Diversity of the Insect Visitors on Calluna Vulgaris (Ericaceae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download PDF ( Final Version , 890Kb )
de nederlandse zweefvliegen Ecologie de groene of blauwe kleur vaak naar geel. Verder herken- Diverse typen loofbos, soms in naaldbos, meestal in drogere baar aan zwarte haltertjes, zwart rugplaatje 5 en (bij gebieden dan D. hilaris. Daarnaast komt de soort in open vrouwtje) zwarte tekening op voorhoofd. Lengte 7-16 terrein voor, zolang er enkele bomen of struiken staan. Veel mm. in parken en tuinen. De vliegen zijn op open zonnige plekken langs en in bossen V erspreiding en vliegtijd te vinden, waar ze vooral bloeiende struiken of boterbloem Holarctisch. Van West-Europa tot in Japan en in Noord- bezoeken en op bladeren van struiken zitten. Mannetjes Amerika. In Europa van Ierland en Noord-Scandinavië tot vertonen zweefgedrag op enkele meters hoogte. in Centraal-Europa en de Pyreneeën. In Zuid-Europa be- De larve leeft van bladluizen op diverse bomen en struiken perkt tot berggebieden. en overwintert als volgroeide larve. Dit kan mogelijk zowel In ons land vrij zeldzaam in het binnenland en in Zuid- in de strooisellaag als in de vegetatie gebeuren, want Lund- Limburg. Sinds 1950 toegenomen. Plaatselijk komt de soort beck (1916) vond de larve op de grond, terwijl Dušek & in aantal voor. Láska (1962a) deze in maart op een kersentakje aantroffen. Het aantal generaties is onduidelijk. Rotheray (1987) wijst er echter op dat het exemplaar van Dušek & Láska (1962a) afwijkt van de door hem gevonden Didea alneti larven van D. venustus. Er is een waarneming van een vrij zeldzaam vrouwtje dat eitjes een voor een, dus los van elkaar, legde op zeer lage aantallen >1950: toegenomen eikentakjes waar ogenschijnlijk geen bladluizen op zaten <1950: gelijk (pers. -
Tachinid Times Issue 29
Walking in the Footsteps of American Frontiersman Daniel Boone The Tachinid Times Issue 29 Exploring Chile Curious case of Girschneria Kentucky tachinids Progress in Iran Tussling with New Zealand February 2016 Table of Contents ARTICLES Update on New Zealand Tachinidae 4 by F.-R. Schnitzler Teratological specimens and the curious case of Girschneria Townsend 7 by J.E. O’Hara Interim report on the project to study the tachinid fauna of Khuzestan, Iran 11 by E. Gilasian, J. Ziegler and M. Parchami-Araghi Tachinidae of the Red River Gorge area of eastern Kentucky 13 by J.E. O’Hara and J.O. Stireman III Landscape dynamics of tachinid parasitoids 18 by D.J. Inclán Tachinid collecting in temperate South America. 20 Expeditions of the World Tachinidae Project. Part III: Chile by J.O. Stireman III, J.E. O’Hara, P. Cerretti and D.J. Inclán 41 Tachinid Photo 42 Tachinid Bibliography 47 Mailing List 51 Original Cartoon 2 The Tachinid Times Issue 29, 2016 The Tachinid Times February 2016, Issue 29 INSTRUCTIONS TO AUTHORS Chief Editor JAMES E. O’HARA This newsletter accepts submissions on all aspects of tach- InDesign Editor SHANNON J. HENDERSON inid biology and systematics. It is intentionally maintained as a non-peer-reviewed publication so as not to relinquish its status as Staff JUST US a venue for those who wish to share information about tachinids in an informal medium. All submissions are subjected to careful ISSN 1925-3435 (Print) editing and some are (informally) reviewed if the content is thought to need another opinion. Some submissions are rejected because ISSN 1925-3443 (Online) they are poorly prepared, not well illustrated, or excruciatingly bor- ing. -
Diversity and Resource Choice of Flower-Visiting Insects in Relation to Pollen Nutritional Quality and Land Use
