of the Second Kind) manner, not docu- mented at other world meteotsunami hot spots. The travelling atmospheric disturbance is resonantly pumping the energy through the Proudman resonance over the wide Adriatic shelf, but other resonances (Greenspan, shelf) are also presumably influencing the strength of the meteotsunami waves, especially in the middle Adriatic, full of elongated islands and with a sloping bathymetry.
    [Show full text]
  • Study of Earth's Gravity Tide and Ocean Loading
    CHINESE JOURNAL OF GEOPHYSICS Vol.49, No.3, 2006, pp: 657∼670 STUDY OF EARTH’S GRAVITY TIDE AND OCEAN LOADING CHARACTERISTICS IN HONGKONG AREA SUN He-Ping1 HSU House1 CHEN Wu2 CHEN Xiao-Dong1 ZHOU Jiang-Cun1 LIU Ming1 GAO Shan2 1 Key Laboratory of Dynamical Geodesy, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China 2 Department of Land Surveying and Geoinformatics, Hong-Kong Polytechnic University, Hung Hom, Knowloon, Hong Kong Abstract The tidal gravity observation achievements obtained in Hongkong area are introduced, the first complete tidal gravity experimental model in this area is obtained. The ocean loading characteristics are studied systematically by using global and local ocean models as well as tidal gauge data, the suitability of global ocean models is also studied. The numerical results show that the ocean models in diurnal band are more stable than those in semidiurnal band, and the correction of the change in tidal height plays a significant role in determining accurately the phase lag of the tidal gravity. The gravity observation residuals and station background noise level are also investigated. The study fills the empty of the tidal gravity observation in Crustal Movement Observation Network of China and can provide the effective reference and service to ground surface and space geodesy. Key words Hongkong area, Tidal gravity, Experimental model, Ocean loading 1 INTRODUCTION The Earth’s gravity is a science studying the temporal and spatial distribution of the gravity field and its physical mechanism. Generally, its achievements can be used in many important domains such as space science, geophysics, geodesy, oceanography, and so on.
    [Show full text]
  • Chapter 5 Water Levels and Flow
    253 CHAPTER 5 WATER LEVELS AND FLOW 1. INTRODUCTION The purpose of this chapter is to provide the hydrographer and technical reader the fundamental information required to understand and apply water levels, derived water level products and datums, and water currents to carry out field operations in support of hydrographic surveying and mapping activities. The hydrographer is concerned not only with the elevation of the sea surface, which is affected significantly by tides, but also with the elevation of lake and river surfaces, where tidal phenomena may have little effect. The term ‘tide’ is traditionally accepted and widely used by hydrographers in connection with the instrumentation used to measure the elevation of the water surface, though the term ‘water level’ would be more technically correct. The term ‘current’ similarly is accepted in many areas in connection with tidal currents; however water currents are greatly affected by much more than the tide producing forces. The term ‘flow’ is often used instead of currents. Tidal forces play such a significant role in completing most hydrographic surveys that tide producing forces and fundamental tidal variations are only described in general with appropriate technical references in this chapter. It is important for the hydrographer to understand why tide, water level and water current characteristics vary both over time and spatially so that they are taken fully into account for survey planning and operations which will lead to successful production of accurate surveys and charts. Because procedures and approaches to measuring and applying water levels, tides and currents vary depending upon the country, this chapter covers general principles using documented examples as appropriate for illustration.
    [Show full text]
  • A High-Amplitude Atmospheric Inertia–Gravity Wave-Induced
    A high-amplitude atmospheric inertia– gravity wave-induced meteotsunami in Lake Michigan Eric J. Anderson & Greg E. Mann Natural Hazards ISSN 0921-030X Nat Hazards DOI 10.1007/s11069-020-04195-2 1 23 Your article is protected by copyright and all rights are held exclusively by This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply. This e-offprint is for personal use only and shall not be self- archived in electronic repositories. If you wish to self-archive your article, please use the accepted manuscript version for posting on your own website. You may further deposit the accepted manuscript version in any repository, provided it is only made publicly available 12 months after official publication or later and provided acknowledgement is given to the original source of publication and a link is inserted to the published article on Springer's website. The link must be accompanied by the following text: "The final publication is available at link.springer.com”. 1 23 Author's personal copy Natural Hazards https://doi.org/10.1007/s11069-020-04195-2 ORIGINAL PAPER A high‑amplitude atmospheric inertia–gravity wave‑induced meteotsunami in Lake Michigan Eric J. Anderson1 · Greg E. Mann2 Received: 1 February 2020 / Accepted: 17 July 2020 © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2020 Abstract On Friday, April 13, 2018, a high-amplitude atmospheric inertia–gravity wave packet with surface pressure perturbations exceeding 10 mbar crossed the lake at a propagation speed that neared the long-wave gravity speed of the lake, likely producing Proudman resonance.
