The Enzyme Database: New Enzymes 06/27/2006 05:11 PM

Total Page:16

File Type:pdf, Size:1020Kb

The Enzyme Database: New Enzymes 06/27/2006 05:11 PM The Enzyme Database: New Enzymes 06/27/2006 05:11 PM Home Search Enzymes by Class New/Amended Enzymes Statistics Forms Advanced Search Information Nomenclature Committee of the International Union of Biochemistry and Molecular Biology (NC-IUBMB) Proposed Changes to the Enzyme List The entries below are proposed additions and amendments to the Enzyme Nomenclature list. They were prepared for the NC- IUBMB by Keith Tipton, Sinéad Boyce, Gerry Moss and Hal Dixon, with occasional help from other Committee members, and were put on the web by Gerry Moss. Comments and suggestions on these draft entries should be sent to Professor K.F. Tipton and Dr S. Boyce (Department of Biochemistry, Trinity College Dublin, Dublin 2, Ireland) by 20 May 2006, after which, the entries will be made official and will be incorporated into the main enzyme list. To prevent confusion please do not quote new EC numbers until they are incorporated into the main list. Many thanks to those of you who have submitted details of new enzymes or updates to existing enzymes. An asterisk before 'EC' indicates that this is an amendment to an existing enzyme rather than a new enzyme entry. Contents *EC 1.1.1.262 4-hydroxythreonine-4-phosphate dehydrogenase EC 1.1.1.289 sorbose reductase EC 1.1.1.290 4-phosphoerythronate dehydogenase EC 1.1.99.19 transferred *EC 1.2.1.10 acetaldehyde dehydrogenase (acetylating) EC 1.2.1.71 succinylglutamate-semialdehyde dehydrogenase EC 1.2.1.72 erythrose-4-phosphate dehydrogenase EC 1.2.99.1 transferred *EC 1.3.99.19 quinoline-4-carboxylate 2-oxidoreductase *EC 1.4.3.5 pyridoxal 5′-phosphate synthase *EC 1.4.4.2 glycine dehydrogenase (decarboxylating) EC 1.7.1.13 queuine synthase *EC 1.8.1.4 dihydrolipoyl dehydrogenase *EC 1.11.1.14 lignin peroxidase EC 1.11.1.16 versatile peroxidase *EC 1.13.11.11 tryptophan 2,3-dioxygenase *EC 1.13.11.19 cysteamine dioxygenase EC 1.13.11.42 deleted EC 1.13.11.52 indoleamine 2,3-dioxygenase EC 1.13.11.53 acireductone dioxygenase (Ni2+-requiring) EC 1.13.11.54 acireductone dioxygenase [iron(II)-requiring] EC 1.13.11.55 sulfur oxygenase/reductase EC 1.13.12.14 chlorophyllide-a oxygenase EC 1.14.13.65 deleted EC 1.14.13.101 senecionine N-oxygenase *EC 1.14.99.3 heme oxygenase EC 1.17.99.4 uracil/thymine dehydrogenase *EC 2.1.2.10 aminomethyltransferase *EC 2.3.1.11 thioethanolamine S-acetyltransferase *EC 2.3.1.38 [acyl-carrier-protein] S-acetyltransferase *EC 2.3.1.39 [acyl-carrier-protein] S-malonyltransferase *EC 2.3.1.41 β-ketoacyl-acyl-carrier-protein synthase I *EC 2.3.1.109 arginine N-succinyltransferase EC 2.3.1.177 biphenyl synthase EC 2.3.1.178 diaminobutyrate acetyltransferase EC 2.3.1.179 β-ketoacyl-acyl-carrier-protein synthase II EC 2.3.1.180 β-ketoacyl-acyl-carrier-protein synthase III EC 2.3.1.181 lipoyl(octanoyl) transferase *EC 2.4.1.195 N-hydroxythioamide S-β-glucosyltransferase http://www.enzyme-database.org/newenz.php?sp=off