The Earth Tide Effects on Petroleum Reservoirs
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Coal and Oil: the Dark Monarchs of Global Energy – Understanding Supply and Extraction Patterns and Their Importance for Futur
nam et ipsa scientia potestas est List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Höök, M., Aleklett, K. (2008) A decline rate study of Norwe- gian oil production. Energy Policy, 36(11):4262–4271 II Höök, M., Söderbergh, B., Jakobsson, K., Aleklett, K. (2009) The evolution of giant oil field production behaviour. Natural Resources Research, 18(1):39–56 III Höök, M., Hirsch, R., Aleklett, K. (2009) Giant oil field decline rates and their influence on world oil production. Energy Pol- icy, 37(6):2262–2272 IV Jakobsson, K., Söderbergh, B., Höök, M., Aleklett, K. (2009) How reasonable are oil production scenarios from public agen- cies? Energy Policy, 37(11):4809–4818 V Höök M, Söderbergh, B., Aleklett, K. (2009) Future Danish oil and gas export. Energy, 34(11):1826–1834 VI Aleklett K., Höök, M., Jakobsson, K., Lardelli, M., Snowden, S., Söderbergh, B. (2010) The Peak of the Oil Age - analyzing the world oil production Reference Scenario in World Energy Outlook 2008. Energy Policy, 38(3):1398–1414 VII Höök M, Tang, X., Pang, X., Aleklett K. (2010) Development journey and outlook for the Chinese giant oilfields. Petroleum Development and Exploration, 37(2):237–249 VIII Höök, M., Aleklett, K. (2009) Historical trends in American coal production and a possible future outlook. International Journal of Coal Geology, 78(3):201–216 IX Höök, M., Aleklett, K. (2010) Trends in U.S. recoverable coal supply estimates and future production outlooks. Natural Re- sources Research, 19(3):189–208 X Höök, M., Zittel, W., Schindler, J., Aleklett, K. -
Study of Earth's Gravity Tide and Ocean Loading
CHINESE JOURNAL OF GEOPHYSICS Vol.49, No.3, 2006, pp: 657∼670 STUDY OF EARTH’S GRAVITY TIDE AND OCEAN LOADING CHARACTERISTICS IN HONGKONG AREA SUN He-Ping1 HSU House1 CHEN Wu2 CHEN Xiao-Dong1 ZHOU Jiang-Cun1 LIU Ming1 GAO Shan2 1 Key Laboratory of Dynamical Geodesy, Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan 430077, China 2 Department of Land Surveying and Geoinformatics, Hong-Kong Polytechnic University, Hung Hom, Knowloon, Hong Kong Abstract The tidal gravity observation achievements obtained in Hongkong area are introduced, the first complete tidal gravity experimental model in this area is obtained. The ocean loading characteristics are studied systematically by using global and local ocean models as well as tidal gauge data, the suitability of global ocean models is also studied. The numerical results show that the ocean models in diurnal band are more stable than those in semidiurnal band, and the correction of the change in tidal height plays a significant role in determining accurately the phase lag of the tidal gravity. The gravity observation residuals and station background noise level are also investigated. The study fills the empty of the tidal gravity observation in Crustal Movement Observation Network of China and can provide the effective reference and service to ground surface and space geodesy. Key words Hongkong area, Tidal gravity, Experimental model, Ocean loading 1 INTRODUCTION The Earth’s gravity is a science studying the temporal and spatial distribution of the gravity field and its physical mechanism. Generally, its achievements can be used in many important domains such as space science, geophysics, geodesy, oceanography, and so on. -
Norwegian Petroleum Technology a Success Story ISBN 82-7719-051-4 Printing: 2005
Norwegian Academy of Technological Sciences Offshore Media Group Norwegian Petroleum Technology A success story ISBN 82-7719-051-4 Printing: 2005 Publisher: Norwegian Academy of Technological Sciences (NTVA) in co-operation with Offshore Media Group and INTSOK. Editor: Helge Keilen Journalists: Åse Pauline Thirud Stein Arve Tjelta Webproducer: Erlend Keilen Graphic production: Merkur-Trykk AS Norwegian Academy of Technological Sciences (NTVA) is an independent academy. The objectives of the academy are to: – promote research, education and development within the technological and natural sciences – stimulate international co-operation within the fields of technology and related fields – promote understanding of technology and natural sciences