Histamine Receptors

Total Page:16

File Type:pdf, Size:1020Kb

Histamine Receptors Tocris Scientific Review Series Tocri-lu-2945 Histamine Receptors Iwan de Esch and Rob Leurs Introduction Leiden/Amsterdam Center for Drug Research (LACDR), Division Histamine is one of the aminergic neurotransmitters and plays of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit an important role in the regulation of several (patho)physiological Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The processes. In the mammalian brain histamine is synthesised in Netherlands restricted populations of neurons that are located in the tuberomammillary nucleus of the posterior hypothalamus.1 Dr. Iwan de Esch is an assistant professor and Prof. Rob Leurs is These neurons project diffusely to most cerebral areas and have full professor and head of the Division of Medicinal Chemistry of been implicated in several brain functions (e.g. sleep/ the Leiden/Amsterdam Center of Drug Research (LACDR), VU wakefulness, hormonal secretion, cardiovascular control, University Amsterdam, The Netherlands. Since the seventies, thermoregulation, food intake, and memory formation).2 In histamine receptor research has been one of the traditional peripheral tissues, histamine is stored in mast cells, eosinophils, themes of the division. Molecular understanding of ligand- basophils, enterochromaffin cells and probably also in some receptor interaction is obtained by combining pharmacology specific neurons. Mast cell histamine plays an important role in (signal transduction, proliferation), molecular biology, receptor the pathogenesis of various allergic conditions. After mast cell modelling and the synthesis and identification of new ligands. degranulation, release of histamine leads to various well-known symptoms of allergic conditions in the skin and the airway system. In 1937, Bovet and Staub discovered compounds that antagonise the effect of histamine on these allergic reactions.3 Ever since, there has been intense research devoted towards finding novel ligands with (anti-) histaminergic activity. This research field has been fuelled by the consecutive discovery of four unique histamine receptor subtypes. Every receptor subtype has a very distinct (patho)physiological role and all of them belong to the superfamily of G-protein-coupled receptors (GPCRs). The histamine H1 and H2 receptor subtypes have proven to be excellent drug targets. Ligands for the histamine H3 receptor subtype are currently entering clinical studies and the recently discovered histamine H4 receptor subtype is subject of intense preclinical research. The Histamine H1 Receptor Until the seventies, histamine research focused on the role of histamine in allergic diseases. This resulted in the development of several potent ‘antihistamines’ (e.g. mepyramine, see figure 1), which were useful in inhibiting pronounced symptoms of allergic Contents 4 conditions. However, the first generation of 1H receptor Introduction ............................................................................................. 1 antagonists that were developed for treating allergies revealed The Histamine H1 Receptor ................................................................... 1 distinct side effects such as sedation. This particular physiological effect of the ligands was eliminated by structural modifications Ligands for H1 Receptors .................................................................. 2 that prevent blood-brain-barrier penetration of the drugs. The The Histamine H Receptor ................................................................... 3 2 first generation as well as the more recently developed Ligands for H Receptors .................................................................. 3 2 antihistamines (originally termed antagonists but later 5 The Histamine H3 Receptor ................................................................... 4 reclassified as inverse agonists ) are clinically very successful and are widely available drugs. In 1991, the cDNA encoding a Ligands for H3 Receptors .................................................................. 4 bovine H receptor protein was cloned after an expression cloning The Histamine H Receptor ................................................................... 6 1 4 strategy in Xenopus oocytes.6 The deduced amino acid sequence Ligands for H Receptors .................................................................. 