Bbm:978-3-642-00286-1/1.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Bbm:978-3-642-00286-1/1.Pdf Biosystematic Index A Absidia glauca, 88 Arthrinum spaeospermum, 285 Acremonium Ascaris suum, 253–257, 259, 261, 266 A. luzulae, 278 Aschersonia, 282 Achlya,4 Ascochyta, 160, 183–184, 186 Acrostalagmus, 277 Ascomycetes, 81, 85, 87, 89, 135, 306, 309, 316–318, 320 Aegiceras corniculatum, 161, 170–172 Ascomycetous, 81, 87, 88, 94 Agaricales, 12, 13 Ascomycota, 7–9 Agaricomycetes, 12, 13 Ascospores, 19–21, 23, 25, 32–34 Agaricomycetidae, 13 Asellariales, 7 Agaricomycotina, 2, 9, 11–13 Ashbya gossypii, 236 Agaricus, 222 Aspergillus, 9, 91, 93, 204, 249, 251, 257, 259, 380, 381, 383 A. bisporus, 85, 91, 94, 236 A. awamori, 383, 385 Agrobacterium tumefaciens, 382 A. carbonarius, 257, 354, 355, 360–362 Albatrellus confluens, 265 A. carneus, 283 Albugo,4 A. clavatus, 236, 344, 379 Allomyces macrogynus, 88 A. flavipes, 259 Alternaria, 160, 174–176 A. flavus, 86, 91, 132, 133, 135–137, 141, 144, 300, 314, A. alternata, 265, 290, 307, 319 379 A. brassicae, 290 A. fumigatus, 48–50, 56, 65, 67, 87, 132, 133, 135–137, A. citri, 249, 265 140, 141, 143, 144, 236, 274, 288, 298, 300, 307, A. solani, 338, 340 309, 312, 316, 318, 322, 323, 333, 379, 382, 386 A. tenuis, 249, 265 A. giganteus, 68, 91, 385 Amanita A. nidulans, 48, 50, 51, 67–70, 86, 89, 133, 135–138, A. bisporigera, 236 142, 143, 145, 146, 236, 298–302, 307, 312, 314– A. exitialis, 281, 282 316, 318, 320, 324, 378–383, 386 A. muscaria, 89, 92 A. niger, 86, 135, 143, 145, 236, 249, 251, 279, 289, A. phalloides, 317 354, 355, 371, 378–382 Amoebozoa, 3 A. ochraceus, 353–355, 357, 359–361, 363, 364 Antrodia serialis, 224, 226 A. oryzae, 133, 236, 298, 339, 346, 347, 377–380, 382– Apiospora montagnei, 259 384, 386 Aporpium caryae, 224, 226, 227 A. parasiticus, 133 Apothecium, 9 A. sojae, 378, 384 Arabidopsis thaliana, 55, 67, 93 A. stellatus, 249 Arachniotus, 277 A. steynii, 354, 355 Archangium gephyra, 263 A. sydowi, 257 Archiascomycetes, 7 A. terreus, 132, 236, 331, 334, 337, 338, 345, 346, 379 Ariolimax columbianus, 95 A. westerdijkiae, 354, 355 Artemisia annua, 161, 187, 188 Assembling the fungal tree of life (AFTOL), 2, 5, 8, 10, Artemisia maritima, 160, 189 12, 13 Arthoniomycetes, 9 Atheliales, 13 394 Biosystematic Index Atkinsonella hypoxylon, 199, 201 C. tropicalis, 47, 51, 52, 236 Aureobasidium, 283 Cantharellales, 12, 13 Auricularia, 12 Cassia spectabilis, 162, 166, 167 Auriculariales, 12 Castaniopsis fissa, 280 Avicinnia marina, 280 Catharanthus roseus, 198 Azadirachata indica, 162, 164–165 Caulochytrium,6 Ceratobasidium, 12 B Ceratocystis, 89 Baccharis artemisioides, 157 C. fagacearum, 86 Baccharis coridifolia, 157 C. ulmi, 86 Bacillus subtilis, 346 Ceriporia subvermispora, 221 Balansia cyperi, 199 Chaetasbolisia erysiophoides, 259 Balansia pilulaeformis, 199 Chaetominum, 277 Basidia, 11, 12 Chaetomium, 160, 176–178 Basidiocarps, 12 C. globosum, 158, 160, 177–178, 236, 344 Basidiomycete(s), 81–85, 87–90, 92, 97, 317–319 C. subaffine, 342 Basidiomycota, 6, 7, 9–13 Chaetothyriales, 9 Basidiospores, 11, 12 Chalara, 279 Batrachochytrium dendrobatidis, 48, 49, 51, 52, 236 Chamonixia pachydermis, 225, 227 Beauveria Chaunopycnis alba, 279 B. bassiana, 67, 68, 140, 141, 144, 276, 340 Chlamydocins, 281, 288 B. fellina, 283 Chlamydomonas reinhardtii, 51 B. nivea, 307, 311 Chrysosporium luchnowense, 212 Beetle(s), 94 Chromista, 4 Bionectria, 277 Chytridiomycota, 5, 6, 88 Bipolaris, 282 Chytrid(s), 4–6 Blastocladiomycota, 6 Cis boleti, 94 Blumeria graminis, 239, 241 Cistanche deserticola, 162, 170–172 Boletales, 12, 13 Classification, 1, 2, 4–6, 8–10, 13 Boletus, 216, 217 Clavariadelphus truncatus, 220 Bondarzewia montana, 224, 226 Clavariopsis aquatica, 289 Boreostereum vibrans, 220 Claviceps, 204, 276, 290 Botryosphaeria mamane, 160, 185 C. puprurea, 