World's Cities at a Glance

Total Page:16

File Type:pdf, Size:1020Kb

World's Cities at a Glance Notes World’s Cities at a Glance 1. United Nations (UN), “Urban Population at Mid-Year by Major Area, Region and Country, 1950-2050,” World Urbanization Prospects: 2014 Revision (New York: 2014). 2. UN, “Percentage of Population at Mid-Year Residing in Urban Areas by Major Area, Region and Country, 1950–2050,” World Urbanization Prospects: 2014 Revision. 3. UN, “Average Annual Rate of Change of the Urban Population, by Major Area, Region, and Country, 1950– 2050,” World Urbanization Prospects: 2014 Revision. 4. UN, “Number of Cities Classified by Size Class of Urban Settlement, Major Area, Region and Country, 1950– 2030,” World Urbanization Prospects, 2014 Revision. 5. Stefan Bringezu, Assessing Global Land Use: Balancing Consumption with Sustainable Supply, A Report of the Working Group on Land and Soils of the International Resource Panel (Paris: UN Environment Programme (UNEP), Division of Technology, Industry and Economics (DTIE), 2014). 6. Karen C. Seto et al., “A Meta-Analysis of Global Urban Land Expansion,” PLoS ONE 6, no. 8 (2011); Bringezu, Assessing Global Land Use; Joan Clos, “Foreword,” in Mark Swilling et al., City-Level Decoupling: Urban Resource Flows and the Governance of Infrastructure Transitions, A Report of the Working Group on Cities of the Interna- tional Resource Panel (Paris: UNEP, 2013). 7. Richard Dobbs et al., Urban World: Mapping the Economic Power of Cities (New York: McKinsey Global Insti- tute, March 2011). 8. Richard Dobbs et al., Urban World: Cities and the Rise of the Consuming Class (New York: McKinsey Global Institute, 2012). 9. Swilling et al., City-Level Decoupling; UN-Habitat, State of the World’s Cities Report 2010/2011 (Nairobi: 2010). GNP is an economic statistic that is equal to GDP plus any income earned by residents from overseas investments minus income earned within the domestic economy by overseas residents. 10. Achim Steiner, “Foreword,” in Swilling et al., City-Level Decoupling. 11. Swilling et al., City-Level Decoupling. 12. Dobbs et al., Urban World: Cities and the Rise of the Consuming Class. 13. Christopher A. Kennedy et al., “Energy and Material Flows of Megacities,” Proceedings of the National Academy of Sciences 112, no. 19 (2015): 5,985–90; UN, “Toward Sustainable Cities,” Chapter 3 in World Economic and Social Survey 2013 (New York: 2013). 14. Ibid.; UN-Habitat, Streets as Public Spaces and Drivers of Urban Prosperity (Nairobi: 2013). 355 Worldwatch Institute, State of the World : Can a City Be Sustainable?, DOI 10.5822/ 978-1-61091-756-8, © 2016 by Worldwatch Institute. 356 Notes 15. UN, “Toward Sustainable Cities”; World Health Organization (WHO), Why Urban Health Matters (Geneva: 2010). 16. WHO, “7 Million Premature Deaths Annually Linked to Air Pollution,” press release (Geneva: March 25, 2014); WHO, “Household Air Pollution and Health,” fact sheet no. 292 (Geneva: March 2014). Chapter 1. Imagining a Sustainable City 2. Deep Decarbonization Pathways Project, Pathways to Deep Decarbonization: 2015 Report (Paris: Sustainable Development Solutions Network and Institute for Sustainable Development and International Relations, December 2015); Jörgen Larsson and Lisa Bolin, Low-carbon Gothenburg 2.0: Technological Potentials and Lifestyle Changes (Gothenburg, Sweden: Mistra Urban Futures, 2014); Jennie Moore and William E. Rees, “Getting to One-Planet Living,” in Worldwatch Institute, State of the World 2013: Is Sustainability Still Possible? (Washington, DC: Island Press, 2013). Chapter 2. Cities in the Arc of Human History: A Materials Perspective 1. This rough estimate reflects vagueness regarding the transition from villages to cities and the gradual pace of the spread of cities. Jericho, for example, is estimated to be 11,000 years old, while cities in Mesopotamia are esti- mated to have arisen around 7,500 years ago. Thus, 10,000 years is a rough, rounded approximation for the original rise of cities. The figure of 12,000 is from Helmut Haberl et al., “A Socio-Metabolic Transition Toward Sustainabil- ity? Challenges for Another Great Transformation,“ Sustainable Development 19, no. 1 (2011): 1–14. 