Diversity and resource choice of flower-visiting insects in relation to pollen nutritional quality and land use Diversität und Ressourcennutzung Blüten besuchender Insekten in Abhängigkeit von Pollenqualität und Landnutzung Vom Fachbereich Biologie der Technischen Universität Darmstadt zur Erlangung des akademischen Grades eines Doctor rerum naturalium genehmigte Dissertation von Dipl. Biologin Christiane Natalie Weiner aus Köln Berichterstatter (1. Referent): Prof. Dr. Nico Blüthgen Mitberichterstatter (2. Referent): Prof. Dr. Andreas Jürgens Tag der Einreichung: 26.02.2016 Tag der mündlichen Prüfung: 29.04.2016 Darmstadt 2016 D17 2 Ehrenwörtliche Erklärung Ich erkläre hiermit ehrenwörtlich, dass ich die vorliegende Arbeit entsprechend den Regeln guter wissenschaftlicher Praxis selbständig und ohne unzulässige Hilfe Dritter angefertigt habe. Sämtliche aus fremden Quellen direkt oder indirekt übernommene Gedanken sowie sämtliche von Anderen direkt oder indirekt übernommene Daten, Techniken und Materialien sind als solche kenntlich gemacht. Die Arbeit wurde bisher keiner anderen Hochschule zu Prüfungszwecken eingereicht. Osterholz-Scharmbeck, den 24.02.2016 3 4 My doctoral thesis is based on the following manuscripts: Weiner, C.N., Werner, M., Linsenmair, K.-E., Blüthgen, N. (2011): Land-use intensity in grasslands: changes in biodiversity, species composition and specialization in flower-visitor networks. Basic and Applied Ecology 12 (4), 292-299. Weiner, C.N., Werner, M., Linsenmair, K.-E., Blüthgen, N. (2014): Land-use impacts on plant-pollinator networks: interaction strength and specialization predict pollinator declines. Ecology 95, 466–474. Weiner, C.N., Werner, M , Blüthgen, N. (in prep.): Land-use intensification triggers diversity loss in pollination networks: Regional distinctions between three different German bioregions Weiner, C.N., Hilpert, A., Werner, M., Linsenmair, K.-E., Blüthgen, N. -
Hoverflies Family: Syrphidae
Birmingham & Black Country SPECIES ATLAS SERIES Hoverflies Family: Syrphidae Andy Slater Produced by EcoRecord Introduction Hoverflies are members of the Syrphidae family in the very large insect order Diptera ('true flies'). There are around 283 species of hoverfly found in the British Isles, and 176 of these have been recorded in Birmingham and the Black Country. This atlas contains tetrad maps of all of the species recorded in our area based on records held on the EcoRecord database. The records cover the period up to the end of 2019. Myathropa florea Cover image: Chrysotoxum festivum All illustrations and photos by Andy Slater All maps contain Contains Ordnance Survey data © Crown Copyright and database right 2020 Hoverflies Hoverflies are amongst the most colourful and charismatic insects that you might spot in your garden. They truly can be considered the gardener’s fiend as not only are they important pollinators but the larva of many species also help to control aphids! Great places to spot hoverflies are in flowery meadows on flowers such as knapweed, buttercup, hogweed or yarrow or in gardens on plants such as Canadian goldenrod, hebe or buddleia. Quite a few species are instantly recognisable while the appearance of some other species might make you doubt that it is even a hoverfly… Mimicry Many hoverfly species are excellent mimics of bees and wasps, imitating not only their colouring, but also often their shape and behaviour. Sometimes they do this to fool the bees and wasps so they can enter their nests to lay their eggs. Most species however are probably trying to fool potential predators into thinking that they are a hazardous species with a sting or foul taste, even though they are in fact harmless and perfectly edible. -
Hoverfly (Diptera: Syrphidae) Richness and Abundance Vary with Forest Stand Heterogeneity: Preliminary Evidence from a Montane Beech Fir Forest
Eur. J. Entomol. 112(4): 755–769, 2015 doi: 10.14411/eje.2015.083 ISSN 1210-5759 (print), 1802-8829 (online) Hoverfly (Diptera: Syrphidae) richness and abundance vary with forest stand heterogeneity: Preliminary evidence from a montane beech fir forest LAURENT LARRIEU 1, 2, ALAIN CABANETTES 1 and JEAN-PIERRE SARTHOU 3, 4 1 INRA, UMR1201 DYNAFOR, Chemin de Borde Rouge, Auzeville Tolosane, CS 52627, F-31326 Castanet Tolosan Cedex, France; e-mails: [email protected]; [email protected] ² CNPF/ IDF, Antenne de Toulouse, 7 chemin de la Lacade, F-31320 Auzeville Tolosane, France 3 INRA, UMR 1248 AGIR, Chemin de Borde Rouge, Auzeville Tolosane, CS 52627, F-31326 Castanet Tolosan Cedex, France; e-mail: [email protected] 4 University of Toulouse, INP-ENSAT, Avenue de l’Agrobiopôle, F-31326 Castanet Tolosan, France Key words. Diptera, Syrphidae, Abies alba, deadwood, Fagus silvatica, functional diversity, tree-microhabitats, stand heterogeneity Abstract. Hoverflies (Diptera: Syrphidae) provide crucial ecological services and are increasingly used as