    [Show full text]
  • Infragravity Wave Energy Partitioning in the Surf Zone in Response to Wind-Sea and Swell Forcing
    Journal of Marine Science and Engineering Article Infragravity Wave Energy Partitioning in the Surf Zone in Response to Wind-Sea and Swell Forcing Stephanie Contardo 1,*, Graham Symonds 2, Laura E. Segura 3, Ryan J. Lowe 4 and Jeff E. Hansen 2 1 CSIRO Oceans and Atmosphere, Crawley 6009, Australia 2 Faculty of Science, School of Earth Sciences, The University of Western Australia, Crawley 6009, Australia; [email protected] (G.S.); jeff[email protected] (J.E.H.) 3 Departamento de Física, Universidad Nacional, Heredia 3000, Costa Rica; [email protected] 4 Faculty of Engineering and Mathematical Sciences, Oceans Graduate School, The University of Western Australia, Crawley 6009, Australia; [email protected] * Correspondence: [email protected] Received: 18 September 2019; Accepted: 23 October 2019; Published: 28 October 2019 Abstract: An alongshore array of pressure sensors and a cross-shore array of current velocity and pressure sensors were deployed on a barred beach in southwestern Australia to estimate the relative response of edge waves and leaky waves to variable incident wind wave conditions. The strong sea 1 breeze cycle at the study site (wind speeds frequently > 10 m s− ) produced diurnal variations in the peak frequency of the incident waves, with wind sea conditions (periods 2 to 8 s) dominating during the peak of the sea breeze and swell (periods 8 to 20 s) dominating during times of low wind. We observed that edge wave modes and their frequency distribution varied with the frequency of the short-wave forcing (swell or wind-sea) and edge waves were more energetic than leaky waves for the duration of the 10-day experiment.
    [Show full text]
  • Kelvin/Rossby Wave Partition of Madden-Julian Oscillation Circulations
    climate Article Kelvin/Rossby Wave Partition of Madden-Julian Oscillation Circulations Patrick Haertel Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06511, USA; [email protected] Abstract: The Madden Julian Oscillation (MJO) is a large-scale convective and circulation system that propagates slowly eastward over the equatorial Indian and Western Pacific Oceans. Multiple, conflicting theories describe its growth and propagation, most involving equatorial Kelvin and/or Rossby waves. This study partitions MJO circulations into Kelvin and Rossby wave components for three sets of data: (1) a modeled linear response to an MJO-like heating; (2) a composite MJO based on atmospheric sounding data; and (3) a composite MJO based on data from a Lagrangian atmospheric model. The first dataset has a simple dynamical interpretation, the second provides a realistic view of MJO circulations, and the third occurs in a laboratory supporting controlled experiments. In all three of the datasets, the propagation of Kelvin waves is similar, suggesting that the dynamics of Kelvin wave circulations in the MJO can be captured by a system of equations linearized about a basic state of rest. In contrast, the Rossby wave component of the observed MJO’s circulation differs substantially from that in our linear model, with Rossby gyres moving eastward along with the heating and migrating poleward relative to their linear counterparts. These results support the use of a system of equations linearized about a basic state of rest for the Kelvin wave component of MJO circulation, but they question its use for the Rossby wave component. Keywords: Madden Julian Oscillation; equatorial Rossby wave; equatorial Kelvin wave Citation: Haertel, P.
