Biology and Evolution of Adelgidae

Total Page:16

File Type:pdf, Size:1020Kb

Biology and Evolution of Adelgidae ANRV297-EN52-16 ARI 21 November 2006 10:26 Biology and Evolution of Adelgidae Nathan P. Havill1 and Robert G. Foottit2 1Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520; email: [email protected] 2Agriculture and Agri-Food Canada, Eastern Cereal and Oilseeds Research Centre, Ottawa, ON K1A 0C6, Canada; email: [email protected] Annu. Rev. Entomol. 2007. 52:325–49 Key Words The Annual Review of Entomology is online at Aphidoidea, complex life cycle, cyclical parthenogenesis, ento.annualreviews.org plant-insect interactions This article’s doi: 10.1146/annurev.ento.52.110405.091303 Abstract Copyright c 2007 by Annual Reviews. The Adelgidae form a small clade of insects within the Aphidoidea All rights reserved (Hemiptera) that includes some of the most destructive introduced by Agriculture & Agri-Food Canada on 09/05/08. For personal use only. 0066-4170/07/0107-0325$20.00 pest species threatening North American forest ecosystems. De- spite their importance, little is known about their evolutionary his- Annu. Rev. Entomol. 2007.52:325-349. Downloaded from arjournals.annualreviews.org tory and their taxonomy remains unresolved. Adelgids are cyclically parthenogenetic and exhibit multigeneration complex life cycles. They can be holocyclic, with a sexual generation and host alterna- tion, or anholocyclic, entirely asexual and without host alternation. We discuss adelgid behavior and ecology, emphasizing plant-insect interactions, and we explore ways that the biogeographic history of their host plants may have affected adelgid phylogeny and evolution of adelgid life cycles. Finally, we highlight several areas in which ad- ditional research into speciation, population genetics, multitrophic interactions, and life-history evolution would improve our under- standing of adelgid biology and evolution. 325 ANRV297-EN52-16 ARI 21 November 2006 10:26 Two phenomena in the natural history of chermes twentieth century, interest in adelgids peaked [ = adelgids] are especially striking; the again. Eichhorn (45, 46) discussed popula- parthenogenesis and the polymorphism: both of tion dynamics and predator-prey interactions. them attain such a high degree here as nowhere Steffan (144, 145) studied systematics, cytol- else in the animal kingdom. N.A. Cholodkovsky, ogy, and life cycle evolution. Inouye (81) de- 1915 (29) scribed the adelgid fauna in Japan, as did Carter (25) in Britain. In recent decades, research on adelgids INTRODUCTION has focused mainly on two species, balsam Adelgids (Hemiptera: Aphidoidea: Adelgi- woolly adelgid, Adelges piceae (69), and hem- dae), like their closest relatives, phylloxer- lock woolly adelgid, A. tsugae (103). They ans (Phylloxeridae) and aphids (Aphididae), were introduced into North America from exhibit cyclical parthenogenesis and have Europe (60) and Japan (76), respectively, and complex, multigeneration, polymorphic life are serious threats to forest ecosystems. Re- cycles. The Adelgidae and Phylloxeridae are cent research has therefore emphasized basic distinguished from the Aphididae by the ab- biology, plant-insect interactions, and poten- sence of siphunculi and the retention of the tial biological control organisms to inform ef- ancestral trait of oviparity in all generations forts to manage these two species. In this re- (78). While phylloxerans and many aphids view, we give an overview of adelgid biology feed on angiosperms, adelgids feed only on and systematics and discuss recent advances in certain genera in the Pinaceae, retaining their understanding their evolutionary history. In ancestral relationship with gymnosperms (78, particular, we focus on the evolution of adel- 157). gid life cycles and host plant use. By emphasiz- Adelgids, like their