Bacterial Symbionts of the Leafhopper Evacanthus Interruptus (Linnaeus, 1758) (Insecta, Hemiptera, Cicadellidae: Evacanthinae)

Total Page:16

File Type:pdf, Size:1020Kb

Bacterial Symbionts of the Leafhopper Evacanthus Interruptus (Linnaeus, 1758) (Insecta, Hemiptera, Cicadellidae: Evacanthinae) Protoplasma (2016) 253:379–391 DOI 10.1007/s00709-015-0817-2 ORIGINAL ARTICLE Bacterial symbionts of the leafhopper Evacanthus interruptus (Linnaeus, 1758) (Insecta, Hemiptera, Cicadellidae: Evacanthinae) Teresa Szklarzewicz 1 & Beata Grzywacz2 & Jacek Szwedo3 & Anna Michalik1 Received: 29 January 2015 /Accepted: 6 April 2015 /Published online: 22 April 2015 # The Author(s) 2015. This article is published with open access at Springerlink.com Abstract Plant sap-feeding hemipterans harbor obligate symbi- betaproteobacterial symbionts are transovarially transmitted from otic microorganisms which are responsible for the synthesis of one generation to the next. In the mature female, symbionts leave amino acids missing in their diet. In this study, we characterized the bacteriocytes and gather around the posterior pole of the the obligate symbionts hosted in the body of the xylem-feeding terminal oocytes. Then, they gradually pass through the cyto- leafhopper Evacanthus interruptus (Cicadellidae: Evacanthinae: plasm of follicular cells surrounding the posterior pole of the Evacanthini) by means of histological, ultrastructural and molec- oocyte and enter the space between them and the oocyte. The ular methods. We observed that E. interruptus is associated with bacteria accumulate in the deep depression of the oolemma and two types of symbiotic microorganisms: bacterium ‘Candidatus form a characteristic ‘symbiont ball’. In the light of the results Sulcia muelleri’ (Bacteroidetes) and betaproteobacterium that is obtained, the phylogenetic relationships within modern closely related to symbionts which reside in two other Cicadomorpha and some Cicadellidae subfamilies are discussed. Cicadellidae representatives: Pagaronia tredecimpunctata (Evacanthinae: Pagaronini) and Hylaius oregonensis Keywords Symbiotic microorganisms . Sulcia . (Bathysmatophorinae: Bathysmatophorini). Both symbionts are Bacteriocytes . Transovarial transmission of symbionts . harbored in their own bacteriocytes which are localized between Cicadellidae the body wall and ovaries. In E. interruptus,bothSulcia and Introduction Handling Editor: Hanns H. Kassemeyer * Anna Michalik The Hemiptera are a large group of insects with feeding habits [email protected] that range from phytophagy to predation, including Teresa Szklarzewicz ectoparasitism and hematophagy (Forero 2008). Plant feeders [email protected] suck the phloem or xylem sap, or ingest plant cell content Beata Grzywacz (Backus 1988; Campbell et al. 1994;Sorensenetal.1995). [email protected] Among the six suborders of the Hemiptera (i.e. Paleorrhyncha, Jacek Szwedo Sternorrhyncha, Fulgoromorpha, Cicadomorpha, Coleorrhyncha [email protected] and Heteroptera; Szwedo et al. 2004;GrimaldiandEngel2005; Drohojowska et al. 2013), the Cicadomorpha: Clypeata lineage (uniting extinct Hylicelloidea and extant Cicadoidea, 1 Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University, Cercopoidea and Membracoidea sensu lato) is the only one with Gronostajowa 9, 30-387 Kraków, Poland several strong adaptations for xylem feeding (Wang et al. 2012), 2 Institute of Systematics and Evolution of Animals, Polish Academy however in some of them shifts to cell-content and back to phlo- of Sciences, Sławkowska 17, 31-016 Kraków, Poland em feeding occurred (Dietrich 2013). The diet of xylem-feeding 3 Department of Invertebrate Zoology and Parasitology, Faculty of hemipterans is extremely unbalanced, because the amount of Biology, University of Gdańsk, Wita Stwosza 59, 80- nutrients in the xylem sap is 