among authorities and the public to the benefit of the Norwegian society and industrial progress in Norway. Offshore Media Group (OMG) is an independent publishing house specialising in oil and energy. OMG was established in 1982 and publishes the magazine Offshore & Energy, two daily news services (www.offshore.no and www.oilport.net) and arranges several petro- leum and energy based conferences. The entire content of this book can be downloaded from www.oilport.net. No part of this publication may be reproduced in any form, in electronic retrieval systems or otherwise, without the prior written permission of the publisher. Publisher address: NTVA Lerchendahl gaard, NO-7491 TRONDHEIM, Norway. Tel: + (47) 73595463 Fax: + (47) 73590830 e-mail: [email protected] Front page illustration: FMC Technologies. Preface In many ways, the Norwegian petroleum industry is an eco- passing $ 160 billion, and political leaders in resource rich nomic and technological fairy tale. In the course of a little oil countries are looking to Norway for inspiration and more than 30 years Norway has developed a petroleum guidance. -
Annual Report 2019 the 2019 Partners
THE NATIONAL IOR CENTRE OF NORWAY Annual report 2019 The 2019 partners ConocoPhillips Observers Contents Management Team 4 Board Members 4 Technical Committee 5 Scientific Advisory Committee 5 About 6 Research Themes 7 Greetings from the Director 8 Greetings from the Chairman of the Board 9 Consortium Partners 10 Activity Highlights On the use of thermo-thickening polymers for in-depth mobility control – large scale testing 12 Developing the ensemble Kalman filter based approach for history matching 15 Coordinating Upscaling Workflow 16 Interpore – 3rd National Workshop on Porous Media 17 New management team 18 Great expectations from the Research Council of Norway 19 Researcher Profiles Mehul Vora 20 André Luís Morosov 21 Micheal Oguntola 21 Tine Vigdel Bredal 22 Arun Selvam 22 Panagiotis Aslanidis 23 William Chalub Cruz 23 Nisar Ahmed 24 Aleksandr Mamonov 24 Juan Michael Sargado 25 Runar Berge 25 Highlights from the PhD Defences PhD Defences 2019 26 Core scale modelling of EOR transport mechanisms 27 Smart Water for EOR from Seawater and Produced Water by Membranes 27 Wettability estimation by oil adsorption 28 CO2 Mobility Control with Foam for EOR and Associated Storage 28 Interaction between two calcite surfaces in aqueous solutions … 29 Research Dissemination, Conferences & Awards Lundin Norway shares all data from one field 30 PhD student Mehul Vora presented at OG21 31 Selected Papers 32 Media Contributions 2019 35 Who are we? 36 Publications 37 3 Management Team Ying Guo Tina Puntervold Randi Valestrand Centre Director Assistant -
Title on the Observations of the Earth Tide by Means Of
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Kyoto University Research Information Repository On the Observations of the Earth Tide by Means of Title Extensometers in Horizontal Components Author(s) OZAWA, Izuo Bulletins - Disaster Prevention Research Institute, Kyoto Citation University (1961), 46: 1-15 Issue Date 1961-03-27 URL http://hdl.handle.net/2433/123706 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University DISASTER PREVENTION RESEARCH INSTITUTE BULLETIN NO. 46 MARCH, 1961 ON THE OBSERVATIONS OF THE EARTH TIDE BY MEANS OF EXTENSOMETERS IN HORIZONTAL COMPONENTS BY IZUO OZAWA KYOTO UNIVERSITY, KYOTO, JAPAN 1 DISASTER PREVENTION RESEARCH INSTITUTE KYOTO UNIVERSITY BULLETINS Bulletin No. 46 March, 1961 On the Observations of the Earth Tide by Means of Extensometers in Horizontal Components By Izuo OZAWA 2 On the Observations of the Earth Tide by Means of Extensometers in Horizontal Components By Izuo OZAWA Geophysical Institute, Faculty of Science, Kyoto University Abstract The author has performed the observations of tidal strains of the earth's surface in some or several directions by means of extensometers at Osakayama observatory Kishu mine, Suhara observatory and Matsushiro observatory, and he has calculated the tide-constituents (M2, 01, etc.) of the observed strains by means of harmonic analysis. According to the results, the phase lags of M2-constituents except one in Suhara are nearly zero, whose upper and lower limits are 43' and —29°, respectively. That is the coefficients of cos 2t-terms of the strains are posi- tive value in all the azimuths, and the ones of their sin 2t-terms are much smaller than the ones of their cos 2t-terms, where t is an hour angle of hypothetical heavenly body at the observatory. -