host plants, are en- ing patterns across the whole family, we hope demic to Northern Hemisphere boreal and to stimulate research on this unique group of temperate environments. Despite the broad insects, to inform control programs of current geographic distribution of their host plants, adelgid pest species, and to help prevent other there are surprisingly few adelgid species: species from becoming pests in the future. Fewer than 70 have been described in the en- tire family (15, 124, 145) (Table 1). However, there is considerable taxonomic uncertainty. THE ADELGID HOLOCYCLE Several described species may not represent In cyclically parthenogenetic organisms, a unique taxa but are actually different morpho- holocyclic species or lineage is one that in- logical forms of the same species found on cludes a sexual generation in its life cycle. by Agriculture & Agri-Food Canada on 09/05/08. For personal use only. different host plants (15). It also is likely that Life cycles that do not include a sexual gen- cryptic species have yet to be described (76). eration are termed anholocyclic. Five gener- Annu. Rev. Entomol. 2007.52:325-349. Downloaded from arjournals.annualreviews.org Work on adelgid biology and systemat- ations make up the typical adelgid holocycle ics has a long and rich history. After cycli- (Figure 1, center). Three are produced on the cal parthenogenesis and host alternation were primary host, where sexual reproduction and discovered in adelgids between 1887 and gall formation occur; two are produced on the 1889 (17, 18, 27, 42), a lively dialogue secondary host that supports a series of asexual in the scientific literature established their generations. The entire cycle takes two years natural history, life cycle terminology, and to complete. Spruce (Picea spp.) is always the the morphological characters used in taxon- primary host and another conifer genus (Abies, omy, culminating in monographs by Cholod- Larix, Pseudotsuga, Tsuga,orPinus) is always kovsky (28) in Russia, Borner¨ (22) in Ger- the secondary host. Adelgids are highly host many, Marchal (97) in France, and Annand specific: A given species can survive and re- (4) in North America. During the mid- produce only on certain tree species within 326 Havill · Foottit ANRV297-EN52-16 ARI 21 November 2006 10:26 Table 1 List of described adelgid species, their life cycles, secondary hosts, and native ranges Secondary Speciesa Life cyclec host genus Native range Reference(s) ◦ Adelges (Sacchiphantes) abietis (Linnaeus Anholocyclic 1 None Europe 28, 118, 126 1758) Adelges (Adelges) aenigmaticus Annand 1928 Unknown Larix Unknown 4 Adelges (Gilletteella) cooleyi (Gillette 1907) Holocyclic Pseudotsuga Western North 4, 30, 34, 67 America ◦ Adelges (Gilletteella) coweni (Gillette 1907) Anholocyclic 2 Pseudotsuga Western North 35, 127, 145 America Adelges (Sacchiphantes) diversis Annand 1928 Unknown Larix Unknown 4 ◦ Adelges (Adelges) geniculatus (Ratzeburg Anholocyclic 2 Larix Europe 145 1843) Adelges (Gilletteela) glandulae (Zhang 1980) Holocyclic Abies China 168 Adelges (Adelges) isedakii Eichhorn 1978 Holocyclic Larix Japan 54 ◦ Adelges (Adelges) japonicus (Monzen 1929) Anholocyclic 1 None Japan 54, 81, 113 ◦ Adelges (Dreyfusia) joshii (Schneider-Orelli Anholocyclic 2 Abies Western Himalayas 66 & Schneider 1959) Adelges (Sacchiphantes) karafutonis (Kono & Unknown Unknown Japan 54, 81 Inouye 1938) ◦ Adelges (Adelges) karamatsui Inouye 1945 Anholocyclic 2 Larix Japan 54, 81 Adelges (Sacchiphantes) kitamiensis (Inouye Unknown Larix Japan 82 1963) Adelges (Dreyfusia) knucheli Holocyclic Abies Western Himalayas 66, 91 (Schneider-Orelli & Schneider 1954) ◦ Adelges (Adelges) lapponicus (Cholodkovsky Anholocyclic 1 None Europe 28 1889) Adelges (Sacchiphantes) lariciatus (Patch Holocyclic Larix North America 4, 37, 117 1909) Adelges (Adelges) laricis (Vallot 1836) Holocyclic Larix Europe 23, 25, 33, 136, 168 Adelges (Dreyfusia) merkeri Eichhorn 1957 Holocyclic Abies Europe 43, 45, 49, 121 ◦ Adelges (Dreyfusia) nebrodensis (Binazzi & Anholocyclic 2 Abies Italy 13 Covassi 1991) Adelges (Dreyfusia) nordmannianae (Eckstein Holocyclic Abies Caucasus Mountains 51, 53, 97, 156 by Agriculture & Agri-Food Canada on 09/05/08. For personal use only. 1890) Adelges (Cholodkovskya) oregonensis Annand Unknown Larix Unknown 4 Annu. Rev. Entomol. 