Page 1 of 48 The Enzyme Database: New Enzymes 06/27/2006 05:11 PM EC 2.4.1.243 6G-fructosyltransferase EC 2.4.1.244 N-acetyl-β-glucosaminyl-glycoprotein 4-β-N-acetylgalactosaminyltransferase *EC 2.6.1.52 phosphoserine transaminase *EC 2.6.1.76 diaminobutyrate—2-oxoglutarate transaminase EC 2.6.1.81 succinylornithine transaminase EC 2.6.99.2 pyridoxine 5′-phosphate synthase *EC 2.7.1.151 inositol-polyphosphate multikinase EC 2.7.1.158 inositol-pentakisphosphate 2-kinase EC 2.7.1.159 inositol-1,3,4-trisphosphate 5/6-kinase EC 2.7.4.22 UMP kinase EC 2.7.7.63 lipoate—protein ligase *EC 2.8.1.6 biotin synthase EC 2.8.1.8 lipoyl synthase EC 3.1.3.76 lipid-phosphate phosphatase EC 3.1.13.5 ribonuclease D *EC 3.1.26.3 ribonuclease III *EC 3.2.1.81 β-agarase *EC 3.2.1.83 κ-carrageenase EC 3.2.1.155 xyloglucan-specific exo-β-1,4-glucanase EC 3.2.1.157 ι-carrageenase EC 3.2.1.158 α-agarase EC 3.2.1.159 α-neoagaro-oligosaccharide hydrolase EC 3.2.1.161 β-apiosyl-β-glucosidase EC 3.3.2.3 transferred *EC 3.3.2.6 leukotriene-A4 hydrolase *EC 3.3.2.7 hepoxilin-epoxide hydrolase EC 3.3.2.9 microsomal epoxide hydrolase EC 3.3.2.10 soluble epoxide hydrolase EC 3.3.2.11 cholesterol-5,6-oxide hydrolase EC 3.4.21.87 transferred EC 3.4.23.49 omptin EC 3.5.1.94 γ-glutamyl-γ-aminobutyrate hydrolase EC 3.5.1.95 N-malonylurea hydrolase EC 3.5.1.96 succinylglutamate desuccinylase *EC 3.5.2.1 barbiturase EC 3.5.3.23 N-succinylarginine dihydrolase *EC 3.6.3.5 Zn2+-exporting ATPase *EC 3.6.3.44 xenobiotic-transporting ATPase EC 3.6.3.45 deleted *EC 4.1.1.21 phosphoribosylaminoimidazole carboxylase EC 4.1.1.86 diaminobutyrate decarboxylase *EC 4.1.2.8 indole-3-glycerol-phosphate lyase EC 4.1.3.39 4-hydroxy-2-oxovalerate aldolase *EC 4.2.1.60 3-hydroxydecanoyl-[acyl-carrier-protein] dehydratase EC 4.2.1.108 ectoine synthase *EC 4.2.3.9 aristolochene synthase EC 4.2.3.22 germacradienol synthase EC 4.2.3.23 germacrene-A synthase EC 4.2.3.24 amorpha-4,11-diene synthase EC 4.2.3.25 S-linalool synthase EC 4.2.3.26 R-linalool synthase EC 4.4.1.24 sulfolactate sulfo-lyase EC 4.4.1.25 L-cysteate sulfo-lyase EC 5.3.3.14 trans-2-decenoyl-[acyl-carrier protein] isomerase EC 5.4.99.18 5-(carboxyamino)imidazole ribonucleotide mutase *EC 6.3.2.6 phosphoribosylaminoimidazolesuccinocarboxamide synthase *EC 6.3.2.27 aerobactin synthase EC 6.3.4.18 5-(carboxyamino)imidazole ribonucleotide synthase *EC 1.1.1.262 Common name: 4-hydroxythreonine-4-phosphate dehydrogenase Reaction: 4-(phosphonooxy)-L-threonine + NAD+ = (2S)-2-amino-3-oxo-4-phosphonooxybutanoate + NADH + H+ For diagram of pyridoxal biosynthesis, click here Other name(s): NAD+-dependent threonine 4-phosphate dehydrogenase; L-threonine 4-phosphate dehydrogenase; http://www.enzyme-database.org/newenz.php?sp=off Page 2 of 48 The Enzyme Database: New Enzymes 06/27/2006 05:11 PM 4-(phosphohydroxy)-L-threonine dehydrogenase; PdxA Systematic name: 4-(phosphonooxy)-L-threonine:NAD+ oxidoreductase Comments: The product of the reaction undergoes decarboxylation to give 