7 4 revealed a 491 amino acid protein of 56 kDa. Using the cDNA Conclusion ...................................................................................................7 sequence encoding the bovine H1 receptor, the cDNA sequences 3,7 8,9 10,11 References ..................................................................................................8 and intronless genes encoding the rat, guinea-pig, human and mouse12 H receptor proteins were cloned soon thereafter. Histamine Receptor Compounds .............................................................9 1 tocris.com | 1 Tocris Scientific Review Series These receptor proteins are slightly different in length, highly binding site elucidation18), biophysical approaches (such as solid- homologous and do not show major pharmacological differences. state NMR19) and investigations towards the general activation Analysis of the 5′-flanking region of the human, rat and guinea- mechanisms of GPCRs.20,21 pig gene7,8,10 resulted in the identification of several DNA-binding motifs, including potential glucocorticoid responsive elements. Ligands for H1 Receptors The human H receptor gene resides on chromosome 3.13 The H 1 1 Modification of the imidazole moiety of histamine has been the receptor belongs to the large family of GPCRs. The receptor is most successful approach for obtaining selective H agonists associated with the phospholipase C-catalysed formation of 1 (figure 1). The presence of the tautomeric Nπ-Nτ system of the inositol 1,4,5-triphosphate (IP ) and 1,2-diaylglycerol (DAG). 3 imidazole ring is not obligatory, as reflected by the selective H Histamine induces production of inositol phosphates in several 1 agonists 2-pyridylethylamine and 2-thiazolylethylamine. Substi- tissues (including brain, airway, intestinal and vascular smooth tution of the imidazole ring at the 2-position leads to relatively muscle24) via G protein activation.14 In other tissues, activation αq selective H agonists. For example, 2-(meta-halogenated) of H receptors can also stimulate adenylyl cyclase and formation 1 1 phenylhistamines are relatively potent H receptor agonists at of cAMP. Not all details of this signalling pathway are understood, 1 the guinea-pig ileum;22 however, these compounds act as partial for example questions remain about the G protein and the agonists in other systems.23 A wide array of potent and selective involvement of Ca2+.15 In any case, alternative signalling pathways H antagonists are available.4 Compounds such as mepyramine can be mediated by the histamine H receptor. Recent results 1 1 (also called pyrilamine) and triprolidine are highly potent H indicate that the functional heterogeneity can be ligand- 1 antagonists and very useful tools for pharmacological directed.16 investigations. [3H]-mepyramine is, for example, successfully used as an H receptor radioligand.24 These so-called classical The histamine H1 receptor is a well established drug target and 1 ‘antihistamines’ easily penetrate the brain and are therefore also has been thoroughly studied for decades. Nevertheless, H1 receptor research continues to flourish as many new techniques useful in in vivo CNS studies.2 Elimination of the blood-brain- and approaches are being developed by using this receptor as an barrier passage by some minor structural modifications has archetypal GPCR target. Most notably, in the last few years, the resulted in many new, non-sedating H1 antagonists (e.g., cetirizine, astemizole, fexofenadine and loratidine).4 histamine H1 receptor has been the subject of various molecular biology studies (e.g., large-scale overproduction17 and GPCR Figure 1 | Chemical structures of selected H receptor ligands 1 H N NH N NH2 N 2 HN Br N NH S N 2 NH2 Histamine 2-Pyridylethylamine 2-Thiazolylethylamine 2-(3-Bromophenyl) (endogenous ligand) histamine N Cl O CO2H N H MeO N NMe2 N N N Me Mepyramine Triprolidine Cetirizine H Cl N N CO H N 2 N N OH O N N O OEt F HO Astemizole Loratidine Fexofenadine (Bold text denotes compounds available from Tocris at time of publication.) 2 | tocris.com Histamine Receptors Figure 2 | Chemical structures of selected H2 receptor ligands Me NH N N S N N N HN H H H H2N N S NH2 Dimaprit Amthamine Impromidine H H H H N N N O N N S Me S N N N NC NO2 H Me Cimetidine Ranitidine NH2 NH2 H H S N N N N S S Me H2N N SO2NH2 N N H2N N N N S NC S N O H2N H Tiotidine Famotidine Zolantidine (Bold text denotes compounds available from Tocris at time of publication.) 38,39 was observed. Moreover, in CHO cells expressing the rat H2 The Histamine H2 Receptor receptor, activation of the H2 receptor resulted in an inhibition of The observation that the classical ‘antihistamines’ (i.e. H1 the release of arachidonic acid induced by either constitutive receptor inverse agonists) cannot antagonise all histamine- purinergic receptors or a Ca2+-ionophore,36 as well as an increase induced effects (e.g. at the stomach and the heart), led Ash and in cAMP. These new signal transduction pathways are both Schild in 1966 to propose two distinct subtypes of histamine regulated via unknown, cAMP-independent pathways. 25 receptors: H1 and H2. This hypothesis became generally
Recommended publications
  • Histamine Receptors