10 times less than that in the phloem 308 Gdańsk, Poland (Andersen et al. 1989). Therefore, most plant sup-sucking 380 T. Szklarzewicz et al. hemipterans live in mutualistic associations with symbiotic mi- in Cicadomorpha and Fulgoromorpha results from a multiple, croorganisms (bacteria or yeast) which synthesize missing nutri- independent replacement of symbiotic bacteria by other mi- ents and provide them to their hosts (Wilkinson and Ishikawa croorganisms. An ancestor of Cicadomorpha and 2001;Baumann2005; Douglas 2009). The sequencing of the Fulgoromorpha has been colonized by Sulcia and genome of bacteria inhabiting the body of hemipterans has indi- betaproteobacterial symbionts (probably 270 million years cated that these microorganisms possess the biosynthetic path- ago), but during the further evolution of the hemipteran line- ways necessary for the synthesis of essential amino acids, i.e. ages the betaproteobacterial co-symbiont was replaced by oth- leucine, serine, tryptophan as well as many vitamins and other er bacteria (Moran et al. 2005;BennettandMoran2013; Koga cofactors (Douglas 2006;Wuetal.2006;McCutcheonand et al. 2013; Koga and Moran 2014). In some planthopper Moran 2007; McCutcheon et al. 2009). families, i.e. Flatidae and Delphacidae as well as in leafhopper The obligate symbionts may be localized both extracellu- Scaphoideus titanus (Cicadellidae: Deltocephalinae) bacterial larly, in the lumen of midgut appendages (in some symbionts have been replaced by yeast symbionts (Sacchi heteropterans), and intracellularly, in cells of the midgut epi- et al. 2008;Michaliketal.2009; Noda 1977). thelium (in some heteropterans) or in specialized cells of me- On account of their crucial role, the obligate symbionts of sodermal origin termed bacteriocytes/mycetocytes (in most hemipterans are transovarially (vertically) transmitted be- hemipterans) (see Kikuchi 2009 for further details). The latter tween generations (see Buchner 1965 for further details). microorganisms are termed ‘mycetomic symbionts’. For this reason, bacteria living in different species of insects Among hemipterans, the Sternorrhyncha (aphids, psyllids, evolved independently from one another, i.e. without gene whiteflies, scale insects) are associated with one type of obli- exchange between bacteria in different hosts. gate mycetomic symbiont (termed ‘primary symbiont’), e.g. Evacanthus interruptus (Linnaeus, 1758) is a representative aphids harbor the bacterium Buchnera aphidicola, psyllids – of leafhoppers (Cicadomorpha: Membracoidea: Cicadellidae). the bacterium Carsonella ruddii (see Baumann 2005 for further So far, the symbiotic microorganisms present in the xylem- details). Apart from obligate symbionts, sternorrhynchans, as a feeding subfamily Evacanthinae Metcalf, 1939 have been ex- rule, hold additional symbionts (termed secondary or faculta- amined only fragmentarily (Buchner 1965; Takiya et al. 2006). tive symbionts) that may play various roles for their host in- Early microscopic observations conducted by Buchner (1965) sects, e.g. may protect them from infection by fungal pathogens showed that the females of Evacanthus interruptus possess two or attack by parasitic hymenopterans (Oliver et al. 2003;Scar- types of symbiotic microorganisms, which are localized in sep- borough et al. 2005). In contrast to the situation observed in arate bacteriocytes. More recently, using molecular methods, Sternorrhyncha, in Cicadomorpha and Fulgoromorpha (both Takiya et al. (2006) indicated the occurrence of Sulcia symbi- formerly treated as Auchenorrhyncha), two or more types of ont in the Pagaronia tredecimpunctata species Ball, 1902. obligate symbionts (termed ‘coprimary symbionts’) co-occur Koga et al. (2013) detected betaproteobacterial symbionts in and all of them are engaged in the synthesis of nutrients essen- the