3-amino-2-oxopropyl phosphate. In Escherichia coli, the coenzyme pyridoxal 5′-phosphate is synthesized de novo by a pathway that involves EC 1.2.1.72 (erythrose-4-phosphate dehydrogenase), EC 1.1.1.290 (4- phosphoerythronate dehydrogenase), EC 2.6.1.52 (phosphoserine transaminase), EC 1.1.1.262 (4- hydroxythreonine-4-phosphate dehydrogenase), EC 2.6.99.2 (pyridoxine 5′-phosphate synthase) and EC 1.4.3.5 (with pyridoxine 5′-phosphate as substrate). Links to other databases: BRENDA, ERGO, EXPASY, GO, IUBMB, KEGG, PDB References: 1. Cane, D.E., Hsiung, Y., Cornish, J.A., Robinson, J.K and Spenser, I.D. Biosynthesis of vitamine B6: The oxidation of L-threonine 4-phosphate by PdxA. J. Am. Chem. Soc. 120 (1998) 1936– 1937. 2. Laber, B., Maurer, W., Scharf, S., Stepusin, K. and Schmidt, F.S. Vitamin B6 biosynthesis: formation of pyridoxine 5′-phosphate from 4-(phosphohydroxy)-L-threonine and 1-deoxy-D- xylulose-5-phosphate by PdxA and PdxJ protein. FEBS Lett. 449 (1999) 45–48. [PMID: 10225425] 3. Sivaraman, J., Li, Y., Banks, J., Cane, D.E., Matte, A. and Cygler, M. Crystal structure of Escherichia coli PdxA, an enzyme involved in the pyridoxal phosphate biosynthesis pathway. J. Biol. Chem. 278 (2003) 43682–43690. [PMID: 12896974] [EC 1.1.1.262 created 2000, modified 2006] EC 1.1.1.289 Common name: sorbose reductase Reaction: D-glucitol + NADP+ = L-sorbose + NADPH + H+ For diagram of reaction, click here Glossary: L-sorbose = L-xylo-hex-2-ulose Other name(s): Sou1p Systematic name: D-glucitol:NADP+ oxidoreductase Comments: The reaction occurs predominantly in the reverse direction. This enzyme can also convert D- fructose into D-mannitol, but more slowly. Belongs in the short-chain dehydrogenase family. References: 1. Greenberg, J.R., Price, N.P., Oliver, R.P., Sherman, F. and Rustchenko, E. Candida albicans SOU1 encodes a sorbose reductase required for L-sorbose utilization. Yeast 22 (2005) 957–969. [PMID: 16134116] 2. Greenberg, J.R., Price, N.P., Oliver, R.P., Sherman, F. and Rustchenko, E. Erratum report: Candida albicans SOU1 encodes a sorbose reductase required for L-sorbose utilization. Yeast 22 (2005) 1171 only. 3. Sugisawa, T., Hoshino, T. and Fujiwara, A. Purification and properties of NADPH-linked L- sorbose reductase from Gluconobacter melanogenus N44-1. Agric. Biol. Chem. 55 (1991) 2043– 2049. 4. Shinjoh, M., Tazoe, M. and Hoshino, T. NADPH-dependent L-sorbose reductase is responsible for L-sorbose assimilation in Gluconobacter suboxydans IFO 3291. J. Bacteriol. 184 (2002) 861– 863. [PMID: 11790761] [EC 1.1.1.289 created 2006] EC 1.1.1.290 Common name: 4-phosphoerythronate dehydogenase Reaction: 4-phospho-D-erythronate + NAD+ = (3R)-3-hydroxy-2-oxo-4-phosphonooxybutanoate + NADH + H+ For diagram of pyridoxal biosynthesis, click here Other name(s): PdxB; PdxB 4PE dehydrogenase; 4-O-phosphoerythronate dehydrogenase Systematic name: 4-phospho-D-erythronate:NAD+ 2-oxidoreductase Comments: This enzyme catalyses the second step in the biosynthesis of the coenzyme pyridoxal 5′-phosphate in Escherichia coli.