    Tocris Scientific Review Series Tocri-lu-2945 Histamine Receptors Iwan de Esch and Rob Leurs Introduction Leiden/Amsterdam Center for Drug Research (LACDR), Division Histamine is one of the aminergic neurotransmitters and plays of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit an important role in the regulation of several (patho)physiological Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The processes. In the mammalian brain histamine is synthesised in Netherlands restricted populations of neurons that are located in the tuberomammillary nucleus of the posterior hypothalamus.1 Dr. Iwan de Esch is an assistant professor and Prof. Rob Leurs is These neurons project diffusely to most cerebral areas and have full professor and head of the Division of Medicinal Chemistry of been implicated in several brain functions (e.g. sleep/ the Leiden/Amsterdam Center of Drug Research (LACDR), VU wakefulness, hormonal secretion, cardiovascular control, University Amsterdam, The Netherlands. Since the seventies, thermoregulation, food intake, and memory formation).2 In histamine receptor research has been one of the traditional peripheral tissues, histamine is stored in mast cells, eosinophils, themes of the division. Molecular understanding of ligand- basophils, enterochromaffin cells and probably also in some receptor interaction is obtained by combining pharmacology specific neurons. Mast cell histamine plays an important role in (signal transduction, proliferation), molecular biology, receptor the pathogenesis of various allergic conditions. After mast cell modelling and the synthesis and identification of new ligands. degranulation, release of histamine leads to various well-known symptoms of allergic conditions in the skin and the airway system. In 1937, Bovet and Staub discovered compounds that antagonise the effect of histamine on these allergic reactions.3 Ever since, there has been intense research devoted towards finding novel ligands with (anti-) histaminergic activity.
    [Show full text]
  • BRS Pharmacology
    Pharmacology Gary C. Rosenfeld, Ph.D. Professor Department of Integrated Biology and Pharmacology and Graduate School of Biomedical Sciences Assistant Dean for Education Programs University of Texas Medical School at Houston Houston, Texas David S. Loose, Ph.D. Associate Professor Department of Integrated Biology and Pharmacology and Graduate School of Biomedical Sciences University of Texas Medical School at Houston Houston, Texas With special contributions by Medina Kushen, M.D. William Beaumont Hospital Royal Oak, Michigan Todd A. Swanson, M.D., Ph.D. William Beaumont Hospital Royal Oak, Michigan Acquisitions Editor: Charles W. Mitchell Product Manager: Stacey L. Sebring Marketing Manager: Jennifer Kuklinski Production Editor: Paula Williams Copyright C 2010 Lippincott Williams & Wilkins 351 West Camden Street Baltimore, Maryland 21201-2436 USA 530 Walnut Street Philadelphia, PA 19106 All rights reserved. This book is protected by copyright. No part of this book may be reproduced in any form or by any means, including photocopying, or utilized by any information storage and retrieval system without written permission from the copyright owner. The publisher is not responsible (as a matter of product liability, negligence or otherwise) for any injury resulting from any material contained herein. This publication contains information relating to general principles of medical care which should not be construed as specific instructions for individual patients. Manufacturers’ product information and package inserts should be reviewed for current information, including contraindications, dosages and precautions. Printed in the United States of America Library of Congress Cataloging-in-Publication Data Rosenfeld, Gary C. Pharmacology / Gary C. Rosenfeld, David S. Loose ; with special contributions by Medina Kushen, Todd A.
    [Show full text]
  • Untersuchungen Zur Transmission Des Über Den Histamin-4-Rezeptor Induzierten Juckreizsignals
    Tierärztliche Hochschule Hannover Untersuchungen zur Transmission des über den Histamin-4-Rezeptor induzierten Juckreizsignals INAUGURAL - DISSERTATION zur Erlangung des Grades einer Doktorin der Veterinärmedizin - Doctor medicinae veterinariae - (Dr. med. vet.) vorgelegt von Jenny Wilzopolski Brunsbüttel Hannover 2017 Wissenschaftliche Betreuung: Prof. Dr. med. vet. Manfred Kietzmann Institut für Pharmakologie, Toxikologie und Pharmazie 1. Gutachter: Prof. Dr. med. vet. Manfred Kietzmann 2. Gutachter: Prof. Dr. med. vet. Reinhard Mischke Tag der mündlichen Prüfung: 06.11.2017 Die Arbeit wurde gefördert durch die Deutsche Forschungsgemeinschaft. I "Leicht ist das Leben für keinen von uns. Doch was nützt das, man muß Ausdauer haben und Zutrauen zu sich selbst. Man muß daran glauben, für eine bestimmte Sache begabt zu sein, und diese Sache muß man erreichen, koste es was es wolle." -Marie Curie- Für meine Familie II III Inhaltsverzeichnis Inhaltsverzeichnis Inhaltsverzeichnis ...................................................................................................................... iv Abbildungsverzeichnis ............................................................................................................ viii Tabellenverzeichnis .................................................................................................................... x Abkürzungsverzeichnis ............................................................................................................ xii 1. Einleitung .............................................................................................................................