same leafhopper species. tial to the host insect (Moran et al. 2003;Takiyaetal.2006; The objectives of this study were to examine the ultrastruc- Bressan et al. 2009; Noda et al. 2012; Urban and Cryan 2012; ture of symbionts of E. interruptus, their distribution in the host Bennett and Moran 2013;Ishiietal.2013;Kogaetal.2013; insect body, mode of transovarial transmission from one gen- Michalik et al. 2014a;Wuetal.2006). eration to the next and to determine their systematic affinity. Molecular analyses have shown that both Cicadomorpha and Fulgoromorpha usually possess the obligate Bacteroidetes bacterium ‘Candidatus Sulcia muelleri’ (hereafter referred to Material and methods as Sulcia) and one other type of coprimary symbiont, e.g. gammaproteobacterium ‘Candidatus Baumannia Insects cicadellinicola’ (hereafter Baumannia), betaproteobacterium ‘Candidatus Zinderia insecticola’ (hereafter Zinderia), Adult females of Evacanthus interruptus (Linnaeus, 1758) betaproteobacterium ‘Candidatus Vidania fulgoroideae’ were collected from herbaceous plants in Kraków (Poland) (hereafter Vidania), betaproteobacterium ‘Candidatus Nasuia and near Vorokhta (Chornohora Mountain, Eastern deltocephalinicola’ (hereafter Nasuia), alphaproteobacterium Carpathians, Ukraine), from July to September. ‘Candidatus Hodgkinia cicadicola’ (hereafter Hodgkinia) (Moran et al. 2003, 2005; Takiya et al. 2006;McCutcheon DNA analyses et al. 2009; Gonella et al. 2011;Nodaetal.2012; Urban and Cryan 2012; Ishii et al. 2013;Kogaetal.2013). The results of The dissected bacteriomes were fixed in 96 % ethanol, washed recent molecular phylogenetic analyses (Bennett and Moran twice in sterile water and homogenized in 120 μl of 0.7 M 2013;Kogaetal.2013; Bennett et al. 2014; Koga and Moran NH4OH. After 15 min of incubation at 100 °C in alkaline con- 2014) suggest that this enormous diversity of symbionts found ditions, tubes were opened and further incubated at 100 °C for Bacterial symbionts of the leafhopper Evacanthus interruptus 381 10 min. Next, the samples were centrifuged (5 min, 12 000 rpm) Molecular
Recommended publications
  • Hemiptera: Cicadellidae: Iassinae
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: European Journal of Taxonomy Jahr/Year: 2020 Band/Volume: 0695 Autor(en)/Author(s): Dietrich Christopher H., Magalhaes Raysa Brito de, Takiya Daniela M. Artikel/Article: Revision of the endemic Malagasy leafhopper tribe Platyjassini (Hemiptera: Cicadellidae: Iassinae) 1-89 European Journal of Taxonomy 695: 1–89 ISSN 2118-9773 https://doi.org/10.5852/ejt.2020.695 www.europeanjournaloftaxonomy.eu 2020 · Dietrich C.H. et al. This work is licensed under a Creative Commons Attribution Licence (CC BY 4.0). Monograph urn:lsid:zoobank.org:pub:DC24EAB0-DCF5-44A8-B1A0-82BF25D280C2 Revision of the endemic Malagasy leafhopper tribe Platyjassini (Hemiptera: Cicadellidae: Iassinae) Christopher H. DIETRICH 1,*, Raysa Brito de MAGALHÃES 2 & Daniela M. TAKIYA 3 1Illinois Natural History Survey, Prairie Research Institute, University of Illinois, 1816 S. Oak St., Champaign, IL 61820, USA. 2,3Laboratório de Entomologia, Departamento de Zoologia, Universidade Federal do Rio de Janeiro, Caixa Postal 68044, Rio de Janeiro, 21941-971, RJ Brazil. * Corresponding author: [email protected] 2 Email: [email protected] 3 Email: [email protected] 1 urn:lsid:zoobank.org:author:82FCB86C-54B4-456A-AE5E-D7847D271CB9 2 urn:lsid:zoobank.org:author:4C8219B1-56D6-4E5F-8156-86538351F85C 3 urn:lsid:zoobank.org:author:7E88BC1C-8D6A-411D-B97B-52E64EF5BA70 Abstract. The leafhopper tribe Platyjassini, endemic to Madagascar, is revised, largely based on specimens obtained in a recent bioinventory project led by the California Academy of Sciences. Platyjassini was previously known based on the type genus, Platyjassus Evans, 1953, and four described species.