Recommended publications
  • United States Patent (19) 11, 3,708,396 Mitsuhashi Et Al
    United States Patent (19) 11, 3,708,396 Mitsuhashi et al. (45) Jan. 2, 1973 54 PROCESS FOR PRODUCING 3,492,203 1/1970 Mitsuhashi............................. 195/31 MALTTOL 3,565,765 2/1971 Heady et al.................. .......... 195/31 75) Inventors: Masakazu Mitsuhashi, Okayama-shi, 3,535,123 10/1970 Heady.................................... 195/31 Okayama; Mamoru Hirao, Akaiwa 2,004,135 6/1935 Rothrock.......................... 260/635 C gun, Okayama; Kaname Sugimoto, OTHER PUBLICATIONS Okayama-shi, Okayama, all of Japan Abdullah et al., Mechanism of Carbohydrase Action, Vol.43, 1966. 73) : Assignee: Hayashibara Company, Okayama, Hou, E. F., Chem. Abs., Vol. 69, 1968, 53049d. Japan Kjolberg et al., Biochem. J. p. 258-262, Vol. 86, 1963. 22 Filed: Jan. 8, 1969 Lee et al., Arch Biochem. Biophys, Vol. 1 16, p. (21) Appl. No.:789,912 162-167, 1966. Payur, J. H., Starch, Chem. and Tech., Vol. 1, p. 166, 30 Foreign Application Priority Data 1965. Jan. 23, 1968 Japan.................................. 43/3862 Primary Examiner-A. Louis Monacell July 1, 1968 Japan................................. 43148921 Assistant Examiner-Gary M. Nath July 1 1, 1968 Japan................................. 43148922 Attorney-Browdy and Neimark 52 U.S. Cl.............. 195/31 R, 260/635 C, 99/141 R 5 Int. Cl................................................ C13d 1100 57 ABSTRACT 58) Field of Search............. 195/31; 99/141; 127/37; A process for producing maltitol from a starch slurry 260/635 C which comprises hydrolyzing the starch slurry with beta-amylase and alpha-1,6-glucosidase to produce a 56 References Cited high maltose containing product and catalytically hydrogenating the maltose with Raney nickel after ad UNITED STATES PATENTS justing the pH of the maltose product with calcium 2,868,847 111959 Boyers.................................
    [Show full text]
  • Characterization of the Ergosterol Biosynthesis Pathway in Ceratocystidaceae
    Journal of Fungi Article Characterization of the Ergosterol Biosynthesis Pathway in Ceratocystidaceae Mohammad Sayari 1,2,*, Magrieta A. van der Nest 1,3, Emma T. Steenkamp 1, Saleh Rahimlou 4 , Almuth Hammerbacher 1 and Brenda D. Wingfield 1 1 Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa; [email protected] (M.A.v.d.N.); [email protected] (E.T.S.); [email protected] (A.H.); brenda.wingfi[email protected] (B.D.W.) 2 Department of Plant Science, University of Manitoba, 222 Agriculture Building, Winnipeg, MB R3T 2N2, Canada 3 Biotechnology Platform, Agricultural Research Council (ARC), Onderstepoort Campus, Pretoria 0110, South Africa 4 Department of Mycology and Microbiology, University of Tartu, 14A Ravila, 50411 Tartu, Estonia; [email protected] * Correspondence: [email protected]; Fax: +1-204-474-7528 Abstract: Terpenes represent the biggest group of natural compounds on earth. This large class of organic hydrocarbons is distributed among all cellular organisms, including fungi. The different classes of terpenes produced by fungi are mono, sesqui, di- and triterpenes, although triterpene ergosterol is the main sterol identified in cell membranes of these organisms. The availability of genomic data from members in the Ceratocystidaceae enabled the detection and characterization of the genes encoding the enzymes in the mevalonate and ergosterol biosynthetic pathways. Using Citation: Sayari, M.; van der Nest, a bioinformatics approach, fungal orthologs of sterol biosynthesis genes in nine different species M.A.; Steenkamp, E.T.; Rahimlou, S.; of the Ceratocystidaceae were identified.