2007.52:325-349. Downloaded from arjournals.annualreviews.org 1928 Adelges (Aphrastasia) pectinatae Holocyclic Abies Europe, China, 54, 55, 81, 145 (Cholodkovsky 1888) Japan ◦ Adelges (Dreyfusia) piceae (Ratzeburg 1844) Anholocyclic 2 Abies Europe 14, 97, 156 ◦ Adelges (Dreyfusia) pindrowi Yaseen & Ghani Anholocyclic 2 Abies Western Himalayas 164 1971 Adelges (Dreyfusia) prelli (Grossmann 1935) Holocyclic Abies Caucasus Mountains 63, 64 ◦ Adelges (Sacchiphantes) roseigallis (Li & Tsai Anholocyclic 1 None China 93 1973) ◦ Adelges (Dreyfusia) schneideri Borner¨ 1932 Anholocyclic 2 Abies Caucasus Mountains 121, 145 (Continued ) www.annualreviews.org • Biology and Evolution of Adelgidae 327 ANRV297-EN52-16 ARI 21 November 2006 10:26 Table 1 (Continued ) Secondary Speciesa Life cyclec host genus Native range Reference(s) ◦ Adelges (Sacchiphantes) segregis Steffan 1961 Anholocyclic 2 Larix Europe 138 ◦ Adelges (Dreyfusia) tadomatsui (Inouye Anholocyclic 2 Abies Japan 54, 81 1945) Adelges (Adelges) tardoides (Cholodkovsky Holocyclic Larix Europe 23, 145 1911) ◦ Adelges (Adelges) tardus (Dreyfus 1888) Anholocyclic 1 None Europe 11, 145 Adelges (Sacchiphantes) torii (Eichhorn Holocyclic Larix Japan 54 1978) Adelges (Aphrastasia) tsugae Annand 1924 Holocyclic Tsuga China, Japan, 4, 76, 166 Western North America ◦ Adelges (Cholodkovskya) viridana Anholocyclic 2 Larix Europe 143 (Cholodkovsky 1896) Adelges (Sacchiphantes) viridis (Ratzeburg
Recommended publications
  • Zootaxa,Phylogeny and Higher Classification of the Scale Insects
    Zootaxa 1668: 413–425 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Phylogeny and higher classification of the scale insects (Hemiptera: Sternorrhyncha: Coccoidea)* P.J. GULLAN1 AND L.G. COOK2 1Department of Entomology, University of California, One Shields Avenue, Davis, CA 95616, U.S.A. E-mail: [email protected] 2School of Integrative Biology, The University of Queensland, Brisbane, Queensland 4072, Australia. Email: [email protected] *In: Zhang, Z.-Q. & Shear, W.A. (Eds) (2007) Linnaeus Tercentenary: Progress in Invertebrate Taxonomy. Zootaxa, 1668, 1–766. Table of contents Abstract . .413 Introduction . .413 A review of archaeococcoid classification and relationships . 416 A review of neococcoid classification and relationships . .420 Future directions . .421 Acknowledgements . .422 References . .422 Abstract The superfamily Coccoidea contains nearly 8000 species of plant-feeding hemipterans comprising up to 32 families divided traditionally into two informal groups, the archaeococcoids and the neococcoids. The neococcoids form a mono- phyletic group supported by both morphological and genetic data. In contrast, the monophyly of the archaeococcoids is uncertain and the higher level ranks within it have been controversial, particularly since the late Professor Jan Koteja introduced his multi-family classification for scale insects in 1974. Recent phylogenetic studies using molecular and morphological data support the recognition of up to 15 extant families of archaeococcoids, including 11 families for the former Margarodidae sensu lato, vindicating Koteja’s views. Archaeococcoids are represented better in the fossil record than neococcoids, and have an adequate record through the Tertiary and Cretaceous but almost no putative coccoid fos- sils are known from earlier.