Earth Tide Effects on Geodetic Observations
EARTH TIDE EFFECTS ON GEODETIC OBSERVATIONS by K. BRETREGER A thesis submitted as a part requirement for the degree of Doctor of Philosophy, to the University of New South Wales. January 1978 School of Surveying Kensington, Sydney. This is to certify that this thesis has not been submitted for a higher degree to any other University or Institution. K. Bretreger ( i i i) ABSTRACT The Earth tide formulation is developed in the view of investigating ocean loading effects. The nature of the ocean tide load leads to a proposalfor a combination of quadratures methods and harmonic representation being used in the representation of the loading potential. This concept is developed and extended by the use of truncation functions as a means of representing the stress and deformation potentials, and the radial displacement in the case of both gravity and tilt observations. Tidal gravity measurements were recorded in Australia and Papua New Guinea between 1974 and 1977, and analysed at the International Centre for Earth Tides, Bruxelles. The observations were analysed for the effect of ocean loading on tidal gravity with a •dew to nodelling these effects as a function of space and time. It was found that present global ocean tide models cannot completely account for the observed Earth tide residuals in Australia. Results for a number of models are shown, using truncation function methods and the Longman-Farrell approach. Ocean tide loading effects were computed using a simplified model of the crustal response as an alternative to representation by the set of load deformation coefficients h~, k~. It is shown that a ten parameter representation of the crustal response is adequate for representing the deformation of the Earth tide by ocean loading at any site in Australia with a resolution of ±2 µgal provided extrapolation is not performed over distances greater than 10 3 km. -
Petroleum Production and Exploration
To my family List of Papers This thesis is based on the following papers, which are referred to in the text by their Roman numerals. I Jakobsson, K., Söderbergh, B., Höök, M., Aleklett, K. (2009) How reasonable are oil production scenarios from public agen- cies? Energy Policy, 37(11):4809-4818 II Jakobsson, K., Bentley, R., Söderbergh, B., Aleklett, K. (2011) The end of cheap oil. Bottom-up economic and geologic model- ing of aggregate oil production curves. Energy Policy, in press III Jakobsson, K., Söderbergh, B., Snowden, S., Aleklett, K. (2011) Bottom-up modeling of oil production. Review and sensitivity analysis. Manuscript. IV Jakobsson, K., Söderbergh, B., Snowden, S., Li, C.-Z., Aleklett, K. (2011) Oil exploration and perceptions of scarcity. The falla- cy of early success. Energy Economics, in press V Söderbergh, B., Jakobsson, K., Aleklett, K. (2009) European energy security. The future of Norwegian natural gas produc- tion. Energy Policy, 37(12):5037-5055 VI Söderbergh, B., Jakobsson, K., Aleklett, K. (2010) European energy security. An analysis of future Russian natural gas pro- duction and exports. Energy Policy, 38(12):7827-7843 VII Höök, M., Söderbergh, B., Jakobsson, K., Aleklett, K. (2009) The evolution of giant oil field production behavior. Natural Resources Research, 18(1):39-56 Reprints were made with permission from the respective publishers. The author’s contribution to the papers: Papers I-IV: principal authorship and major contribution to model- ing Papers V and VI: contribution to modeling Paper VII: minor contribution to modeling Complementary paper not included in the thesis: Aleklett, K., Höök, M., Jakobsson, K., Lardelli, M., Snowden, S., Söder- bergh, B. -
Evaluating Some Aspects of Gas Geochemistry of Some North Sea Oil Fields