315 Botryosphaeria parva, 160, 189 Clavicipitaceae, 198, 199, 202, 205, 278, 322 Botrytis cinerea, 48, 49, 92, 95, 122, 236, 239 Clavicipitaceous fungi, 198–206 Bovista, 212–214 Cleistothecium, 9 Brachypodium sylvaticum, 94 Clitocybe elegans, 217 Burkholderia, 298 Clitocybe faccida, 94 Clitocybe illudens, 213 C Clitopilus prunulus, 94 Caenorhabditis elegans, 385 Clonostachys, 280, 289 Calcarisporium arbuscula, 249, 265 C. lusitaniae, 236 Calocera, 12 Coccidioides immitis, 236 Calonectria Coccidioides posadsii, 236 C. morganii, 280 Cochliobolus Camellia japonica, 273 C. carbonum, 288, 290 Camellia sinensis L., 161, 165–166 C. heterostrophus, 274 Camptotheca acuminata, 157, 162, 166, 167 C. carbonum, 307, 315, 319 Candida, 7, 73, 241 C. heterostrophus, 332 C. albicans, 67, 69, 84, 86, 91, 110, 123, 236, 239–241, C. miyabeanus, 249, 250 274, 288, 385 Coelomomyces stegomyiae, 51, 52 C. dubliniensis, 236, 239 Coleophoma C. glabrata, 236, 243, 383 C. crateriformis, 279 C. guilliermondii, 236 C. empetri, 279 C. noadenis, 108 Collembolan, 90, 94 C. parapsilosis, 236 Colletotrichum, 8, 85 Biosystematic Index 395 C. dematium, 160, 181–182 Dothideomycetidae, 9 C. gloeosporioides, 69–71, 160, 189, 277 Dothistroma septosporum, 335 C. graminicola, 236 Drosophila, 143–147 C. lagenarium, 335, 336, 346 D. melanogaster, 55, 143, 145, 146 C. magna, 155 C. trifolii, 65 E Coniosporium, 277 Echinococcus multilocularis, 256, 266 Coniothyrium, 160, 189, 276 Ectomycorrhiza, 13 Conocybe siliginea, 211, 212 Embellisia, 206 Convolvulaceae, 197–206 Emericella Coprini, 83 E. purpurascens, 278 Coprinopsis cinerea, 48, 81–84, 88–91, 95 E. unguis, 280 Coprinopsis cinereus, 69, 70 E. nidulans, 89 Coprinus, 216 E. variecolor, 161, 175, 177, 257 C. cinereus, 236, 379, 386 Endogonales, 6 Cordyceps, 282 Entoloma haastii, 275 Corollospora intermedia, 280 Entomophthorales, 6 Corticiales, 13 Entomophthoromycotina, 6 Cortinarius, 211, 224–226 Entorrhizales, 9, 11 Creolophus cirrhatus, 215, 216 Entorrhizomycetes, 11 Croton oblongifolius, 161, 175 Entylomatales, 11 Cryptococcus aquaticus, 113 Epichloe, 322 Cryptococcus gattii, 236 Epichloe¨ typhina, 94, 161, 181, 280 Cryptococcus humicola, 108 Epicoccum Cryptococcus neoformans, 46–49, 56, 83, 84, 120, 121, E. nigrum, 278 236, 241, 274 Epinotia tedella, 94 Cunninghamella blakesleeana, 274 Eriospermum, 204 Cyathus, 217 Erysiphales, 9 Cyclindrocladium Erythrina crista-galli, 162, 166–169 C. scorparium, 280 Escherichia coli, 338, 346, 347 Cyclindrotrichum, 278 Euascomycetes, 7 Cylindrocarpon, 280 Euonymus europaeus, 160, 175 Cylindrocladium ilicicola, 249, 262 Eupatorium arnottianum, 169–170 Cystobacter armeniaca, 263 Eupenicillium shearii, 290 Cystobasidiales, 11 Euplotes raikovi, 83 Cystobasidiomycetes, 11 Eurotiales, 9 Cystoderma, 211 Eurotiomycetes, 9 Cystofilobasidiales, 12 Eurotium, 276 Cystofilobasidium infirmominiatum, 113 Exidia, 12 Exobasidiales, 11 D Exobasidiomycetes, 11 Dacrymyces, 12, 216 Exserohilium rostratum, 276 Dacrymycetes, 12 Exserohilum holmi, 277 Debaryomyces hansenii , 47, 50–52, 108, 111, 122, 236 Debaryomyces robertsiae, 113, 117, 119 F Diaporthe, 160, 164–170 Favolaschia, 218, 219 Dicerandra frutescens, 163, 170, 171 Filobasidiales, 12 Dichomitus squalens, 214, 215 Filobasidiella, 274 Dictyostelium discoideum, 51 Filobasidium capsuligenum, 108 Diheterospora Flavolus arcularius, 92 D. chlamyydosporia, 281 Folsomia candida, 142 Dikarya, 7 Fomitella fraxinea, 219 Dikaryophase, 19 Fungi incertae sedis, 88 Doassansiales, 11 Fungi, 297–299, 301, 302 Dothideomycete, 175–177 Fusarium, 161, 167, 180, 181, 319 Dothideomycetes, 9 F. culmorum, 274 396 Biosystematic Index F. graminearum, 67, 69, 236, 239, 274 H. mammatum, 155 F. heterosporum, 300 Hormonema dematioides, 161, 182–183 F. lateritium, 205 Hyalodendron, 277 F. moniliforme, 255, 340, 345 Hyaloraphidium,6 