    [Show full text]
  • Adilson TESIS
    2010A - 2015A CODIGO - 207148356 UNIVERSIDAD DE GUADALAJARA CENTRO UNIVERSITARIO DE CIENCIAS BIOLÓGICAS Y AGROPECUARIAS DIVISIÓN DE CIENCIAS BIOLÓGICAS Y AMBIENTALES “Diversidad de chicharritas (Hemiptera: Cicadellidae) en gramíneas, durante la temporada seca en Zapopan, Jalisco, México” TESIS PROFESIONAL PARA OBTENER EL TITULO DE: LICENCIADO EN BIOLOGÍA PRESENTA JORGE ADILSON PINEDO ESCATEL Las Agujas, Nextipac, Zapopan, Jalisco, México, Enero 2015 a b c “Trabaja duro y destaca sobre los demás ” Mis padres Jorge y Josefina a lo largo de mi vida “A mi eterna amante la naturaleza” Gustavo Moya Raygoza Junio 1987 “Nunca consideres el estudio como una obligación, sino como una oportunidad para penetrar en el bello y maravilloso mundo del saber” Albert Einstein d AGRADECIMIENTOS A mis padres por su comprensión y fuente de motivación para continuar mis estudios. Agradezco al inmenso apoyo, consejos, experiencias, amabilidad y crítica, en mi línea de investigación a mi mentor el Dr. Gustavo Moya-Raygoza . Al M.R.B. Hugo Eduardo Fierros-López por sus valiosas sugerencias y aportaciones al trabajo. Al Dr. James N. Jahniser y al Dr. Chistoper H. Dietrich (Illinois Natural History Survey) por la identificación y confirmación del material determinado. Al Dr. Alejandro Muñoz-Urias en el apoyo brindado mediante el uso del programa Estimate S y sus comentarios al manuscrito. A la Dra. Claudia Aurora Uribe-Mu por permitir el uso del software de microscopia óptica AxioVision (Carl Zeiss). A mis compañeros de laboratorio Iskra , Elizabeth , Rosaura y Laura por su paciencia hacia mi persona. A la Biol. Edith Blanco Rodríguez por aportar nuevas ideas para la formación de un equipo de especialistas en taxonomía de cicadélidos en México Al Ing.
    [Show full text]
  • The Leafhoppers of Minnesota
    Technical Bulletin 155 June 1942 The Leafhoppers of Minnesota Homoptera: Cicadellidae JOHN T. MEDLER Division of Entomology and Economic Zoology University of Minnesota Agricultural Experiment Station The Leafhoppers of Minnesota Homoptera: Cicadellidae JOHN T. MEDLER Division of Entomology and Economic Zoology University of Minnesota Agricultural Experiment Station Accepted for publication June 19, 1942 CONTENTS Page Introduction 3 Acknowledgments 3 Sources of material 4 Systematic treatment 4 Eurymelinae 6 Macropsinae 12 Agalliinae 22 Bythoscopinae 25 Penthimiinae 26 Gyponinae 26 Ledrinae 31 Amblycephalinae 31 Evacanthinae 37 Aphrodinae 38 Dorydiinae 40 Jassinae 43 Athysaninae 43 Balcluthinae 120 Cicadellinae 122 Literature cited 163 Plates 171 Index of plant names 190 Index of leafhopper names 190 2M-6-42 The Leafhoppers of Minnesota John T. Medler INTRODUCTION HIS bulletin attempts to present as accurate and complete a T guide to the leafhoppers of Minnesota as possible within the limits of the material available for study. It is realized that cer- tain groups could not be treated completely because of the lack of available material. Nevertheless, it is hoped that in its present form this treatise will serve as a convenient and useful manual for the systematic and economic worker concerned with the forms of the upper Mississippi Valley. In all cases a reference to the original description of the species and genus is given. Keys are included for the separation of species, genera, and supergeneric groups. In addition to the keys a brief diagnostic description of the important characters of each species is given. Extended descriptions or long lists of references have been omitted since citations to this literature are available from other sources if ac- tually needed (Van Duzee, 1917).