    [Show full text]
  • G Protein-Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading.
    [Show full text]
  • G Protein‐Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: G protein-coupled receptors. British Journal of Pharmacology (2019) 176, S21–S141 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein-coupled receptors Stephen PH Alexander1 , Arthur Christopoulos2 , Anthony P Davenport3 , Eamonn Kelly4, Alistair Mathie5 , John A Peters6 , Emma L Veale5 ,JaneFArmstrong7 , Elena Faccenda7 ,SimonDHarding7 ,AdamJPawson7 , Joanna L Sharman7 , Christopher Southan7 , Jamie A Davies7 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia 3Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK 4School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 5Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 6Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 7Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website.
    [Show full text]
  • International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors
    1521-0081/67/3/601–655$25.00 http://dx.doi.org/10.1124/pr.114.010249 PHARMACOLOGICAL REVIEWS Pharmacol Rev 67:601–655, July 2015 Copyright © 2015 by The American Society for Pharmacology and Experimental Therapeutics ASSOCIATE EDITOR: ELIOT H. OHLSTEIN International Union of Basic and Clinical Pharmacology. XCVIII. Histamine Receptors Pertti Panula, Paul L. Chazot, Marlon Cowart, Ralf Gutzmer, Rob Leurs, Wai L. S. Liu, Holger Stark, Robin L. Thurmond, and Helmut L. Haas Department of Anatomy, and Neuroscience Center, University of Helsinki, Finland (P.P.); School of Biological and Biomedical Sciences, University of Durham, United Kingdom (P.L.C.); AbbVie, Inc. North Chicago, Illinois (M.C.); Department of Dermatology and Allergy, Hannover Medical School, Hannover, Germany (R.G.); Department of Medicinal Chemistry, Amsterdam Institute of Molecules, Medicines and Systems, VU University Amsterdam, The Netherlands (R.L.); Ziarco Pharma Limited, Canterbury, United Kingdom (W.L.S.L.); Institute of Pharmaceutical and Medical Chemistry (H.S.) and Institute of Neurophysiology, Medical Faculty (H.L.H.), Heinrich-Heine-University Duesseldorf, Germany; and Janssen Research & Development, LLC, San Diego, California (R.L.T.) Abstract ....................................................................................602 Downloaded from I. Introduction and Historical Perspective .....................................................602 II. Histamine H1 Receptor . ..................................................................604 A. Receptor Structure
    [Show full text]
  • Histamine Receptors Histamine on the Role of Histamine in Allergic Diseases
    Histamine Receptors Iwan de Esch and Rob Leurs Leiden/Amsterdam Center for Drug Research (LACDR), Division of Medicinal Chemistry, Faculty of Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1083, 1081 HV, Amsterdam, The Netherlands Dr. Iwan de Esch is an assistant professor and Prof. Rob Leurs is full professor and head of the Division of Medicinal Chemistry of the Leiden/Amsterdam Center of Drug Research (LACDR), VU University Amsterdam, The Netherlands. Since the seventies, histamine receptor research has been one of the traditional themes of the division. Molecular understanding of ligand-receptor interaction is obtained by combining pharmacology (signal transduction, proliferation), molecular biology, receptor modelling and the synthesis and identification of new ligands. Introduction which were useful in inhibiting pronounced symptoms 4 Histamine is one of the aminergic neurotransmitters of allergic conditions. However, the first generation and plays an important role in the regulation of H1 receptor antagonists that were developed for of several (patho)physiological processes. In treating allergies revealed distinct side effects such the mammalian brain histamine is synthesised as sedation. This particular physiological effect of the ligands was eliminated by structural modifications DRIVING RESEARCH FURTHER in restricted populations of neurons that are DRIVING RESEARCH FURTHER located in the tuberomammillary nucleus of the that prevent blood-brain-barrier penetration of the posterior hypothalamus.1 These neurons project drugs. The first generation as well as the more diffusely to most cerebral areas and have been recently developed antihistamines (originally termed 5 implicated in several brain functions (e.g. sleep/ antagonists but later reclassified as inverse agonists ) wakefulness, hormonal secretion, cardiovascular are clinically very successful and are widely available control, thermoregulation, food intake, and memory drugs.