ienc Sc es al J c o i u m r e n a Nwaogu, Chem Sci J 2015, 6:2 h l C Chemical Sciences Journal DOI: 10.4172/2150-3494.100093 ISSN: 2150-3494 Research Article Article OpenOpen Access Access Evaluating Some Aspects of Gas Geochemistry of some North Sea Oil Fields Chukwudi Nwaogu1*,Selegha Abrakasa2, Hycienth Nwankwoala2, Mmaduabuchi Uzoegbu2 and John Nwogu3 1Faculty of Environmental Sciences, Czech University of Life Sciences, Kamycka 129, 165 21 Suchdol, Praque 6, Czech Republic. 2Department of Geology, University of Port Harcourt, Rivers State. Nigeria. 3Rivers State College of Health Technology, Port-Harcourt, Rivers State, Nigeria. Abstract Gas geochemistry, an integral part of petroleum geosciences, has been used for evaluating source rocks potential for shale gas and in conventional exploration as a guide for determining potential productive formations. However, in contemporary times, new concepts of gas geochemistry have been applied in delineating the effectiveness of caprocks. Caprock is a vital element of a petroleum system, the volumes of rocks overlaying reservoirs are responsible for the configuration on which the accumulation sits and fosters essential preservation. In this study headspace gas served the purpose of delineating leakage and determining migration pathways, mechanism and discriminating gas types in the formations overlaying the reservoirs. Keywords: Gas geochemistry; Caprocks; Leakage; Thermogenic gas; lithology of the formations were modelled using Genesis 4.8. Thermogenic signature Methodology Introduction This study is part of a wider study on regional leakage evaluation of Gas geochemistry – a new comer in the series of geochemistry has the North Sea. Data for this study were sourced from well completion proved vital in delineating caprock leakage employing headspace gas. -
Lecture 1: Introduction to Ocean Tides
Lecture 1: Introduction to ocean tides Myrl Hendershott 1 Introduction The phenomenon of oceanic tides has been observed and studied by humanity for centuries. Success in localized tidal prediction and in the general understanding of tidal propagation in ocean basins led to the belief that this was a well understood phenomenon and no longer of interest for scientific investigation. However, recent decades have seen a renewal of interest for this subject by the scientific community. The goal is now to understand the dissipation of tidal energy in the ocean. Research done in the seventies suggested that rather than being mostly dissipated on continental shelves and shallow seas, tidal energy could excite far traveling internal waves in the ocean. Through interaction with oceanic currents, topographic features or with other waves, these could transfer energy to smaller scales and contribute to oceanic mixing. This has been suggested as a possible driving mechanism for the thermohaline circulation. This first lecture is introductory and its aim is to review the tidal generating mechanisms and to arrive at a mathematical expression for the tide generating potential. 2 Tide Generating Forces Tidal oscillations are the response of the ocean and the Earth to the gravitational pull of celestial bodies other than the Earth. Because of their movement relative to the Earth, this gravitational pull changes in time, and because of the finite size of the Earth, it also varies in space over its surface. Fortunately for local tidal prediction, the temporal response of the ocean is very linear, allowing tidal records to be interpreted as the superposition of periodic components with frequencies associated with the movements of the celestial bodies exerting the force. -
Microbiology of Petroleum Reservoirs
u Antonie van Leeuwenhoek 77: 103-116,2000. 103 qv O 2000 Kluwer Academic Publishers. Printed in the Netherlands. Microbiology of petroleum reservoirs Michel Magot',", Bernard Ollivier2 & Bharat K.C. Pate13 'SANOFI Recherche, Centre de Labège, BP 132, F31676Labège, France 2Laboratoire ORSTOM de Microbiologie des Anaérobies, Université de Provence, CESB-ESIL, Case 925, 163 Avenue de Luminy, F13288 Marseille Cedex 9, France e 3Faculty of Science and Technology, Griffìth Universi@ Nathan, Brisbane, Australia 4111 (*Authorfor correspondence) d Key words: fermentative bacteria, indigenous microflora, iron-reducing bacteria, methanogens, oil fields, sulphate- reducing bacteria Abstract Although the importance of bacterial activities in oil reservoirs was recognized a long time ago, our knowledge of the nature and diversity of bacteria growing in these ecosystems is still poor, and their metabolic activities in situ ) largely ignored. This paper reviews our current knowledge about these bacteria and emphasises the importance of the petrochemical and geochemical characteristics in understanding