    [Show full text]
  • Great Basin Naturalist Memoirs No
    PAUL W. OMAN—AN APPRECIATION John D. Lattin' Abstract —The contributions to professional entomology made by Paul W. Oman are reviewed. A bibliography of his published contributions to this field from 1930 to 1987 is included. I first met Paul Oman in December 1950 in including attending Annapolis. He took a Denver, Colorado, at the national meeting of course in entomology to satisfy a biological the Entomological Society of America. He science requirement and soon transferred to was in the uniform of the U.S. Army with the that department. Among the departmental rank of major, having been called up again to faculty were H. B. Hungerford, chairman, serve in the Korean War (or "ruckus" as Paul K. C. Doering, P. B. Lawson, R. H. Beamer, preferred to call it). I was a graduate student at and P. A. Readio. It is interesting to note that the University of Kansas, working with H. B. Hungerford (my own major professor in 1950) Hungerford. Dr. Hungerford encouraged me worked on aquatic Hemiptera, Readio on the to attend the meeting, as did the other faculty Reduviidae, Kathleen Doering was a mor- members. He took special care to introduce phologist but worked on Homoptera, and the graduate students to other entomologists both Lawson and Beamer worked not only on at the meeting, including Paul Oman, himself Homoptera but also on leafhoppers. Not sur- a graduate of the University of Kansas. My prisingly, Paul's interest in this group of in- recollection of that meeting was that Paul took sects was kindled at K.U., and he has contin- special interest in each student he met, even ued to work on the family during his entire though his time was limited and he was quite scientific career.
    [Show full text]
  • The Complete Mitochondrial Genome of Four Hylicinae (Hemiptera: Cicadellidae): Structural Features and Phylogenetic Implications
    insects Article The Complete Mitochondrial Genome of Four Hylicinae (Hemiptera: Cicadellidae): Structural Features and Phylogenetic Implications Jiu Tang y , Weijian Huang y and Yalin Zhang * Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, Entomological Museum, College of Plant Protection, Northwest A&F University, Yangling 712100, China; [email protected] (J.T.); [email protected] (W.H.) * Correspondence: [email protected]; Tel.: +86-029-87092190 These two authors contributed equally in this study. y Received: 19 November 2020; Accepted: 4 December 2020; Published: 7 December 2020 Simple Summary: Hylicinae, containing 43 described species in 13 genera of two tribes, is one of the most morphologically unique subfamilies of Cicadellidae. Phylogenetic studies on this subfamily were mainly based on morphological characters or several gene fragments and just involved single or two taxa. No mitochondrial genome was reported in Hylicinae before. Therefore, we sequenced and analyzed four complete mtgenomes of Hylicinae (Nacolus tuberculatus, Hylica paradoxa, Balala fujiana, and Kalasha nativa) for the first time to reveal mtgenome characterizations and reconstruct phylogenetic relationships of this group. The comparative analyses showed the mtgenome characterizations of Hylicinae are similar to members of Membracoidea. In phylogenetic results, Hylicinae was recovered as a monophyletic group in Cicadellidae and formed to the sister group of Coelidiinae + Iassinae. These results provide the comprehensive framework and worthy information toward the future researches of this subfamily. Abstract: To reveal mtgenome characterizations and reconstruct phylogenetic relationships of Hylicinae, the complete mtgenomes of four hylicine species, including Nacolus tuberculatus, Hylica paradoxa, Balala fujiana, and Kalasha nativa, were sequenced and comparatively analyzed for the first time.