F. oxysporum, 67, 68, 198, 236, 379 Hydnellum caeruleum, 222, 223, 225 F. pseudograminearum, 274 Hygrophorus, 221, 222 F. sambucinum, 249, 262 Hymenochaetales, 13 F. solani, 384, 386 Hymenophore, 12 F. verticillioides, 236 Hyperdermium pulvinatum, 205 Hypericum perforatum, 158 G Hyphochytriomycota, 4 Galleria mellonella, 141 Hypocreaceae, 278 Garcinia mangostana, 160, 184, 185 Hypoderma eucalyptii, 279 Geastrales, 13 Hypodermium bertonii, 205 Gelasinospora cerealis, 91 Hypoxylon fragiforme, 155 Geoglossaceae, 8, 9 Hypoxylon oceanicum, 285 Geoglossum, 8 Hypoxylon truncatum, 161, 188 Georgefischeriales, 11 Hysterangiales, 13 Geotrichum candidum, 274, 289 Geosiphon,7 I Gerronema, 222, 223 Idiomorph(s), 20 Gibberella fujikuroi, 132, 133, 331 Imperata cylindrica, 160, 177–178 Gibberella zeae, 89, 274 Ipomoea, 204 Gigaspora, 92 I. asarifolia, 199, 201–204 Ginkgo biloba, 159, 163 I. batatas, 205, 206 Glarea lozoyensis, 280, 337, 345 I. violacea, 199, 202, 203, 205 Gliocladium deliquenscens, 277 Irpex, 218 Gloeophyllales, 13 Isaria, 282 Gloeophyllum, 213, 214 Glomeromycota, 92 J Glomerella, 8 Junghuhnia nitida, 221 Glomerellaceae, 8 Junipercus cedre, 161, 183–185 Glomospora, 289 Glomus, 92 K Glomus mossae, 43 Glycine max, 92 Karyogamy, 18, 19 Gomphales, 13 Kickxellales, 7 Grifola frondosa, 219, 220 Kickxellomycotina, 7 Gymnothecia(l), 9 Kluyveromyces, 112 K. lactis, 69, 113, 117–119, 122, 237 H K. marxianus, 237 Haemonchus contortus, 253, 254, 266 K. thermotolerans, 237 Hanseniaspora uvarum, 113, 116, 122 K. waltii, 108, 112, 237 Haptoglossa,5 Helicobasidiales, 10 L Helicobasidium, 11 Labyrinthulales, 4 Helicoma ambiens, 280 Labyrinthulomycota, 4 Helminthosporium Lacazia loboi, 237 H. carbonum, 288 Laccaria bicolor, 83, 84, 97, 237, 379 H. siccans, 249, 261 Laccaria laccata, 83 Helotiales, 9 Laetiporus sulfureus, 283 Hemiascomycetes, 7 Lecanoromycetes, 9 Heterobasidiomycetes, 12, 13 Leccinium aurantiacum, 86 Heterobasidion annosum, 237 Leea rubra, 161, 175–176 Hirsutella,
Recommended publications
  • Molecular Evolution and Functional Divergence of Tubulin Superfamily In
    OPEN Molecular evolution and functional SUBJECT AREAS: divergence of tubulin superfamily in the FUNGAL GENOMICS MOLECULAR EVOLUTION fungal tree of life FUNGAL BIOLOGY Zhongtao Zhao1*, Huiquan Liu1*, Yongping Luo1, Shanyue Zhou2, Lin An1, Chenfang Wang1, Qiaojun Jin1, Mingguo Zhou3 & Jin-Rong Xu1,2 Received 18 July 2014 1 NWAFU-PU Joint Research Center, State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, 2 Accepted Northwest A&F University, Yangling, Shaanxi 712100, China, Department of Botany and Plant Pathology, Purdue University, West 3 22 September 2014 Lafayette, IN 47907, USA, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Key Laboratory of Pesticide, Nanjing, Jiangsu 210095, China. Published 23 October 2014 Microtubules are essential for various cellular activities and b-tubulins are the target of benzimidazole fungicides. However, the evolution and molecular mechanisms driving functional diversification in fungal tubulins are not clear. In this study, we systematically identified tubulin genes from 59 representative fungi Correspondence and across the fungal kingdom. Phylogenetic analysis showed that a-/b-tubulin genes underwent multiple requests for materials independent duplications and losses in different fungal lineages and formed distinct paralogous/ should be addressed to orthologous clades. The last common ancestor of basidiomycetes and ascomycetes likely possessed two a a a b b b a J.-R.X. (jinrong@ paralogs of -tubulin ( 1/ 2) and -tubulin ( 1/ 2) genes but 2-tubulin genes were lost in basidiomycetes and b2-tubulin genes were lost in most ascomycetes. Molecular evolutionary analysis indicated that a1, a2, purdue.edu) and b2-tubulins have been under strong divergent selection and adaptive positive selection.