    [Show full text]
  • Distribution Records of Aphids (Hemiptera: Phylloxeroidea, Aphidoidea) Associated with Main Forest-Forming Trees in Northern Europe
    © Entomologica Fennica. 5 December 2012 Distribution records of aphids (Hemiptera: Phylloxeroidea, Aphidoidea) associated with main forest-forming trees in Northern Europe Andrey V. Stekolshchikov & Mikhail V. Kozlov Stekolshchikov, A. V.& Kozlov, M. V.2012: Distribution records of aphids (He- miptera: Phylloxeroidea, Aphidoidea) associated with main forest-forming trees in Northern Europe. — Entomol. Fennica 23: 206–214. We report records of 25 species of aphids collected from four species of woody plants (Pinus sylvestris, Picea abies, Betula pubescens and B. pendula)at50 study sites in Northern Europe, located from 59° to 70° N and from 10° to 60° E. Critical evaluation of earlier publications demonstrated that in spite of the obvi- ous limitations of our survey, the obtained information substantially contributed to the knowledge of the distribution of aphids in North European Russia, includ- ing Murmansk oblast (103 species recorded to date), Republic of Karelia (58 spe- cies), Arkhangelsk oblast (37 species), Vologda oblast (17 species) and Republic of Komi (29 species). We confirm the occurrence of Cinara nigritergi in South- ern Karelia; Pineus cembrae, Cinara pilosa and Monaphis antennata are for the first time recorded in Norway. A. V.Stekolshchikov, Zoological Institute, Russian Academy of Sciences, Univer- sitetskaya nab. 1, St. Petersburg 199034, Russia; E-mail: [email protected] M. V. Kozlov, Section of Ecology, University of Turku, FI-20014 Turku, Finland; E-mail: [email protected] Received 2 February 2012, accepted 5 April 2012 1. Introduction cades (e.g., Albrecht 2012), no comparable data (with rare exceptions) exist for the northern parts Species distributions and, consequently, spatial of the European Russia.
    [Show full text]
  • Impact of Imidacloprid and Horticultural Oil on Nonâ•Fitarget
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Masters Theses Graduate School 8-2007 Impact of Imidacloprid and Horticultural Oil on Non–target Phytophagous and Transient Canopy Insects Associated with Eastern Hemlock, Tsuga canadensis (L.) Carrieré, in the Southern Appalachians Carla Irene Dilling University of Tennessee - Knoxville Follow this and additional works at: https://trace.tennessee.edu/utk_gradthes Part of the Entomology Commons Recommended Citation Dilling, Carla Irene, "Impact of Imidacloprid and Horticultural Oil on Non–target Phytophagous and Transient Canopy Insects Associated with Eastern Hemlock, Tsuga canadensis (L.) Carrieré, in the Southern Appalachians. " Master's Thesis, University of Tennessee, 2007. https://trace.tennessee.edu/utk_gradthes/120 This Thesis is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Masters Theses by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a thesis written by Carla Irene Dilling entitled "Impact of Imidacloprid and Horticultural Oil on Non–target Phytophagous and Transient Canopy Insects Associated with Eastern Hemlock, Tsuga canadensis (L.) Carrieré, in the Southern Appalachians." I have examined the final electronic copy of this thesis for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Master of Science, with a major in Entomology and Plant Pathology. Paris L. Lambdin, Major Professor We have read this thesis and recommend its acceptance: Jerome Grant, Nathan Sanders, James Rhea, Nicole Labbé Accepted for the Council: Carolyn R.