    [Show full text]
  • Comparing the Reaction Mechanism of Dark-Operative Protochlorophyllide
    With or without light: comparing the reaction mechanism of dark-operative protochlorophyllide oxidoreductase with the energetic requirements of the light-dependent protochlorophyllide oxidoreductase Pedro J. Silva REQUIMTE, Faculdade de Cienciasˆ da Saude,´ Universidade Fernando Pessoa, Rua Carlos da Maia, Porto, Portugal ABSTRACT The addition of two electrons and two protons to the C17DC18 bond in protochloro- phyllide is catalyzed by a light-dependent enzyme relying on NADPH as electron donor, and by a light-independent enzyme bearing a .Cys/3Asp-ligated [4Fe–4S] cluster which is reduced by cytoplasmic electron donors in an ATP-dependent manner and then functions as electron donor to protochlorophyllide. The precise sequence of events occurring at the C17DC18 bond has not, however, been determined experimentally in the dark-operating enzyme. In this paper, we present the computational investigation of the reaction mechanism of this enzyme at the B3LYP/6-311CG(d,p)//B3LYP/6-31G(d) level of theory. The reaction mechanism begins with single-electron reduction of the substrate by the .Cys/3Asp-ligated [4Fe–4S], yielding a negatively-charged intermediate. Depending on the rate of Fe–S cluster re-reduction, the reaction either proceeds through double protonation of the single-electron-reduced substrate, or by alternating proton/electron transfer. The computed reaction barriers suggest that Fe–S cluster re-reduction should be Submitted 24 March 2014 the rate-limiting stage of the process. Poisson–Boltzmann computations on the Accepted 9 August 2014 full enzyme–substrate complex, followed by Monte Carlo simulations of redox Published 2 September 2014 and protonation titrations revealed a hitherto unsuspected pH-dependence of the Corresponding author reaction potential of the Fe–S cluster.
    [Show full text]
  • Disaccharidase Deficiencies
    J Clin Pathol: first published as 10.1136/jcp.s3-5.1.22 on 1 January 1971. Downloaded from J. clin. Path., 24, Suppl. (Roy. Coll. Path.), 5, 22-28 Disaccharidase deficiencies G. NEALE From the Department ofMedicine, Royal Postgraduate Medical School, Du Cane Road, London Up to 12 years ago the absorption of disaccharides capable of hydrolysing maltose, which may explain was a problem in physiology which attracted little why maltase deficiency is not found as an isolated attention and which appeared to be unrelated to the defect of the enterocyte. Isomaltase and sucrase problems of clinical medicine. Indeed, most text- appear to be distinct but linked entities, and hence books stated incorrectly that the disaccharides were they are absent together in the hereditary condition hydrolysed to monosaccharides in the lumen of the of sucrase-isomaltase deficiency (Dahlquist and small intestine despite the evidence of half a century Telenius, 1969). Lactase activity consists of at least before, which had suggested that they were digested two separate enzymes, one of which is not in the by the mucosal surface (Reid, 1901). The renewal of brush border but within the cell (Zoppi, Hadom, interest in the subject of disaccharide absorption Gitzelmann, Kistler, and Prader, 1966). The signifi- occurred after the description of congenital lactase cance of intracellular lactase activity is uncertain. It deficiency by Holzel, Schwarz, and Sutcliffe (1959) cannot play any part in the normal digestion of and of sucrase-isomaltase deficiency by Weijers, lactose which is a function of the brush border of the van de Kamer, Mossel, and Dicke (1960).
    [Show full text]
  • (Helianthus Annuus L.) Plastidial Lipoyl Synthases Genes Expression In
    Impact of sunflower (Helianthus annuus L.) plastidial lipoyl synthases genes expression in glycerolipids composition of transgenic Arabidopsis plants Raquel Martins-Noguerol, Antonio Javier Moreno-Pérez, Acket Sebastien, Manuel Adrián Troncoso-Ponce, Rafael Garcés, Brigitte Thomasset, Joaquín Salas, Enrique Martínez-Force To cite this version: Raquel Martins-Noguerol, Antonio Javier Moreno-Pérez, Acket Sebastien, Manuel Adrián Troncoso- Ponce, Rafael Garcés, et al.. Impact of sunflower (Helianthus annuus L.) plastidial lipoyl synthases genes expression in glycerolipids composition of transgenic Arabidopsis plants. Scientific Reports, Nature Publishing Group, 2020, 10, pp.3749. 10.1038/s41598-020-60686-z. hal-02881038 HAL Id: hal-02881038 https://hal.archives-ouvertes.fr/hal-02881038 Submitted on 25 Jun 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. www.nature.com/scientificreports OPEN Impact of sunfower (Helianthus annuus L.) plastidial lipoyl synthases genes expression in glycerolipids composition of transgenic Arabidopsis plants Raquel Martins-Noguerol1,2, Antonio Javier Moreno-Pérez 1,2, Acket Sebastien2, Manuel Adrián Troncoso-Ponce2, Rafael Garcés1, Brigitte Thomasset2, Joaquín J. Salas1 & Enrique Martínez-Force 1* Lipoyl synthases are key enzymes in lipoic acid biosynthesis, a co-factor of several enzyme complexes involved in central metabolism.