    [Show full text]
  • Patterns of Rust Infection As a Function of Host Genetic Diversity and Host Density in Natural Populations of the Apomictic Crucifer, Arabis Holboellii Author(S): B
    Patterns of Rust Infection as a Function of Host Genetic Diversity and Host Density in Natural Populations of the Apomictic Crucifer, Arabis holboellii Author(s): B. A. Roy Source: Evolution, Vol. 47, No. 1 (Feb., 1993), pp. 111-124 Published by: Society for the Study of Evolution Stable URL: http://www.jstor.org/stable/2410122 . Accessed: 29/01/2014 15:38 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Society for the Study of Evolution is collaborating with JSTOR to digitize, preserve and extend access to Evolution. http://www.jstor.org This content downloaded from 128.223.93.178 on Wed, 29 Jan 2014 15:38:41 PM All use subject to JSTOR Terms and Conditions Evolution,47(1), 1993, pp. 11 1-124 PATTERNS OF RUST INFECTION AS A FUNCTION OF HOST GENETIC DIVERSITY AND HOST DENSITY IN NATURAL POPULATIONS OF THE APOMICTIC CRUCIFER, ARABIS HOLBOELLII B. A. Roy' Rancho Santa Ana Botanic Garden, Claremont,CA 91711 USA and Rocky Mountain Biological Laboratory,Crested Butte, CO 81224 USA Abstract.-It is oftenassumed that geneticdiversity contributes to reduced disease incidence in natural plant populations. However, littleis known about the geneticstructure of natural popu- lationsaffected by disease.
    [Show full text]
  • Redalyc.Compuestos Volátiles De Plantas. Origen, Emisión, Efectos
    Red de Revistas Científicas de América Latina, el Caribe, España y Portugal Sistema de Información Científica J. Camilo Marín-Loaiza, Carlos L. Céspedes Compuestos volátiles de plantas. origen, emisión, efectos, análisis y aplicaciones al agro Revista Fitotecnia Mexicana, vol. 30, núm. 4, 2007, pp. 327-351, Sociedad Mexicana de Fitogenética, A.C. México Disponible en: http://www.redalyc.org/articulo.oa?id=61030401 Revista Fitotecnia Mexicana, ISSN (Versión impresa): 0187-7380 [email protected] Sociedad Mexicana de Fitogenética, A.C. México ¿Cómo citar? Fascículo completo Más información del artículo Página de la revista www.redalyc.org Proyecto académico sin fines de lucro, desarrollado bajo la iniciativa de acceso abierto Artículo de Revisión Rev. Fitotec. Mex. Vol. 30 (4): 327 – 351, 2007 COMPUESTOS VOLÁTILES DE PLANTAS. ORIGEN, EMISIÓN, EFECTOS, ANÁLISIS Y APLICACIONES AL AGRO VOLATILE COMPOUNDS FROM PLANTS. ORIGIN, EMISSION, EFFECTS, ANALYSIS AND AGRO APPLICATIONS J. Camilo Marín-Loaiza1 y Carlos L. Céspedes*1,2 1Laboratorio de Fitoquímica, Unidad de Biotecnología y Prototipos, Facultad de Estudios Superiores Iztacala. Universidad Nacional Autónoma de México. Av. de Los Barrios 1. 54090, Tlalnepantla. Estado de México, México. Tel. (56) 4225-3256, Fax: (56) 4220-3046. 2Dirección Actual: Facultad de Cien- cias, Departamento Ciencias Básicas, Universidad del Bio-Bio. Av. Andres Bello s/n, Casilla 447. Chillán, Chile. * Autor para correspondencia ([email protected]) RESUMEN consist of terpenes, fatty acid derivatives and aromatic compounds. One of the major volatile’s role is their involvement as signals to ot- her organisms, and even for the same plant. Furthermore, they can Las plantas producen y emiten numerosos compuestos volátiles be exported to modify the environment of the releaser species and orgánicos.