    [Show full text]
  • PINE BARK ADELGID Hemiptera Adelgidae
    PINE BARK ADELGID Hemiptera Adelgidae: Pineus strobi (Htg.) By Scott Salom and Eric Day DISTRIBUTION AND HOSTS: The pine bark adelgid is widely distributed in North America, occurring principally throughout the native range of eastern white pine. This insect is also found on Scots and Austrian pine. DESCRIPTION OF DAMAGE: Adelgids feed on tree trunks by sucking sap from the phloem tissue. Trunks of heavily infested trees often appear white- washed from the woolly masses these tiny insects secrete over themselves for protection. Small nursery stock, ornamental trees, and trees in parks can be heavily attacked. In severe cases, feeding can cause bud proliferation and give the tops of the trees a bushy “witches broom” appearance. However, if the trees are otherwise healthy, permanent damage should not result. In eastern white pine plantations of a forest setting, repeatedly infested mature pine trees apparently suffer no serious harm. IDENTIFICATION: Adelgids are similar to aphids, except they have shorter antennae and lack cornicles (or bumps) on their abdomen. They live under a woolly mass they secrete for protection. If this mass is pulled off the trunk, black teardrop- shaped insects with short legs are revealed. When populations are high, the woolly masses coalesce into one large mass on the Pine Bark Adelgid on white pine trunks. LIFE HISTORY: Overwintering immature adelgids will begin feeding during the first days of warm weather, and secrete woolly tufts. Once these insects develop to adults (April to May), egg laying begins. Eggs hatch into crawlers, which can move to other parts of the tree or be blown to other trees.
    [Show full text]
  • Using Multiple Methodologies to Understand Within Species Variability of Adelges and Pineus (Hemiptera: Sternorrhyncha) Tav Aronowitz University of Vermont
    University of Vermont ScholarWorks @ UVM Graduate College Dissertations and Theses Dissertations and Theses 2017 Using Multiple Methodologies to Understand within Species Variability of Adelges and Pineus (Hemiptera: Sternorrhyncha) Tav Aronowitz University of Vermont Follow this and additional works at: https://scholarworks.uvm.edu/graddis Part of the Biology Commons, Entomology Commons, and the Environmental Sciences Commons Recommended Citation Aronowitz, Tav, "Using Multiple Methodologies to Understand within Species Variability of Adelges and Pineus (Hemiptera: Sternorrhyncha)" (2017). Graduate College Dissertations and Theses. 713. https://scholarworks.uvm.edu/graddis/713 This Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact [email protected]. USING MULTIPLE METHODOLOGIES TO UNDERSTAND WITHIN SPECIES VARIABILITY OF ADELGES AND PINEUS (HEMIPTERA: STERNORRHYNCHA) A Thesis Presented by Tav (Hanna) Aronowitz to The Faculty of the Graduate College of The University of Vermont In Partial Fulfillment of the Requirements for the Degree of Master of Science Specializing in Natural Resources May, 2017 Defense Date: March 6, 2016 Thesis Examination Committee: Kimberly Wallin, Ph.D., Advisor Ingi Agnarsson, Ph.D., Chairperson James D. Murdoch, Ph.D. Cynthia J. Forehand, Ph.D., Dean of the Graduate College ABSTRACT The species of two genera in Insecta: Hemiptera: Adelgidae were investigated through the lenses of genetics, morphology, life cycle and host species. The systematics are unclear due to complex life cycles, including multigenerational polymorphism, host switching and cyclical parthenogenesis. I studied the hemlock adelgids, including the nonnative invasive hemlock woolly adelgid on the east coast of the United States, that are currently viewed as a single species.