    [Show full text]
  • The Leafhopper Vectors of Phytopathogenic Viruses (Homoptera, Cicadellidae) Taxonomy, Biology, and Virus Transmission
    /«' THE LEAFHOPPER VECTORS OF PHYTOPATHOGENIC VIRUSES (HOMOPTERA, CICADELLIDAE) TAXONOMY, BIOLOGY, AND VIRUS TRANSMISSION Technical Bulletin No. 1382 Agricultural Research Service UMTED STATES DEPARTMENT OF AGRICULTURE ACKNOWLEDGMENTS Many individuals gave valuable assistance in the preparation of this work, for which I am deeply grateful. I am especially indebted to Miss Julianne Rolfe for dissecting and preparing numerous specimens for study and for recording data from the literature on the subject matter. Sincere appreciation is expressed to James P. Kramer, U.S. National Museum, Washington, D.C., for providing the bulk of material for study, for allowing access to type speci- mens, and for many helpful suggestions. I am also grateful to William J. Knight, British Museum (Natural History), London, for loan of valuable specimens, for comparing type material, and for giving much useful information regarding the taxonomy of many important species. I am also grateful to the following persons who allowed me to examine and study type specimens: René Beique, Laval Univer- sity, Ste. Foy, Quebec; George W. Byers, University of Kansas, Lawrence; Dwight M. DeLong and Paul H. Freytag, Ohio State University, Columbus; Jean L. LaiFoon, Iowa State University, Ames; and S. L. Tuxen, Universitetets Zoologiske Museum, Co- penhagen, Denmark. To the following individuals who provided additional valuable material for study, I give my sincere thanks: E. W. Anthon, Tree Fruit Experiment Station, Wenatchee, Wash.; L. M. Black, Uni- versity of Illinois, Urbana; W. E. China, British Museum (Natu- ral History), London; L. N. Chiykowski, Canada Department of Agriculture, Ottawa ; G. H. L. Dicker, East Mailing Research Sta- tion, Kent, England; J.
    [Show full text]
  • Disturbance-Mediated Trophic Interactions and Plant Performance
    Oecologia (2006) 147: 261–271 DOI 10.1007/s00442-005-0267-1 PLANT-ANIMAL INTERACTIONS Bret D. Elderd Disturbance-mediated trophic interactions and plant performance Received: 15 June 2005 / Accepted: 6 September 2005 / Published online: 5 October 2005 Ó Springer-Verlag 2005 Abstract Disturbances, such as flooding, play important was the differences in the herbivore community that led roles in determining community structure. Most studies to a significant decrease in plant survival. While flooding of disturbances focus on the direct effects and, hence, the certainly alters riparian plant survival through direct indirect effects of disturbances are poorly understood. abiotic effects, it also indirectly affects riparian plants by Within terrestrial riparian areas, annual flooding leads changing the arthropod community, in particular her- to differences in the arthropod community as compared bivores, and hence trophic interactions. to non-flooded areas. In turn, these differences are likely to alter the survival, growth, and reproduction of plant Keywords Disturbance Æ Flooding Æ Lycosidae species via an indirect effect of flooding (i.e., changes in Mimulus guttatus DC Æ Trophic interactions herbivory patterns). To test for such effects, an experi- ment was conducted wherein arthropod predators and herbivores were excluded from plots in flooded and non- Introduction flooded areas and the impact on a common riparian plant, Mimulus guttatus was examined. In general, the It is a commonly recognized fact that disturbances help direct effect of flooding on M. guttatus was positive. The maintain community composition across a wide variety indirect effects, however, significantly decreased plant of ecosystems (Paine and Levin 1981; White and Pickett survival for both years of the experiment, regardless of 1985; Hobbs and Mooney 1991; Wootton et al.