    [Show full text]
  • Fungal Evolution: Major Ecological Adaptations and Evolutionary Transitions
    Biol. Rev. (2019), pp. 000–000. 1 doi: 10.1111/brv.12510 Fungal evolution: major ecological adaptations and evolutionary transitions Miguel A. Naranjo-Ortiz1 and Toni Gabaldon´ 1,2,3∗ 1Department of Genomics and Bioinformatics, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain 2 Department of Experimental and Health Sciences, Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain 3ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain ABSTRACT Fungi are a highly diverse group of heterotrophic eukaryotes characterized by the absence of phagotrophy and the presence of a chitinous cell wall. While unicellular fungi are far from rare, part of the evolutionary success of the group resides in their ability to grow indefinitely as a cylindrical multinucleated cell (hypha). Armed with these morphological traits and with an extremely high metabolical diversity, fungi have conquered numerous ecological niches and have shaped a whole world of interactions with other living organisms. Herein we survey the main evolutionary and ecological processes that have guided fungal diversity. We will first review the ecology and evolution of the zoosporic lineages and the process of terrestrialization, as one of the major evolutionary transitions in this kingdom. Several plausible scenarios have been proposed for fungal terrestralization and we here propose a new scenario, which considers icy environments as a transitory niche between water and emerged land. We then focus on exploring the main ecological relationships of Fungi with other organisms (other fungi, protozoans, animals and plants), as well as the origin of adaptations to certain specialized ecological niches within the group (lichens, black fungi and yeasts).
    [Show full text]
  • Phytochimie De Lichens Du Genre Stereocaulon : Étude Particulière De S
    Phytochimie de lichens du genre Stereocaulon : étude particulière de S. Halei Lamb et S. montagneanum Lamb, deux lichens recoltés en Indonésie Friardi Ismed To cite this version: Friardi Ismed. Phytochimie de lichens du genre Stereocaulon : étude particulière de S. Halei Lamb et S. montagneanum Lamb, deux lichens recoltés en Indonésie. Sciences pharmaceutiques. Université Rennes 1, 2012. Français. NNT : 2012REN1S053. tel-00737382 HAL Id: tel-00737382 https://tel.archives-ouvertes.fr/tel-00737382 Submitted on 1 Oct 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. N° d’ordre : 4924 ANNÉE 2012 THÈSE / UNIVERSITÉ DE RENNES 1 sous le sceau de l’Université Européenne de Bretagne pour le grade de DOCTEUR DE L’UNIVERSITÉ DE RENNES 1 Mention : Chimie Ecole doctorale Sciences De La Matière présentée par Friardi Ismed Préparée dans l’unité de recherche UMR CNRS 6226 Equipe PNSCM (Produits Naturels Synthèses Chimie Médicinale) (Faculté de Pharmacie, Université de Rennes1) Thèse soutenue à Rennes Phytochimie de le 12 Juillet 2012 lichens du genre Stereocaulon: étude devant le jury composé de : Nathalie BOURGOUGNON Professeur à l’Université de Bretagne-Sud/ particulière de rapporteur Elisabeth SEGUIN S.
    [Show full text]
  • The Flora Mycologica Iberica Project Fungi Occurrence Dataset
    A peer-reviewed open-access journal MycoKeys 15: 59–72 (2016)The Flora Mycologica Iberica Project fungi occurrence dataset 59 doi: 10.3897/mycokeys.15.9765 DATA PAPER MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research The Flora Mycologica Iberica Project fungi occurrence dataset Francisco Pando1, Margarita Dueñas1, Carlos Lado1, María Teresa Telleria1 1 Real Jardín Botánico-CSIC, Claudio Moyano 1, 28014, Madrid, Spain Corresponding author: Francisco Pando ([email protected]) Academic editor: C. Gueidan | Received 5 July 2016 | Accepted 25 August 2016 | Published 13 September 2016 Citation: Pando F, Dueñas M, Lado C, Telleria MT (2016) The Flora Mycologica Iberica Project fungi occurrence dataset. MycoKeys 15: 59–72. doi: 10.3897/mycokeys.15.9765 Resource citation: Pando F, Dueñas M, Lado C, Telleria MT (2016) Flora Mycologica Iberica Project fungi occurrence dataset. v1.18. Real Jardín Botánico (CSIC). Dataset/Occurrence. http://www.gbif.es/ipt/resource?r=floramicologicaiberi ca&v=1.18, http://doi.org/10.15468/sssx1e Abstract The dataset contains detailed distribution information on several fungal groups. The information has been revised, and in many times compiled, by expert mycologist(s) working on the monographs for the Flora Mycologica Iberica Project (FMI). Records comprise both collection and observational data, obtained from a variety of sources including field work, herbaria, and the literature. The dataset contains 59,235 records, of which 21,393 are georeferenced. These correspond to 2,445 species, grouped in 18 classes. The geographical scope of the dataset is Iberian Peninsula (Continental Portugal and Spain, and Andorra) and Balearic Islands. The complete dataset is available in Darwin Core Archive format via the Global Biodi- versity Information Facility (GBIF).