    [Show full text]
  • About the Book the Format Acknowledgments
    About the Book For more than ten years I have been working on a book on bryophyte ecology and was joined by Heinjo During, who has been very helpful in critiquing multiple versions of the chapters. But as the book progressed, the field of bryophyte ecology progressed faster. No chapter ever seemed to stay finished, hence the decision to publish online. Furthermore, rather than being a textbook, it is evolving into an encyclopedia that would be at least three volumes. Having reached the age when I could retire whenever I wanted to, I no longer needed be so concerned with the publish or perish paradigm. In keeping with the sharing nature of bryologists, and the need to educate the non-bryologists about the nature and role of bryophytes in the ecosystem, it seemed my personal goals could best be accomplished by publishing online. This has several advantages for me. I can choose the format I want, I can include lots of color images, and I can post chapters or parts of chapters as I complete them and update later if I find it important. Throughout the book I have posed questions. I have even attempt to offer hypotheses for many of these. It is my hope that these questions and hypotheses will inspire students of all ages to attempt to answer these. Some are simple and could even be done by elementary school children. Others are suitable for undergraduate projects. And some will take lifelong work or a large team of researchers around the world. Have fun with them! The Format The decision to publish Bryophyte Ecology as an ebook occurred after I had a publisher, and I am sure I have not thought of all the complexities of publishing as I complete things, rather than in the order of the planned organization.
    [Show full text]
  • When and Why Top-Down Regulation Fails in Arthropod Predator-Prey Systems
    Basic Appl. Ecol. 2, 333–340 (2001) © Urban & Fischer Verlag Basic and Applied Ecology http://www.urbanfischer.de/journals/baecol When and why top-down regulation fails in arthropod predator-prey systems Pavel Kindlmann1,*, Anthony F. G. Dixon2 1 Faculty of Biological Sciences, University of South Bohemia, Czech Academy of Sciences,Ceské ˇ Budejovice, ˇ Czech Republic 2 School of Biological Sciences, University of East Anglia, Norwich, NR4 7TJ, UK Received May 1, 2001 · Accepted July 25, 2001 Abstract The existence of top-down regulation in predator-prey models is a result of the functional and numerical responses included in the model. Examples are given of arthropod predator-prey systems where functional and numerical responses may be irrelevant for the system dynamics, or relevant for only a part of the population. It is argued that there are advantages in using a patch dynamics approach, when describing the feeding and oviposition behaviour of adult predators. This leads to predictions that in arthropod predator-prey systems, in which the predator has a long generation time relative to that of its prey, predator reproduction should be correlated with the age of a prey patch rather than the number of prey present, and top-down regulation does not occur. The predictions are tested against data for various species of aphids, coccids, mites, mosquitoes and their predators and the effectiveness of different species in biological control. In Räuber-Beute-Modellen ist das Vorhandensein einer „top-down“-Regulation das Ergebnis der funktionellen und numerischen Reaktionen, die in dem Modell enthalten sind. Es werden Beispiele von Räuber-Beute-Systemen angeführt, in denen die funktionellen und numerischen Antworten für die Dynamik der Systeme unbedeutend sein können, oder nur für einen Teil der Population von Bedeutung sind.