    [Show full text]
  • Agroforestry Extension Manual for Eastern Zambia
    Agroforestry Extension Manual for Eastern Zambia i RELMA Technical Handbook No. 17 The Technical Handbook Series of the Regional Land Management Unit 1. Curriculum for In-service Training in Agroforestry and Related Subjects in Kenya Edited by Stachys N. Muturi, 1992 (ISBN 9966-896-03-1)( 2. Agroforestry Manual for Extension Workers with Emphasis on Small -Scale Farmers in Eastern Province, Zambia By Samuel Simute, 1992 (ISBN 9966-896-07-4) 3. Guidelines on Agroforestry Extension Planning in Kenya By Bo Tengnäs, 1993 (ISBN 9966-896-11-2) 4. Agroforestry Manual for Extension Workers in Southern Province, Zambia By Jericho Mulofwa with Samuel Simute and Bo Tengnäs, 1994 (ISBN 9966-896-14-7) 5. Useful Trees and Shrubs for Ethiopia: Identification, Propagation and Management for Agricultural and Pastoral Communities By Azene Bekele-Tessema with Ann Birnie and Bo Tengnäs, 1993 (ISBN 9966-896-15-5) 6. Useful Trees and Shrubs for Tanzania: Identification, Propagation and Management for Agricultural and Pastoral Communities By L.P. Mbuya, H.P. Msanga, C.K. Ruffo, Ann Birnie and Bo Tengnäs, 1994 (ISBN 9966- 896-16-3) 7. Soil Conservation in Arusha Region, Tanzania: Manual for Extension Workers with Emphasis on Small-Scale Farmers By Per Assmo with Arne Eriksson, 1994 (ISBN 9966-896-19-8) 8. Curriculum for Training in Soil and Water Conservation in Kenya Edited by Stachys N. Muturi and Fabian S. Muya, 1994 (ISBN 9966-896-20-1) 9. The Soils of Ethiopia: Annotated Bibliography By Berhanu Debele, 1994 (ISBN 9966-896-21-X) 10. Useful Trees and Shrubs for Uganda: Identification, Propagation and Management for Agricultural and Pastoral Communitie By A.B.
    [Show full text]
  • Bacterial Symbionts of the Leafhopper Evacanthus Interruptus (Linnaeus, 1758) (Insecta, Hemiptera, Cicadellidae: Evacanthinae)
    Protoplasma (2016) 253:379–391 DOI 10.1007/s00709-015-0817-2 ORIGINAL ARTICLE Bacterial symbionts of the leafhopper Evacanthus interruptus (Linnaeus, 1758) (Insecta, Hemiptera, Cicadellidae: Evacanthinae) Teresa Szklarzewicz 1 & Beata Grzywacz2 & Jacek Szwedo3 & Anna Michalik1 Received: 29 January 2015 /Accepted: 6 April 2015 /Published online: 22 April 2015 # The Author(s) 2015. This article is published with open access at Springerlink.com Abstract Plant sap-feeding hemipterans harbor obligate symbi- betaproteobacterial symbionts are transovarially transmitted from otic microorganisms which are responsible for the synthesis of one generation to the next. In the mature female, symbionts leave amino acids missing in their diet. In this study, we characterized the bacteriocytes and gather around the posterior pole of the the obligate symbionts hosted in the body of the xylem-feeding terminal oocytes. Then, they gradually pass through the cyto- leafhopper Evacanthus interruptus (Cicadellidae: Evacanthinae: plasm of follicular cells surrounding the posterior pole of the Evacanthini) by means of histological, ultrastructural and molec- oocyte and enter the space between them and the oocyte. The ular methods. We observed that E. interruptus is associated with bacteria accumulate in the deep depression of the oolemma and two types of symbiotic microorganisms: bacterium ‘Candidatus form a characteristic ‘symbiont ball’. In the light of the results Sulcia muelleri’ (Bacteroidetes) and betaproteobacterium that is obtained, the phylogenetic relationships within modern closely related to symbionts which reside in two other Cicadomorpha and some Cicadellidae subfamilies are discussed. Cicadellidae representatives: Pagaronia tredecimpunctata (Evacanthinae: Pagaronini) and Hylaius oregonensis Keywords Symbiotic microorganisms . Sulcia . (Bathysmatophorinae: Bathysmatophorini). Both symbionts are Bacteriocytes . Transovarial transmission of symbionts .