    [Show full text]
  • Título: Metabolitos Secundarios De Hongos Endófitos Y Fitopatógenos
    Título: Metabolitos secundarios de hongos endófitos y fitopatógenos. Secondary metabolites of plant pathogens and endophytic fungi. Autor: Leonor Carrillo Càtedra de Microbiologìa Agrìcola, Facultad de Ciencias Agrarias, UNJu Resumen: Las plantas parecen totalmente autónomas, sin embargo, tienen hongos asociados en sus hojas y raíces. Estos hongos sintetizan metabolitos secundarios durante la fase estacionaria de su crecimiento, los cuales intervienen activamente en las relaciones mutualistas o patogénicas. Algunos de estos metabolitos son tóxicos para insectos y mamíferos por lo cual son importantes en el ambiente agrario. Palabras clave: metabolitos, hongos, endófitos, fitopatógenos Summary: Plants seem to be totally autonomous, however, have in their leaves and roots associated fungi. These fungi synthesize secondary metabolites during the stationary phase of growth, which are actively involved in mutualistic or pathogenic relationships. Some of these metabolites are toxic to insects and mammals which are important in the agricultural environment. Key words: metabolites, fungi, endophytes, plant pathogens 1 1. Introducción Hongos Los hongos comprenden a microorganismos unicelulares (levaduras) y filamentosos (mohos), así como macroorganismos (setas, bejines y otros). Los filamentos (hifas) presentan septos perforados, o carecen de ellos, lo que permite el movimiento del citoplasma. Las hifas generan un micelio que se extiende radialmente sobre una superficie plana. Los hongos se multiplican por medio de esporas. Las de origen asexual se encuentran dentro de esporangios (esporangiosporas) o se desarrollan sobre las hifas o bien en el ápice de los conidióforos (conidios). Estos últimos en algunos casos están reunidos en un coremio, dentro de un picnidio o sobre una acérvula. Las esporas de origen sexual reciben distintos nombres según el tipo de hongos (ascosporas, basidiosporas, oosporas, zigosporas) y se originan en cuerpos fructíferos de morfología diversa.
    [Show full text]
  • Phylum Order Number of Species Number of Orders Family Genus Species Japanese Name Properties Phytopathogenicity Date Pref
    Phylum Order Number of species Number of orders family genus species Japanese name properties phytopathogenicity date Pref. points R inhibition H inhibition R SD H SD Basidiomycota Polyporales 98 12 Meruliaceae Abortiporus Abortiporus biennis ニクウチワタケ saprobic "+" 2004-07-18 Kumamoto Haru, Kikuchi 40.4 -1.6 7.6 3.2 Basidiomycota Agaricales 171 1 Meruliaceae Abortiporus Abortiporus biennis ニクウチワタケ saprobic "+" 2004-07-16 Hokkaido Shari, Shari 74 39.3 2.8 4.3 Basidiomycota Agaricales 269 1 Agaricaceae Agaricus Agaricus arvensis シロオオハラタケ saprobic "-" 2000-09-25 Gunma Kawaba, Tone 87 49.1 2.4 2.3 Basidiomycota Polyporales 181 12 Agaricaceae Agaricus Agaricus bisporus ツクリタケ saprobic "-" 2004-04-16 Gunma Horosawa, Kiryu 36.2 -23 3.6 1.4 Basidiomycota Hymenochaetales 