    [Show full text]
  • Hemiptera: Adelgidae)
    The ISME Journal (2012) 6, 384–396 & 2012 International Society for Microbial Ecology All rights reserved 1751-7362/12 www.nature.com/ismej ORIGINAL ARTICLE Bacteriocyte-associated gammaproteobacterial symbionts of the Adelges nordmannianae/piceae complex (Hemiptera: Adelgidae) Elena R Toenshoff1, Thomas Penz1, Thomas Narzt2, Astrid Collingro1, Stephan Schmitz-Esser1,3, Stefan Pfeiffer1, Waltraud Klepal2, Michael Wagner1, Thomas Weinmaier4, Thomas Rattei4 and Matthias Horn1 1Department of Microbial Ecology, University of Vienna, Vienna, Austria; 2Core Facility, Cell Imaging and Ultrastructure Research, University of Vienna, Vienna, Austria; 3Department of Veterinary Public Health and Food Science, Institute for Milk Hygiene, Milk Technology and Food Science, University of Veterinary Medicine Vienna, Vienna, Austria and 4Department of Computational Systems Biology, University of Vienna, Vienna, Austria Adelgids (Insecta: Hemiptera: Adelgidae) are known as severe pests of various conifers in North America, Canada, Europe and Asia. Here, we present the first molecular identification of bacteriocyte-associated symbionts in these plant sap-sucking insects. Three geographically distant populations of members of the Adelges nordmannianae/piceae complex, identified based on coI and ef1alpha gene sequences, were investigated. Electron and light microscopy revealed two morphologically different endosymbionts, coccoid or polymorphic, which are located in distinct bacteriocytes. Phylogenetic analyses of their 16S and 23S rRNA gene sequences assigned both symbionts to novel lineages within the Gammaproteobacteria sharing o92% 16S rRNA sequence similarity with each other and showing no close relationship with known symbionts of insects. Their identity and intracellular location were confirmed by fluorescence in situ hybridization, and the names ‘Candidatus Steffania adelgidicola’ and ‘Candidatus Ecksteinia adelgidicola’ are proposed for tentative classification.
    [Show full text]
  • Risks from Unknown Quarantine Organisms Posed by The
    Recommendation of a Pathway Approach for Regulation of Plants for Planting A Concept Paper from the IUFRO Unit on Alien Invasive Species and International Trade* Issue: A Pathway Approach Is Needed Many forest pests have been introduced into new locations on plants for planting. Mounting scientific evidence suggests that the current pest-by-pest regulatory approach and reliance on inspection to detect pests is untenable in today’s global marketplace. Much recent experience demonstrates the need to curtail the introduction of plant pests that are present in an exporting territory but not yet known to science. Therefore, the forest entomology and pathology science community recommends a pathway approach to regulating nursery stock, similar to that adopted for wood packaging material (WPM). Best management practices effective at preventing known pests will significantly reduce the risk of introducing unknown pests as well. Introduction and Scope There are three problems with the current phytosanitary regulatory approach: 1) It relies on inspection, but the volume of world trade has expanded far beyond inspection capacity. 2) It focuses on addressing the risks associated with known quarantine organisms, but most pests introduced on plants for planting are previously unknown or unpredictably aggressive pests. 3) Article VI.2 of the IPPC prohibits requiring phytosanitary measures against unregulated pests. The limitations of current measures were accepted long ago to prevent the misuse of phytosanitary concerns as artificial barriers to trade. In the ensuing years, however, it has become evident that WPM and plants for planting routinely provide pathways for unanticipated pests. With the adoption of ISPM-15 (FAO, 2002), the exchange of known and unknown pests via WPM has been significantly reduced.
    [Show full text]
  • Adelgid and Scale Insect Guilds on Hemlock and Pine
    ADELGID AND SCALE INSECT GUILDS ON HEMLOCK AND PINE MARK S. McCLURE Connecticut Agricultural Experiment Station Valley Laboratory, P.O. Box 248, 153 Cook Hill Road Windsor, CT 06095 U.S.A. INTRODUCTION Five piercing and sucking insects which were accidentally introduced from Asia during this century, together with one native species, have become very serious pests of two important forest tree species in the northeastern United States. Two armored scales, Fwrinia atma Ferris and Nuculaspis tsugae (Marlatt), and an adelgid, Adelges tsugae Annand, attack eastern hemlock, Tsuga canadensis Carriere (Fig. 1). A margarodid scale, Matsucoccus resinosae Bean and Godwin, and two adelgids, Pineus bwmeri Annand and Pineus coloradensis (Gillette), attack red pine, Pinus resinosa Aiton (Fig. 2). In Japan, their homeland, F. mema and A? tsugae are common inhabitants of two native hemlocks, Tsuga diversifolia Masters and Tsuga sieboldii Carriere. However, these scales seldom attain injurious densities in Japan. Both scales were introduced accidentally into the vicinity of New York City about 80 years ago and have since become serious pests of T. canadensis in several northeastern states (Fig. 3). Both scales feed together on the needles of hemlock by sucking cell fluids from the mesophyll. In the United States their densities often increase rapidly to levels which cause needles to discolor and drop prematurely and branches to die. Many ornamental and forest trees have been killed in 10 or fewer years after infestation. Adelges tsugae is probably also native to Japan, where it is a harmless inhabitant of T. diversifolia and T. siebokiii. This adelgid was first noticed in North Amerifa 70 years ago on Tsuga heterophylla Sargent in British Columbia.