    [Show full text]
  • Baroclinic Instability, Lecture 19
    19. Baroclinic Instability In two-dimensional barotropic flow, there is an exact relationship between mass 2 streamfunction ψ and the conserved quantity, vorticity (η)given by η = ∇ ψ.The evolution of the conserved variable η in turn depends only on the spatial distribution of η andonthe flow, whichisd erivable fromψ and thus, by inverting the elliptic relation, from η itself. This strongly constrains the flow evolution and allows one to think about the flow by following η around and inverting its distribution to get the flow. In three-dimensional flow, the vorticity is a vector and is not in general con­ served. The appropriate conserved variable is the potential vorticity, but this is not in general invertible to find the flow, unless other constraints are provided. One such constraint is geostrophy, and a simple starting point is the set of quasi-geostrophic equations which yield the conserved and invertible quantity qp, the pseudo-potential vorticity. The same dynamical processes that yield stable and unstable Rossby waves in two-dimensional flow are responsible for waves and instability in three-dimensional baroclinic flow, though unlike the barotropic 2-D case, the three-dimensional dy­ namics depends on at least an approximate balance between the mass and flow fields. 97 Figure 19.1 a. The Eady model Perhaps the simplest example of an instability arising from the interaction of Rossby waves in a baroclinic flow is provided by the Eady Model, named after the British mathematician Eric Eady, who published his results in 1949. The equilibrium flow in Eady’s idealization is illustrated in Figure 19.1.
    [Show full text]
  • Equilibrium Model of Tides Highly Idealized, but Very Instructive, View of Tides
    Tides Outline • Equilibrium Theory of Tides — diurnal, semidiurnal and mixed semidiurnal tides — spring and neap tides • Dynamic Theory of Tides — rotary tidal motion — larger tidal ranges in coastal versus open-ocean regions • Special Cases — Forcing ocean water into a narrow embayment — Tidal forcing that is in resonance with the tide wave Equilibrium Model of Tides Highly Idealized, but very instructive, View of Tides • Tide wave treated as a deep-water wave in equilibrium with lunar/solar forcing • No interference of tide wave propagation by continents Tidal Patterns for Various Locations 1 Looking Down on Top of the Earth The Earth’s Rotation Under the Tidal Bulge Produces the Rise moon and Fall of Tides over an Approximately 24h hour period Note: This is describing the ‘hypothetical’ condition of a 100% water planet Tidal Day = 24h + 50min It takes 50 minutes for the earth to rotate 12 degrees of longitude Earth & Moon Orbit Around Sun 2 R b a P Fa = Gravity Force on a small mass m at point a from the gravitational attraction between the small mass and the moon of mass M Fa = Centrifugal Force on a due to rotation about the center of mass of the two mass system using similar arguments The Main Point: Force at and point a and b are equal and opposite. It can be shown that the upward (normal the the earth’s surface) tidal force on a parcel of water produced by the moon’s gravitational attraction is small (1 part in 9 million) compared to the downward gravitation force on that parcel of water caused by earth’s on gravitational attraction.
    [Show full text]
  • Title on the Observations of the Earth Tide by Means Of
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository On the Observations of the Earth Tide by Means of Title Extensometers in Horizontal Components Author(s) OZAWA, Izuo Bulletins - Disaster Prevention Research Institute, Kyoto Citation University (1961), 46: 1-15 Issue Date 1961-03-27 URL http://hdl.handle.net/2433/123706 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University DISASTER PREVENTION RESEARCH INSTITUTE BULLETIN NO. 46 MARCH, 1961 ON THE OBSERVATIONS OF THE EARTH TIDE BY MEANS OF EXTENSOMETERS IN HORIZONTAL COMPONENTS BY IZUO OZAWA KYOTO UNIVERSITY, KYOTO, JAPAN 1 DISASTER PREVENTION RESEARCH INSTITUTE KYOTO UNIVERSITY BULLETINS Bulletin No. 46 March, 1961 On the Observations of the Earth Tide by Means of Extensometers in Horizontal Components By Izuo OZAWA 2 On the Observations of the Earth Tide by Means of Extensometers in Horizontal Components By Izuo OZAWA Geophysical Institute, Faculty of Science, Kyoto University Abstract The author has performed the observations of tidal strains of the earth's surface in some or several directions by means of extensometers at Osakayama observatory Kishu mine, Suhara observatory and Matsushiro observatory, and he has calculated the tide-constituents (M2, 01, etc.) of the observed strains by means of harmonic analysis. According to the results, the phase lags of M2-constituents except one in Suhara are nearly zero, whose upper and lower limits are 43' and —29°, respectively. That is the coefficients of cos 2t-terms of the strains are posi- tive value in all the azimuths, and the ones of their sin 2t-terms are much smaller than the ones of their cos 2t-terms, where t is an hour angle of hypothetical heavenly body at the observatory.
    [Show full text]