    [Show full text]
  • Acacia Flat Mite (Brevipalpus Acadiae Ryke & Meyer, Tenuipalpidae, Acarina): Doringboomplatmyt
    Creepie-crawlies and such comprising: Common Names of Insects 1963, indicated as CNI Butterfly List 1959, indicated as BL Some names the sources of which are unknown, and indicated as such Gewone Insekname SKOENLAPPERLYS INSLUITENDE BOSLUISE, MYTE, SAAMGESTEL DEUR DIE AALWURMS EN SPINNEKOPPE LANDBOUTAALKOMITEE Saamgestel deur die MET MEDEWERKING VAN NAVORSINGSINSTITUUT VIR DIE PLANTBESKERMING TAALDIENSBURO Departement van Landbou-tegniese Dienste VAN DIE met medewerking van die DEPARTEMENT VAN ONDERWYS, KUNS EN LANDBOUTAALKOMITEE WETENSKAP van die Taaldiensburo 1959 1963 BUTTERFLY LIST Common Names of Insects COMPILED BY THE INCLUDING TICKS, MITES, EELWORMS AGRICULTURAL TERMINOLOGY AND SPIDERS COMMITTEE Compiled by the IN COLLABORATION WiTH PLANT PROTECTION RESEARCH THE INSTITUTE LANGUAGE SERVICES BUREAU Department of Agricultural Technical Services OF THE in collaboration with the DEPARTMENT OF EDUCATION, ARTS AND AGRICULTURAL TERMINOLOGY SCIENCE COMMITTEE DIE STAATSDRUKKER + PRETORIA + THE of the Language Service Bureau GOVERNMENT PRINTER 1963 1959 Rekenaarmatig en leksikografies herverwerk deur PJ Taljaard e-mail enquiries: [email protected] EXPLANATORY NOTES 1 The list was alphabetised electronically. 2 On the target-language side, ie to the right of the :, synonyms are separated by a comma, e.g.: fission: klowing, splyting The sequence of the translated terms does NOT indicate any preference. Preferred terms are underlined. 3 Where catchwords of similar form are used as different parts of speech and confusion may therefore
    [Show full text]
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from the microfihn master. UMI films the t%t directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. UMI A Bell & Howell Information Company 300 North Zed) Road, Ann Arbor MI 48106-1346 USA 313/761-4700 800/521-0600 EFFECTS OF VEGETATIONAL DIVERSITY ON THE POTATO LEAFHOPPER DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Timothy Joseph Miklasiewicz, M.
    [Show full text]
  • Homologies of the Head of Membracoidea Based on Nymphal Morphology with Notes on Other Groups of Auchenorrhyncha (Hemiptera)
    Eur. J. Entomol. 107: 597–613, 2010 http://www.eje.cz/scripts/viewabstract.php?abstract=1571 ISSN 1210-5759 (print), 1802-8829 (online) Homologies of the head of Membracoidea based on nymphal morphology with notes on other groups of Auchenorrhyncha (Hemiptera) DMITRY A. DMITRIEV Illinois Natural History Survey, Institute of Natural Resource Sustainability at the University of Illinois at Urbana-Champaign, Champaign, Illinois, USA; e-mail: [email protected] Key words. Hemiptera, Membracoidea, Cicadellidae, Cicadoidea, Cercopoidea, Fulgoroidea, head, morphology, ground plan Abstract. The ground plan and comparative morphology of the nymphal head of Membracoidea are presented with particular emphasis on the position of the clypeus, frons, epistomal suture, and ecdysial line. Differences in interpretation of the head structures in Auchenorrhyncha are discussed. Membracoidea head may vary more extensively than heads in any other group of insects. It is often modified by the development of an anterior carina, which apparently was gained and lost multiple times within Membracoidea. The main modifications of the head of Membracoidea and comparison of those changes with the head of other superfamilies of Auchenorrhyncha are described. INTRODUCTION MATERIAL AND METHODS The general morphology of the insect head is relatively Dried and pinned specimens were studied under an Olympus well studied (Ferris, 1942, 1943, 1944; Cook, 1944; SZX12 microscope with SZX-DA drawing tube attachment. DuPorte, 1946; Snodgrass, 1947; Matsuda, 1965; Detailed study of internal structures and boundaries of sclerites Kukalová-Peck, 1985, 1987, 1991, 1992, 2008). There is based on examination of exuviae and specimens cleared in are also a few papers in which the hemipteran head is 5% KOH.
    [Show full text]