bioindicators in environ- mental assessment studies. Information is available for a wide range of life history traits at the species level for most Syrphidae but little is recorded about the environmental requirements of forest hoverflies at the stand scale. The aim of this study was to explore whether the structural heterogeneity of a stand influences species richness or abundance of hoverflies in a montane beech-fir forest. We used the catches of Malaise traps set in 2004 and 2007 in three stands in the French Pyrenees, selected to represent a wide range of structural heterogeneity in terms of their vertical structure, tree diversity, deadwood and tree-microhabitats. -
Diptera, Sy Ae)
Ce nt re fo r Eco logy & Hydrology N AT U RA L ENVIRO N M EN T RESEA RC H CO U N C IL Provisional atlas of British hover les (Diptera, Sy ae) _ Stuart G Ball & Roger K A Morris _ J O I N T NATURE CONSERVATION COMMITTEE NERC Co pyright 2000 Printed in 2000 by CRL Digital Limited ISBN I 870393 54 6 The Centre for Eco logy an d Hydrolo gy (CEI-0 is one of the Centres an d Surveys of the Natu ral Environme nt Research Council (NERC). Established in 1994, CEH is a multi-disciplinary , environmental research organisation w ith som e 600 staff an d w ell-equipp ed labo ratories and field facilities at n ine sites throughout the United Kingdom . Up u ntil Ap ril 2000, CEM co m prise d of fou r comp o nent NERC Institutes - the Institute of Hydrology (IH), the Institute of Freshw ater Eco logy (WE), the Institute of Terrestrial Eco logy (ITE), and the Institute of Virology an d Environmental Micro b iology (IVEM). From the beginning of Ap dl 2000, CEH has operated as a single institute, and the ind ividual Institute nam es have ceased to be used . CEH's mission is to "advance th e science of ecology, env ironme ntal microbiology and hyd rology th rough h igh q uality and inte rnat ionall) recognised research lead ing to better understanding and quantifia ttion of the p hysical, chem ical and b iolo gical p rocesses relating to land an d freshwater an d living organisms within the se environments". -
Insect Egg Size and Shape Evolve with Ecology but Not Developmental Rate Samuel H
ARTICLE https://doi.org/10.1038/s41586-019-1302-4 Insect egg size and shape evolve with ecology but not developmental rate Samuel H. Church1,4*, Seth Donoughe1,3,4, Bruno A. S. de Medeiros1 & Cassandra G. Extavour1,2* Over the course of evolution, organism size has diversified markedly. Changes in size are thought to have occurred because of developmental, morphological and/or ecological pressures. To perform phylogenetic tests of the potential effects of these pressures, here we generated a dataset of more than ten thousand descriptions of insect eggs, and combined these with genetic and life-history datasets. We show that, across eight orders of magnitude of variation in egg volume, the relationship between size and shape itself evolves, such that previously predicted global patterns of scaling do not adequately explain the diversity in egg shapes. We show that egg size is not correlated with developmental rate and that, for many insects, egg size is not correlated with adult body size. Instead, we find that the evolution of parasitoidism and aquatic oviposition help to explain the diversification in the size and shape of insect eggs. Our study suggests that where eggs are laid, rather than universal allometric constants, underlies the evolution of insect egg size and shape. Size is a fundamental factor in many biological processes. The size of an 526 families and every currently described extant hexapod order24 organism may affect interactions both with other organisms and with (Fig. 1a and Supplementary Fig. 1). We combined this dataset with the environment1,2, it scales with features of morphology and physi- backbone hexapod phylogenies25,26 that we enriched to include taxa ology3, and larger animals often have higher fitness4. -
Exploitations of Sexual Signals by Predators and Parasitoids