    [Show full text]
  • Review Article Pullulanase: Role in Starch Hydrolysis and Potential Industrial Applications
    Hindawi Publishing Corporation Enzyme Research Volume 2012, Article ID 921362, 14 pages doi:10.1155/2012/921362 Review Article Pullulanase: Role in Starch Hydrolysis and Potential Industrial Applications Siew Ling Hii,1 Joo Shun Tan,2 Tau Chuan Ling,3 and Arbakariya Bin Ariff4 1 Department of Chemical Engineering, Faculty of Engineering and Science, Universiti Tunku Abdul Rahman, 53300 Kuala Lumpur, Malaysia 2 Institute of Bioscience, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia 3 Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia 4 Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia Correspondence should be addressed to Arbakariya Bin Ariff, [email protected] Received 26 March 2012; Revised 12 June 2012; Accepted 12 June 2012 Academic Editor: Joaquim Cabral Copyright © 2012 Siew Ling Hii et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The use of pullulanase (EC 3.2.1.41) has recently been the subject of increased applications in starch-based industries especially those aimed for glucose production. Pullulanase, an important debranching enzyme, has been widely utilised to hydrolyse the α-1,6 glucosidic linkages in starch, amylopectin, pullulan, and related oligosaccharides, which enables a complete and efficient conversion of the branched polysaccharides into small fermentable sugars during saccharification process. The industrial manufacturing of glucose involves two successive enzymatic steps: liquefaction, carried out after gelatinisation by the action of α- amylase; saccharification, which results in further transformation of maltodextrins into glucose.
    [Show full text]
  • Health Effects Support Document for Perfluorooctanoic Acid (PFOA)
    United States Office of Water EPA 822-R-16-003 Environmental Protection Mail Code 4304T May 2016 Agency Health Effects Support Document for Perfluorooctanoic Acid (PFOA) Perfluorooctanoic Acid – May 2016 i Health Effects Support Document for Perfluorooctanoic Acid (PFOA) U.S. Environmental Protection Agency Office of Water (4304T) Health and Ecological Criteria Division Washington, DC 20460 EPA Document Number: 822-R-16-003 May 2016 Perfluorooctanoic Acid – May 2016 ii BACKGROUND The Safe Drinking Water Act (SDWA), as amended in 1996, requires the Administrator of the U.S. Environmental Protection Agency (EPA) to periodically publish a list of unregulated chemical contaminants known or anticipated to occur in public water systems and that may require regulation under SDWA. The SDWA also requires the Agency to make regulatory determinations on at least five contaminants on the Contaminant Candidate List (CCL) every 5 years. For each contaminant on the CCL, before EPA makes a regulatory determination, the Agency needs to obtain sufficient data to conduct analyses on the extent to which the contaminant occurs and the risk it poses to populations via drinking water. Ultimately, this information will assist the Agency in determining the most appropriate course of action in relation to the contaminant (e.g., developing a regulation to control it in drinking water, developing guidance, or deciding not to regulate it). The PFOA health assessment was initiated by the Office of Water, Office of Science and Technology in 2009. The draft Health Effects Support Document for Perfluoroctanoic Acid (PFOA) was completed in 2013 and released for public comment in February 2014.
    [Show full text]
  • Crystallographic Snapshots of Sulfur Insertion by Lipoyl Synthase
    Crystallographic snapshots of sulfur insertion by lipoyl synthase Martin I. McLaughlina,b,1, Nicholas D. Lanzc, Peter J. Goldmana, Kyung-Hoon Leeb, Squire J. Bookerb,c,d, and Catherine L. Drennana,e,f,2 aDepartment of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139; bDepartment of Chemistry, The Pennsylvania State University, University Park, PA 16802; cDepartment of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802; dHoward Hughes Medical Institute, The Pennsylvania State University, University Park, PA 16802; eDepartment of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139; and fHoward Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139 Edited by Vern L. Schramm, Albert Einstein College of Medicine, Bronx, NY, and approved July 5, 2016 (received for review March 8, 2016) Lipoyl synthase (LipA) catalyzes the insertion of two sulfur atoms substrate and at an intermediate stage in the reaction, just after at the unactivated C6 and C8 positions of a protein-bound octanoyl insertion of the C6 sulfur atom but before sulfur insertion at C8. chain to produce the lipoyl cofactor. To activate its substrate for sulfur insertion, LipA uses a [4Fe-4S] cluster and S-adenosylmethio- Results nine (AdoMet) radical chemistry; the remainder of the reaction The crystal structure of LipA from M. tuberculosis was de- mechanism, especially the source of the sulfur, has been less clear. termined to 1.64-Å resolution by iron multiwavelength anoma- One controversial proposal involves the removal of sulfur from a lous dispersion phasing (Table S1). The overall fold of LipA consists second (auxiliary) [4Fe-4S] cluster on the enzyme, resulting in de- of a (β/α)6 partial barrel common to most AdoMet radical enzymes struction of the cluster during each round of catalysis.