129 8 Agaricaceae Agaricus Agaricus moelleri ナカグロモリノカサ saprobic "-" 2003-07-15 Gunma Hirai, Kiryu 64.4 44.4 9.6 4.4 Basidiomycota Polyporales 105 12 Agaricaceae Agaricus Agaricus moelleri ナカグロモリノカサ saprobic "-" 2003-06-26 Nagano Minamiminowa, Kamiina 70.1 3.7 2.5 5.3 Basidiomycota Auriculariales 37 2 Agaricaceae Agaricus Agaricus subrutilescens ザラエノハラタケ saprobic "-" 2001-08-20 Fukushima Showa 67.9 37.8 0.6 0.6 Basidiomycota Boletales 251 3 Agaricaceae Agaricus Agaricus subrutilescens ザラエノハラタケ saprobic "-" 2000-09-25 Yamanashi Hakusyu, Hokuto 80.7 48.3 3.7 7.4 Basidiomycota Agaricales 9 1 Agaricaceae Agaricus Agaricus subrutilescens ザラエノハラタケ saprobic "-" 85.9 68.1 1.9 3.1 Basidiomycota Hymenochaetales 129 8 Strophariaceae Agrocybe Agrocybe cylindracea ヤナギマツタケ saprobic "-" 2003-08-23
    [Show full text]
  • One Hundred New Species of Lichenized Fungi: a Signature of Undiscovered Global Diversity
    Phytotaxa 18: 1–127 (2011) ISSN 1179-3155 (print edition) www.mapress.com/phytotaxa/ Monograph PHYTOTAXA Copyright © 2011 Magnolia Press ISSN 1179-3163 (online edition) PHYTOTAXA 18 One hundred new species of lichenized fungi: a signature of undiscovered global diversity H. THORSTEN LUMBSCH1*, TEUVO AHTI2, SUSANNE ALTERMANN3, GUILLERMO AMO DE PAZ4, ANDRÉ APTROOT5, ULF ARUP6, ALEJANDRINA BÁRCENAS PEÑA7, PAULINA A. BAWINGAN8, MICHEL N. BENATTI9, LUISA BETANCOURT10, CURTIS R. BJÖRK11, KANSRI BOONPRAGOB12, MAARTEN BRAND13, FRANK BUNGARTZ14, MARCELA E. S. CÁCERES15, MEHTMET CANDAN16, JOSÉ LUIS CHAVES17, PHILIPPE CLERC18, RALPH COMMON19, BRIAN J. COPPINS20, ANA CRESPO4, MANUELA DAL-FORNO21, PRADEEP K. DIVAKAR4, MELIZAR V. DUYA22, JOHN A. ELIX23, ARVE ELVEBAKK24, JOHNATHON D. FANKHAUSER25, EDIT FARKAS26, LIDIA ITATÍ FERRARO27, EBERHARD FISCHER28, DAVID J. GALLOWAY29, ESTER GAYA30, MIREIA GIRALT31, TREVOR GOWARD32, MARTIN GRUBE33, JOSEF HAFELLNER33, JESÚS E. HERNÁNDEZ M.34, MARÍA DE LOS ANGELES HERRERA CAMPOS7, KLAUS KALB35, INGVAR KÄRNEFELT6, GINTARAS KANTVILAS36, DOROTHEE KILLMANN28, PAUL KIRIKA37, KERRY KNUDSEN38, HARALD KOMPOSCH39, SERGEY KONDRATYUK40, JAMES D. LAWREY21, ARMIN MANGOLD41, MARCELO P. MARCELLI9, BRUCE MCCUNE42, MARIA INES MESSUTI43, ANDREA MICHLIG27, RICARDO MIRANDA GONZÁLEZ7, BIBIANA MONCADA10, ALIFERETI NAIKATINI44, MATTHEW P. NELSEN1, 45, DAG O. ØVSTEDAL46, ZDENEK PALICE47, KHWANRUAN PAPONG48, SITTIPORN PARNMEN12, SERGIO PÉREZ-ORTEGA4, CHRISTIAN PRINTZEN49, VÍCTOR J. RICO4, EIMY RIVAS PLATA1, 50, JAVIER ROBAYO51, DANIA ROSABAL52, ULRIKE RUPRECHT53, NORIS SALAZAR ALLEN54, LEOPOLDO SANCHO4, LUCIANA SANTOS DE JESUS15, TAMIRES SANTOS VIEIRA15, MATTHIAS SCHULTZ55, MARK R. D. SEAWARD56, EMMANUËL SÉRUSIAUX57, IMKE SCHMITT58, HARRIE J. M. SIPMAN59, MOHAMMAD SOHRABI 2, 60, ULRIK SØCHTING61, MAJBRIT ZEUTHEN SØGAARD61, LAURENS B. SPARRIUS62, ADRIANO SPIELMANN63, TOBY SPRIBILLE33, JUTARAT SUTJARITTURAKAN64, ACHRA THAMMATHAWORN65, ARNE THELL6, GÖRAN THOR66, HOLGER THÜS67, EINAR TIMDAL68, CAMILLE TRUONG18, ROMAN TÜRK69, LOENGRIN UMAÑA TENORIO17, DALIP K.