VOLUME 73, No.4 DECEMBER 1998 THE QUARTERLY REVIEW O!BIOLOGY EXPLOITATION OF SEXUAL SIGNALS BY PREDATORS AND PARASITOIDS MARLENE ZUK AND GITA R. KOLLURU Department ofBiology, University ofCalifornia Riverside, California 92521 USA E-MAIL: [email protected] and [email protected] ABSTRACT Signals used to attract mates are often conspicuous to predators and parasites, and their evolution via sexual selection is expected to be opposed by viability selection. Many secondary sexual traits may represent a compromise between attractiveness and avoidance of detection. Although such signal exploitation appears to be widespread, most examples comefrom species that use acoustic or olfactory matingsignals, and relatively few cases ofvisual signal exploitation can be substantiated. Because males are usually the signalingsex, they are more at riskfrom predators orparasitoids that locate prey or hosts by sexual signals; this differential selection on the two sexes can affect the intensity of sexual selection on male ornamental traits. The notable exception to male signaling and female attraction occurs in pheromone-producing insects, particularly lepidopterans, which show an opposite pattern offemale odor production. Exploitation ofsuch sex pheromones is relatively rare. We discuss reasons for the reversal in sex roles in these species and its implicationsfor signal exploitation. Changes in signals that appear to be adaptations to avoidpredation include the use ofdifferent signal modalities, changes in signaling behavior, loss ofsignals, and alteration ofsignal characteristics such as pitch. Selection pressure from signal exploiters could lead to the production ofa novel signal and thusfacilitate speciation. Relatively little work has been done on adaptations on thepart ofthe exploitingspecies, butsuch adaptations could indirectly influence the mating system ofthe predator or parasitoid. -
The Tachinid Times
The Tachinid Times ISSUE 24 February 2011 Jim O’Hara, editor Invertebrate Biodiversity Agriculture & Agri-Food Canada ISSN 1925-3435 (Print) C.E.F., Ottawa, Ontario, Canada, K1A 0C6 ISSN 1925-3443 (Online) Correspondence: [email protected] or [email protected] My thanks to all who have contributed to this year’s announcement before the end of January 2012. This news- issue of The Tachinid Times. This is the largest issue of the letter accepts submissions on all aspects of tachinid biology newsletter since it began in 1988, so there still seems to be and systematics, but please keep in mind that this is not a a place between peer-reviewed journals and Internet blogs peer-reviewed journal and is mainly intended for shorter for a medium of this sort. This year’s issue has a diverse news items that are of special interest to persons involved assortment of articles, a few announcements, a listing of in tachinid research. Student submissions are particularly recent literature, and a mailing list of subscribers. The welcome, especially abstracts of theses and accounts of Announcements section is more sizable this year than usual studies in progress or about to begin. I encourage authors and I would like to encourage readers to contribute to this to illustrate their articles with colour images, since these section in the future. This year it reproduces the abstracts add to the visual appeal of the newsletter and are easily of two recent theses (one a Ph.D. and the other a M.Sc.), incorporated into the final PDF document. -
Vol 10 Part 1. Diptera. Syrphidae
Royal Entomological Society HANDBOOKS FOR THE IDENTIFICATION OF BRITISH INSECTS To purchase current handbooks and to download out-of-print parts visit: http://www.royensoc.co.uk/publications/index.htm This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 2.0 UK: England & Wales License. Copyright © Royal Entomological Society 2012 ROYAL ENTOMOLOGICAL SOCIETY OF LONDON Vol. X. Part 1. HANDBOOKS FOR THE IDENTIFICATION OF BRITISH INSECTS DIPTERA SYRPHIDAE By R. L. COE LONDON Published by the Society • and Sold at its Rooms 4-1, Queen's Gate, S.W. 7 2sth August, 195"3 Accession No. 4966 Author Coe R L Subject DIPTERA HANDBOOKS FOR THE IDENTIFICATION OF BRITISH INSECTS The aim of this series of publications is to provide illustrated keys to the whole of the British Insects (in so far as this is possible), in ten volumes, as follows : I. Part I. General Introduction. Part 9. Ephemeroptera. , 2. Thysanura. , 10. Odonata. , 3. Protura. , 11. Thysanoptera. , 4. Collembola. , 12. Neuroptera. , 5. Dermaptera and , 13. :Mecoptera. Orthoptera. , 14. Trichoptera. , 6. Plecoptera. , 15. Strepsiptera. , 7. Psocoptera. , 16. Siphonaptera. , 8. Anoplura. II. Hemiptera. Ill. Lepidoptera. IV. and V. Coleoptera. VI. Hymenoptera : Symphyta and Aculeata. VII. Hymenoptera : Ichneumonoidea. VIII. Hymenoptera : Cynipoidea, Chalcidoidea, and Serphoidea. IX. Diptera: Nematocera and Brachycera. X. Diptera : Cyclorrhapha. Volumes II to X will be divided into parts of convenient size, but it is not po....a.1~u:-....:~.