    [Show full text]
  • Activation and Detoxification of Cassava Cyanogenic Glucosides by the Whitefly Bemisia Tabaci
    www.nature.com/scientificreports OPEN Activation and detoxifcation of cassava cyanogenic glucosides by the whitefy Bemisia tabaci Michael L. A. E. Easson 1, Osnat Malka 2*, Christian Paetz1, Anna Hojná1, Michael Reichelt1, Beate Stein3, Sharon van Brunschot4,5, Ester Feldmesser6, Lahcen Campbell7, John Colvin4, Stephan Winter3, Shai Morin2, Jonathan Gershenzon1 & Daniel G. Vassão 1* Two-component plant defenses such as cyanogenic glucosides are produced by many plant species, but phloem-feeding herbivores have long been thought not to activate these defenses due to their mode of feeding, which causes only minimal tissue damage. Here, however, we report that cyanogenic glycoside defenses from cassava (Manihot esculenta), a major staple crop in Africa, are activated during feeding by a pest insect, the whitefy Bemisia tabaci, and the resulting hydrogen cyanide is detoxifed by conversion to beta-cyanoalanine. Additionally, B. tabaci was found to utilize two metabolic mechanisms to detoxify cyanogenic glucosides by conversion to non-activatable derivatives. First, the cyanogenic glycoside linamarin was glucosylated 1–4 times in succession in a reaction catalyzed by two B. tabaci glycoside hydrolase family 13 enzymes in vitro utilizing sucrose as a co-substrate. Second, both linamarin and the glucosylated linamarin derivatives were phosphorylated. Both phosphorylation and glucosidation of linamarin render this plant pro-toxin inert to the activating plant enzyme linamarase, and thus these metabolic transformations can be considered pre-emptive detoxifcation strategies to avoid cyanogenesis. Many plants produce two-component chemical defenses as protection against attacks from herbivores and patho- gens. In these plants, protoxins that are ofen chemically protected by a glucose residue are activated by an enzyme such as a glycoside hydrolase yielding an unstable aglycone that is toxic or rearranges to form toxic products1.
    [Show full text]
  • CDH12 Cadherin 12, Type 2 N-Cadherin 2 RPL5 Ribosomal
    5 6 6 5 . 4 2 1 1 1 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 A A A A A A A A A A A A A A A A A A A A C C C C C C C C C C C C C C C C C C C C R R R R R R R R R R R R R R R R R R R R B , B B B B B B B B B B B B B B B B B B B , 9 , , , , 4 , , 3 0 , , , , , , , , 6 2 , , 5 , 0 8 6 4 , 7 5 7 0 2 8 9 1 3 3 3 1 1 7 5 0 4 1 4 0 7 1 0 2 0 6 7 8 0 2 5 7 8 0 3 8 5 4 9 0 1 0 8 8 3 5 6 7 4 7 9 5 2 1 1 8 2 2 1 7 9 6 2 1 7 1 1 0 4 5 3 5 8 9 1 0 0 4 2 5 0 8 1 4 1 6 9 0 0 6 3 6 9 1 0 9 0 3 8 1 3 5 6 3 6 0 4 2 6 1 0 1 2 1 9 9 7 9 5 7 1 5 8 9 8 8 2 1 9 9 1 1 1 9 6 9 8 9 7 8 4 5 8 8 6 4 8 1 1 2 8 6 2 7 9 8 3 5 4 3 2 1 7 9 5 3 1 3 2 1 2 9 5 1 1 1 1 1 1 5 9 5 3 2 6 3 4 1 3 1 1 4 1 4 1 7 1 3 4 3 2 7 6 4 2 7 2 1 2 1 5 1 6 3 5 6 1 3 6 4 7 1 6 5 1 1 4 1 6 1 7 6 4 7 e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m
    [Show full text]
  • Supplementary Materials