    [Show full text]
  • The Histamine H3 Receptor: Structure, Pharmacology and Function
    Molecular Pharmacology Fast Forward. Published on August 25, 2016 as DOI: 10.1124/mol.116.104752 This article has not been copyedited and formatted. The final version may differ from this version. MOL #104752 The histamine H3 receptor: structure, pharmacology and function Gustavo Nieto-Alamilla, Ricardo Márquez-Gómez, Ana-Maricela García-Gálvez, Guadalupe-Elide Morales-Figueroa and José-Antonio Arias-Montaño Downloaded from Departamento de Fisiología, Biofísica y Neurociencias, molpharm.aspetjournals.org Centro de Investigación y de Estudios Avanzados (Cinvestav-IPN), Av. IPN 2508, Zacatenco, 07360 México, D.F., México at ASPET Journals on September 29, 2021 Running title: The histamine H3 receptor Correspondence to: Dr. José-Antonio Arias-Montaño Departamento de Fisiología, Biofísica y Neurociencias Cinvestav-IPN Av. IPN 2508, Zacatenco 07360 México, D.F., México. Tel. (+5255) 5747 3964 Fax. (+5255) 5747 3754 Email [email protected] 1 Molecular Pharmacology Fast Forward. Published on August 25, 2016 as DOI: 10.1124/mol.116.104752 This article has not been copyedited and formatted. The final version may differ from this version. MOL #104752 Text pages 66 Number of tables 3 Figures 7 References 256 Words in abstract 168 Downloaded from Words in introduction 141 Words in main text 9494 molpharm.aspetjournals.org at ASPET Journals on September 29, 2021 2 Molecular Pharmacology Fast Forward. Published on August 25, 2016 as DOI: 10.1124/mol.116.104752 This article has not been copyedited and formatted. The final version may differ
    [Show full text]
  • 2 12/ 35 74Al
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date 22 March 2012 (22.03.2012) 2 12/ 35 74 Al (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 9/16 (2006.01) A61K 9/51 (2006.01) kind of national protection available): AE, AG, AL, AM, A61K 9/14 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/EP201 1/065959 HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, (22) International Filing Date: KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, 14 September 201 1 (14.09.201 1) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, (25) Filing Language: English RW, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, (26) Publication Language: English TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 61/382,653 14 September 2010 (14.09.2010) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant (for all designated States except US): GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, NANOLOGICA AB [SE/SE]; P.O Box 8182, S-104 20 ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, Stockholm (SE).
    [Show full text]
  • Proteostasis of Glial Intermediate Filaments: Disease Models, Tools, and Mechanisms
    PROTEOSTASIS OF GLIAL INTERMEDIATE FILAMENTS: DISEASE MODELS, TOOLS, AND MECHANISMS Rachel Anne Battaglia A dissertation submitted to the faculty at the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Cell Biology and Physiology in the School of Medicine. Chapel Hill 2021 Approved by: Natasha T. Snider Carol Otey Keith Burridge Douglas Cyr Mohanish Deshmukh Damaris Lorenzo i © 2021 Rachel Anne Battaglia ALL RIGHTS RESERVED ii ABSTRACT Rachel Anne Battaglia: Proteostasis of Glial Intermediate Filaments: Disease Models, Tools, and Mechanisms (Under the direction of Natasha T. Snider) Astrocytes are a major glial cell type that is crucial for the health and maintenance of the Central Nervous System (CNS). They fulfill diverse functions, including synapse formation, neurogenesis, ion homeostasis, and blood brain barrier formation. Intermediate filaments (IFs) are components of the astrocyte cytoskeleton that support many of these functions in healthy individuals. However, upon cellular stress or genetic mutations, IF proteins are prone to accumulation and aggregation. These processes are thought to contribute to disease pathogenesis of different tissue-specific disorders, but therapeutic targeting of IFs is hindered by a lack of pharmacological tools to modulate their assembly and disassembly states. Moreover, the mechanisms that govern the formation and dissolution of IF aggregates are poorly defined. In this dissertation, I investigate IF aggregates called Rosenthal fibers (RFs), which form in astrocytes of patients with two pediatric neurodegenerative diseases, Alexander disease (AxD) and Giant Axonal Neuropathy (GAN). My aim was to gain a better understanding of the mechanisms of how astrocyte IF protein aggregates form and interrogate the role of post- translational modifications (PTMs) in this process.