their presence in such environments. Microbiology of oil reservoirs: concerns and organisms inhabit aquatic as well as oil-bearing deep questions subsurface environments.This review focuses on indi- genous as well as exogenous bacteria in subterranean Since the beginning of commercial oil production, oil fields. almost 140 years ago, petroleum engineers have faced problems caused by micro-organisms. Sulphate- reducing bacteria (SRB) were rapidly recognised as Physico-chemicalcharacteristics of oil reservoirs responsible for the production of H2S, within reser- voirs or top facilities, which reduced oil quality, cor- The possibility for living organisms to survive or roded steel material, and threatened workers' health thrive in oil field environments depends on the phys- due to its high toxicity (Cord-Ruwich et al. -
Basin-Scale Tidal Measurements Using Acoustic Tomography
TOOL Basin-Scale Tidal Measurements using Acoustic Tomography by Robert Hugh Headrick B.S. Chem. Eng., Oklahoma State University (1983) Submitted in partial fulfillment of the requirements for the degrees of OCEAN ENGINEER and MASTER OF SCIENCE IN OCEAN ENGINEERING at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY and the WOODS HOLE OCEANOGRAPHIC INSTITUTION September 1990 © Robert Hugh Headrick, 1990 The author hereby grants to the United States Government, MIT, and WHOI permission to reproduce and to distribute copies of this thesis document in whole or in part. Dr. W. Kendall Melville Chairman,Joint Committee for Oceanographic Engineering Massachusetts Institute of Technology/ Woods Hole Oceanographic Institution T247908 //jj/3 //<//?/ OOL ^ -3-8002 Basin-Scale Tidal Measurements using Acoustic Tomography by Robert Hugh Headrick Submitted to the Massachusetts Institute of Technology/ Woods Hole Oceanographic Institution Joint Program in Oceanographic Engineering on August 10, 1990, in partial fulfillment of the requirements for the degrees of Ocean Engineer and Master of Science in Ocean Engineering Abstract Travel-times of acoustic signals were measured between a bottom-mounted source near Oahu and four bottom-mounted receivers located near Washington, Oregon, and Cali- fornia in 1988 and 1989. This paper discusses the observed tidal signals. At three out of four receivers, observed travel times at Ml and 52 periods agree with predictions from barotropic tide models to within ±30° in phase and a factor of 1.6 in amplitude. The discrepancy at the fourth receiver can be removed by including predicted effects of phase- locked baroclinic tides generated by seamounts. Our estimates of barotropic M2 tidal dissipation by seamounts vary between 2 x 10 16 and 18 -1 1 x 10 erg-s . -
Once Again: Once Againmtidal Friction
Prog. Oceanog. Vol. 40~ pp. 7-35, 1997 © 1998 Elsevier Science Ltd. All rights reserved Pergamon Printed in Great Britain PII: S0079-6611( 97)00021-9 0079-6611/98 $32.0(I Once again: once againmtidal friction WALTER MUNK Scripps Institution of Oceanography, University of California-San Diego, La Jolht, CA 92093-0225, USA Abstract - Topex/Poseidon (T/P) altimetry has reopened the problem of how tidal dissipation is to be allocated. There is now general agreement of a M2 dissipation by 2.5 Terawatts ( 1 TW = 10 ~2 W), based on four quite separate astronomic observational programs. Allowing for the bodily tide dissipation of 0.1 TW leaves 2.4 TW for ocean dissipation. The traditional disposal sites since JEFFREYS (1920) have been in the turbulent bottom boundary layer (BBL) of marginal seas, and the modern estimate of about 2.1 TW is in this tradition (but the distribution among the shallow seas has changed radically from time to time). Independent estimates of energy flux into the mar- ginal seas are not in good agreement with the BBL estimates. T/P altimetry has contributed to the tidal problem in two important ways. The assimilation of global altimetry into Laplace tidal solutions has led to accurate representations of the global tides, as evidenced by the very close agreement between the astronomic measurements and the computed 2.4 TW working of the Moon on the global ocean. Second, the detection by RAY and MITCHUM (1996) of small surface manifestation of internal tides radiating away from the Hawaiian chain has led to global estimates of 0.2 to 0.4 TW of conversion of surface tides to internal tides.