----.....l.L ___....__ __ _ ...:.• _ _ ....._-J....._,_. __~ _ _.__ Co ACCESSION NUMBER .................... .. .......... and each 1 >Ugh much 1ted, it is e British Entomological & Natural History Pa Society availa c/o Dinton Pastures Country Park, Oli Davis Street, Hurst, 1trar at th• Reading, Berkshire Tli RG10 OTH cost of init Presented by .. -
Article Full Text PDF (1117KB)
Nov., 1911.] Life-Histories of Syrphidae II. 397 LIFE-HISTORIES OF SYRPHIDAE II. C. L. METCALF. Paragus bicolor (Fabricius). Larva. Length about 8 mm., height about 2.5 mm., width 3.25 mm. (Fig. 21). In superficial appearance somewhat suggesting larva of Didea fasciata fuscipes* Elongate-oval in outline, somewhat flattened-dorso-ventrally, attenuated gradually to the obtusely pointed anterior end slightly to the truncate posterior end. The color of the integument is light yellowish brown, but it is semi-transparent and various tints of visceral organs show through, making a light line along each lateral carina limited medially by darker. The mid-dorsal region surrounding the black pulsating blood-vessel is a light brick-red color about one-third the width of the larva, due to underlying fatty bodies. On each side of this for a third the remaining width jet-black visceral matter shows through fre- quently in pulsating pockets. This is limited laterally by a little wider band of yellowish white as contrasted with the narrow remaining margin and the conical elevations which appear drab. However, the color varies considerably with different larvae and at different times in the same larva. The integument is tough but pliable thrown into numerous transverse folds; papillose but bare. There are apparently twelve body-segments the anterior three strongly retractile so that when the larva is at rest segment four usually forms the anterior outline of the body. Each of these segments except the first few and the last is marked by about four lateral wrinkles or folds and bears, as in Didea, twelve conical elevations each with a spine or bristle at the summit. -
USDA/APHIS Environmental Assessment
Finding of No Significant Impact Animal and Plant Health Inspection Service APHIS Permit 05-354-01r The Animal and Plant Health Inspection Service (APHIS) of the United States Department of Agriculture (USDA) received a permit application (APHIS number 05-354-01r) from Planet Biotechnology to conduct an environmental release with tobacco that is genetically engineered to produce an antibody. On March 27, 2007, APHIS published a notice in the Federal Register (72 FR 14259, Docket no. 2006-0038) announcing the availability of the draft environmental assessment (EA) for 30-day public comment period, ending April 26, 2007. In the EA, APHIS considered three alternatives: Alternative A – Denial of the permit; Alternative B – Issue the permit as received; Alternative C – Issue the permit with Supplemental Permit Conditions. APHIS proposed Alternative C as its preferred alternative because after review of the processes and procedures to prevent the dissemination and establishment of plant pests as describe in the permit and the additional supplemental conditions, APHIS concluded that the permit conditions would be adequate to confine the field release and prevent the release of the regulated article. Based upon analysis described in the revised, final EA and in APHIS’s response to comments, APHIS has determined that the preferred alternative, to issue the permit with Supplemental Permit Conditions, will not have a significant impact on the quality of the human environment because: 1. The genetically engineered tobacco (Nicotiana tabacum) produces the antibody CaroRxTM that specifically binds to the bacterium Streptococcus mutans. In general, antibodies are non-toxic and clinical trials with CaroRx indicated no adverse effects on humans.