    [Show full text]
  • Programme and Abstracts Book
    0 33. Annual Meeting European Histamine Research Society 28. April – 2. May 2004 Düsseldorf / Köln, Germany 1 Dear Histaminologists 28. April 2004 Welcome to the 33rd Annual Meeting of the European Histamine Research Society at the Kardinal Schulte Haus near Cologne. Many of you have seen Cologne at the occasion of the 1993 meeting. The host institution is now located 30 km to the north: Department of Neurophysiology, Heinrich-Heine-University, Düsseldorf. Heinrich Heine, the patron of our University and one of our major poets, was born in Düsseldorf in 1797, he died in Paris in 1856. He wrote romantic poems often with a unique and unusual ironic or disillusioning twist at the end. He was the founder of the modern feuilleton and wrote a bit caustic about his birthplace. Nevertheless, Düsseldorf is worth a visit, there is interesting recent architecture (e.g. O’Gehry) a fine art collection (20th century) and a jewel in the south: Benrath castle and park (1777). We meet at the south end of “Bergisches Land” that we will explore during our excursion. The chemical industry founded by Bayer and Leverkus is around us: Leverkusen and Wuppertal. Düsseldorf is a village (1/2 Mio inhabitants) located at the mouth of the river Düssel into the Rhine. A formerly romantic part of the Düssel-valley has been praised by the 17th century pastor Neander and is consequently called the Neanderthal, the valley where the first bones of the Neandertal-man were found in 1856. Schloss Burg is a mediaeval castle, its 12th century appearance has been restored and a museum recalls the long bygone times.
    [Show full text]
  • Molecular Tools for G-Protein Coupled Receptors: Synthesis
    Molecular Tools for G-Protein Coupled Receptors: Synthesis, Pharmacological Characterization and [3H]-Labeling of Subtype-selective Ligands for Histamine H4 and NPY Y2 Receptors Dissertation zur Erlangung des Doktorgrades der Naturwissenschaften (Dr. rer. nat.) an der Fakultät für Chemie und Pharmazie der Universität Regensburg vorgelegt von Paul Baumeister aus Zinzenzell 2014 Die vorliegende Arbeit entstand in der Zeit von April 2010 bis April 2014 unter der Anleitung von Herrn Prof. Dr. Armin Buschauer am Institut für Pharmazie der Naturwissenschaftlichen Fakultät IV – Chemie und Pharmazie – der Universität Regensburg. Das Promotionsgesuch wurde eingereicht im Juni 2014. Tag der mündlichen Prüfung: 18.07.2014 Prüfungsausschuss: Prof. Dr. J. Heilmann (Vorsitzender) Prof. Dr. A. Buschauer (Erstgutachter) Prof. Dr. S. Elz (Zweitgutachter) Prof. Dr. J. Wegener (Drittprüfer) „If you don’t turn your life into a story, you just become a part of someone else’s story.“ Terry Pratchett I Danksagung An dieser Stelle möchte mich ganz herzlich bei allen bedanken, die zum Gelingen dieser Arbeit beigetragen haben und mich während der Promotionszeit begleitet haben. Besonders möchte ich danken: Meinem Doktorvater Herrn Prof. Dr. Armin Buschauer für das Vertrauen und die Möglichkeit dieses interessante und herausfordernde Projekt zu verwirklichen, seine wissenschaftlichen Anregungen, für die mir gewährte forscherische Freiheit, seine konstruktive Kritik bei der Durchsicht der Arbeit, sein stets offenes Ohr, sowie die Mentorenschaft in der Emil-Fischer-Graduiertenschule; Herrn Prof. Dr. Günther Bernhardt für seine stete Hilfsbereitschaft und sein Interesse am Fortschritt der Arbeit, sein Fachwissen, die Durchsicht der Arbeit, die Co-Mentorenschaft in der Emil-Fischer- Graduiertenschule, sowie für hervorragenden Sommerfeste; Herrn Prof. Dr.
    [Show full text]