    [Show full text]
  • Cooley Spruce Gall Adelgid
    Cooley Spruce Gall Adelgid Mary Ridout, Graduate Student Plant Science 464, Fall 2007 Figure 1. Infested white spruce at the University of Idaho Plant Science Farm Cooley spruce gall adelgid damage was found on a White spruce (Picea glauca) at the University of Idaho Plant Science farm just outside Moscow, Idaho. The diagnosis was made from the observation of galls at or near the terminal ends of the branches (see Figure 1). Only new growth from the current year was affected. Galls were first observed early in the summer on terminal new growth as soft swollen tissue surrounding the needles. Some of these galls were green; others were beginning to turn a brownish purple. Figure 1 shows the appearance of the gall in late summer and fall. The plant itself was growing well, but damage from previous infestations was visible in slightly distorted growth caused by the loss of the terminal branch ends which induced lateral bud formation and branching and thereby formation of “shrubby” branches and asymmetrical growth habit. Spruce galls are caused by the Cooley spruce gall adelgid (Adelges cooleyi). A small aphid-like insect, the Cooley spruce gall adelgid alternates its life cycle between Picea species and Douglas Fir (Pseudotsuga menziesii). Galls, however, are only formed on spruce. While most commonly found on Colorado blue spruce, adelgids will also infest white, Engelmann, Norway, and Sitka spruce. Reproductive female adelgids over-winter on the undersides of the branches. When spring comes, they emerge and move to the new growth at the branch terminals where they lay their eggs at the base of the needles.
    [Show full text]
  • Arthropod Community Structure in Regenerating Douglas-Fir and Red Alder Forests: Influences of Geography, Tree Diversity and Density
    AN ABSTRACT OF THE THESIS OF Brett L. Schaerer for the degree of Master of Science in Entomology presentedon March 17, 2000. Title: Arthropod Community Structure in Regenerating Douglas-fir and Red Alder Forests: Influences of Geography, Tree Diversity and Density Abstract approved: Redacted for privacy Timothy D. Schowalter The structuring of canopy arthropod communities was reviewed and investigated in relation to tree species diversity and its component factors, interspersion of different species and density of each tree species. Fifteen treatments of Douglas-fir (Pseudotsuga menziesii) and red alder (Alnus rubra) (various densities and proportions of each)were randomly assigned to 0.073 ha plots, replicated three-fold at each of two locations in Western Oregon: the Cascade Head Experimental Forest and the H. J. Andrews Experimental Forest. The six treatments used in this studywere two densities of Douglas-fir and red alder monoculture (1000 trees/ha and 500 trees/ha), and mixtures of Douglas-fir and red alder (500 trees/ha of each) planted simultaneouslyor red alder planted 6 years after the Douglas-fir. Trees were initially planted in 1985-1986. The arthropod communities were sampled in the summer of 1998 by bagging and pruning branches from the mid-canopy of both tree species. Multivariate analyses distinguished the arthropod communities foundon each tree species and geographical location, but not among the different diversity and density treatments. Many arthropod taxa and functional groups residingon a single tree species had significantly different abundances between locations. Themost commonly encountered taxon, Adelges cooleyi Gillette (Homoptera: Adelgidae),was most abundant on Douglas-firs in the 500 trees/ha monoculture and the mixture with younger red alder, and least abundant in the mixture with both species planted simultaneously (the1000 trees/ha Douglas-fir monoculture was intermediate).
    [Show full text]