    [Show full text]
  • Metabolites from Nematophagous Fungi and Nematicidal Natural Products from Fungi As Alternatives for Biological Control
    Appl Microbiol Biotechnol (2016) 100:3813–3824 DOI 10.1007/s00253-015-7234-5 MINI-REVIEW Metabolites from nematophagous fungi and nematicidal natural products from fungi as alternatives for biological control. Part II: metabolites from nematophagous basidiomycetes and non-nematophagous fungi Thomas Degenkolb1 & Andreas Vilcinskas1,2 Received: 4 October 2015 /Revised: 29 November 2015 /Accepted: 2 December 2015 /Published online: 4 January 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract In this second section of a two-part mini-re- Introduction view article, we introduce 101 further nematicidal and non-nematicidal secondary metabolites biosynthesized Metabolites from nematophagous basidiomycetes by nematophagous basidiomycetes or non- nematophagous ascomycetes and basidiomycetes. Sev- General remarks eral of these compounds have promising nematicidal activity and deserve further and more detailed analy- The chemical ecology of nematophagous fungi is still far from sis. Thermolides A and B, omphalotins, ophiobolins, understood. Little has been done to screen for metabolites in bursaphelocides A and B, illinitone A, pseudohalonectrins A nematophagous fungi, or nematicidal metabolites in other fun- and B, dichomitin B, and caryopsomycins A–Careex- gi, since the pioneering studies by Stadler and colleagues pub- cellent candidates or lead compounds for the develop- lished in the 1990s (Stadler et al. 1993a, b, 1994a, b, c, d). In ment of biocontrol strategies for phytopathogenic the first part of this review, we discussed 83 primary and nematodes. Paraherquamides, clonostachydiol, and secondary metabolites from nematophagous ascomycetes nafuredins offer promising leads for the development (Degenkolb and Vilcinskas, in press). In this second install- of formulations against the intestinal nematodes of ment, we consider nematicidal metabolites from ruminants.
    [Show full text]
  • A Preliminary Checklist of Arizona Macrofungi
    A PRELIMINARY CHECKLIST OF ARIZONA MACROFUNGI Scott T. Bates School of Life Sciences Arizona State University PO Box 874601 Tempe, AZ 85287-4601 ABSTRACT A checklist of 1290 species of nonlichenized ascomycetaceous, basidiomycetaceous, and zygomycetaceous macrofungi is presented for the state of Arizona. The checklist was compiled from records of Arizona fungi in scientific publications or herbarium databases. Additional records were obtained from a physical search of herbarium specimens in the University of Arizona’s Robert L. Gilbertson Mycological Herbarium and of the author’s personal herbarium. This publication represents the first comprehensive checklist of macrofungi for Arizona. In all probability, the checklist is far from complete as new species await discovery and some of the species listed are in need of taxonomic revision. The data presented here serve as a baseline for future studies related to fungal biodiversity in Arizona and can contribute to state or national inventories of biota. INTRODUCTION Arizona is a state noted for the diversity of its biotic communities (Brown 1994). Boreal forests found at high altitudes, the ‘Sky Islands’ prevalent in the southern parts of the state, and ponderosa pine (Pinus ponderosa P.& C. Lawson) forests that are widespread in Arizona, all provide rich habitats that sustain numerous species of macrofungi. Even xeric biomes, such as desertscrub and semidesert- grasslands, support a unique mycota, which include rare species such as Itajahya galericulata A. Møller (Long & Stouffer 1943b, Fig. 2c). Although checklists for some groups of fungi present in the state have been published previously (e.g., Gilbertson & Budington 1970, Gilbertson et al. 1974, Gilbertson & Bigelow 1998, Fogel & States 2002), this checklist represents the first comprehensive listing of all macrofungi in the kingdom Eumycota (Fungi) that are known from Arizona.
    [Show full text]
  • 80130Dimou7-107Weblist Changed
    Posted June, 2008. Summary published in Mycotaxon 104: 39–42. 2008. Mycodiversity studies in selected ecosystems of Greece: IV. Macrofungi from Abies cephalonica forests and other intermixed tree species (Oxya Mt., central Greece) 1 2 1 D.M. DIMOU *, G.I. ZERVAKIS & E. POLEMIS * [email protected] 1Agricultural University of Athens, Lab. of General & Agricultural Microbiology, Iera Odos 75, GR-11855 Athens, Greece 2 [email protected] National Agricultural Research Foundation, Institute of Environmental Biotechnology, Lakonikis 87, GR-24100 Kalamata, Greece Abstract — In the course of a nine-year inventory in Mt. Oxya (central Greece) fir forests, a total of 358 taxa of macromycetes, belonging in 149 genera, have been recorded. Ninety eight taxa constitute new records, and five of them are first reports for the respective genera (Athelopsis, Crustoderma, Lentaria, Protodontia, Urnula). One hundred and one records for habitat/host/substrate are new for Greece, while some of these associations are reported for the first time in literature. Key words — biodiversity, macromycetes, fir, Mediterranean region, mushrooms Introduction The mycobiota of Greece was until recently poorly investigated since very few mycologists were active in the fields of fungal biodiversity, taxonomy and systematic. Until the end of ’90s, less than 1.000 species of macromycetes occurring in Greece had been reported by Greek and foreign researchers. Practically no collaboration existed between the scientific community and the rather few amateurs, who were active in this domain, and thus useful information that could be accumulated remained unexploited. Until then, published data were fragmentary in spatial, temporal and ecological terms. The authors introduced a different concept in their methodology, which was based on a long-term investigation of selected ecosystems and monitoring-inventorying of macrofungi throughout the year and for a period of usually 5-8 years.
    [Show full text]