    Supplementary Materials COMPARATIVE ANALYSIS OF THE TRANSCRIPTOME, PROTEOME AND miRNA PROFILE OF KUPFFER CELLS AND MONOCYTES Andrey Elchaninov1,3*, Anastasiya Lokhonina1,3, Maria Nikitina2, Polina Vishnyakova1,3, Andrey Makarov1, Irina Arutyunyan1, Anastasiya Poltavets1, Evgeniya Kananykhina2, Sergey Kovalchuk4, Evgeny Karpulevich5,6, Galina Bolshakova2, Gennady Sukhikh1, Timur Fatkhudinov2,3 1 Laboratory of Regenerative Medicine, National Medical Research Center for Obstetrics, Gynecology and Perinatology Named after Academician V.I. Kulakov of Ministry of Healthcare of Russian Federation, Moscow, Russia 2 Laboratory of Growth and Development, Scientific Research Institute of Human Morphology, Moscow, Russia 3 Histology Department, Medical Institute, Peoples' Friendship University of Russia, Moscow, Russia 4 Laboratory of Bioinformatic methods for Combinatorial Chemistry and Biology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russia 5 Information Systems Department, Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia 6 Genome Engineering Laboratory, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia Figure S1. Flow cytometry analysis of unsorted blood sample. Representative forward, side scattering and histogram are shown. The proportions of negative cells were determined in relation to the isotype controls. The percentages of positive cells are indicated. The blue curve corresponds to the isotype control. Figure S2. Flow cytometry analysis of unsorted liver stromal cells. Representative forward, side scattering and histogram are shown. The proportions of negative cells were determined in relation to the isotype controls. The percentages of positive cells are indicated. The blue curve corresponds to the isotype control. Figure S3. MiRNAs expression analysis in monocytes and Kupffer cells. Full-length of heatmaps are presented.
    [Show full text]
  • Supplementary File 2A Revised
    Supplementary file 2A. Differentially expressed genes in aldosteronomas compared to all other samples, ranked according to statistical significance. Missing values were not allowed in aldosteronomas, but to a maximum of five in the other samples. Acc UGCluster Name Symbol log Fold Change P - Value Adj. P-Value B R99527 Hs.8162 Hypothetical protein MGC39372 MGC39372 2,17 6,3E-09 5,1E-05 10,2 AA398335 Hs.10414 Kelch domain containing 8A KLHDC8A 2,26 1,2E-08 5,1E-05 9,56 AA441933 Hs.519075 Leiomodin 1 (smooth muscle) LMOD1 2,33 1,3E-08 5,1E-05 9,54 AA630120 Hs.78781 Vascular endothelial growth factor B VEGFB 1,24 1,1E-07 2,9E-04 7,59 R07846 Data not found 3,71 1,2E-07 2,9E-04 7,49 W92795 Hs.434386 Hypothetical protein LOC201229 LOC201229 1,55 2,0E-07 4,0E-04 7,03 AA454564 Hs.323396 Family with sequence similarity 54, member B FAM54B 1,25 3,0E-07 5,2E-04 6,65 AA775249 Hs.513633 G protein-coupled receptor 56 GPR56 -1,63 4,3E-07 6,4E-04 6,33 AA012822 Hs.713814 Oxysterol bining protein OSBP 1,35 5,3E-07 7,1E-04 6,14 R45592 Hs.655271 Regulating synaptic membrane exocytosis 2 RIMS2 2,51 5,9E-07 7,1E-04 6,04 AA282936 Hs.240 M-phase phosphoprotein 1 MPHOSPH -1,40 8,1E-07 8,9E-04 5,74 N34945 Hs.234898 Acetyl-Coenzyme A carboxylase beta ACACB 0,87 9,7E-07 9,8E-04 5,58 R07322 Hs.464137 Acyl-Coenzyme A oxidase 1, palmitoyl ACOX1 0,82 1,3E-06 1,2E-03 5,35 R77144 Hs.488835 Transmembrane protein 120A TMEM120A 1,55 1,7E-06 1,4E-03 5,07 H68542 Hs.420009 Transcribed locus 1,07 1,7E-06 1,4E-03 5,06 AA410184 Hs.696454 PBX/knotted 1 homeobox 2 PKNOX2 1,78 2,0E-06
    [Show full text]