2. Mark Swilling et al., City-Level Decoupling. Urban Resource Flows and the Governance of Infrastructure Transi- tions A Report of the Working Group on Cities of the International Resource Panel (Paris: United Nations Envi- ronment Programme, 2013); Haberl et al., “A Socio-Metabolic Transition Toward Sustainability?” 3. Leslie White, The Science of Culture: A Study of Man and Civilization (Clinton Corners, NY: Percheron Press, 2005). 4. Rolf Peter Sieferle, “Sustainability in a World History Perspective,” in Brigitta Benzing and Bernd Herrmann, eds., Exploitation and Overexploitation in Societies Past and Present. IUAES-Intercongress 2001 Goettingen (Mün- ster, Germany: LIT Publishing House, 2000), 123–42. Box 2–1 from Marina Fischer-Kowalski, Fridolin Kraus- mann, and Irene Pailua, “A Sociometabolic Reading of the Anthropocene: Modes of Subsistence, Population Size and Human Impact on Earth,” The Anthropocene Review 1, no. 1 (2014): 8–13. Figure 2–1 from Sieferle, “Sustain- ability in a World History Perspective.” 5. Two to four times from Fischer-Kowalski, Krausmann, and Pailua, “A Sociometabolic Reading of the Anthro- pocene”; 0.01 percent from Marina Fischer-Kowalski and Helmut Haberl, Socioecological Transitions and Global Change: Trajectories of Social Metabolism and Land Use (Cheltenham, U.K.: Edward Elgar, 2007); passive solar existence from Rolf Peter Sieferle, The Subterranean Forest: Energy Systems and the Industrial Revolution, translated from the German by Michael P. Osman (Cambridge, U.K.: White Horse Press, 2001); Haberl et al., “A Socio-­ Metabolic Transition Toward Sustainability?” 6. Richard Wrangham, Catching Fire: How Cooking Made Us Human (New York: Basic Books, 2009); Lewis Mum- ford, The City in History: Its Origins, Its Transformations, and Its Prospects (New York: Harcourt, Brace, and World, 1961), 10. 7. Box 2–2 from the following sources: Tim de Chant, “Hunter-Gatherers Show Human Populations Are Hard- Wired for Density,” Scientific American blog, August 16, 2011; Marcus J. Hamilton et al., “Nonlinear Scaling of Space Use in Human Hunter-gatherers,” Proceedings of the National Academy of Sciences 104, vol. 11 (2007): 4,765– 69; Michael Batty and Peter Ferguson, “Defining City Size,” Environment and Planning B: Planning and Design 38, no. 5 (2011): 753–56. Notes | 357 8. Sieferle, The Subterranean Forest; Mumford, The City in History. 9. Haberl et al., “A Socio-Metabolic Transition Toward Sustainability?” 10. Fischer-Kowalski, Krausmann, and Pailua, “A Sociometabolic Reading of the Anthropocene”; Table 2–1 from Haberl et al., “A Socio-Metabolic Transition Toward Sustainability?” 11. Vaclav Smil, Energy in Nature and Society. General Energetics of Complex Systems (Cambridge, MA: MIT Press, 2008); Fridolin Krausmann et al., “The Global Sociometabolic Transition: Past and Present Metabolic Profiles and Their Future Trajectories,” Journal of Industrial Ecology 12, no. 5–6 (2008): 637–56. 12. Figure 2–2 from Kees Klein Goldewijk, Arthur Beusen, and Peter Janssen, “Long-term Dynamic Modeling of Global Population and Built-up Area in a Spatially Explicit Way: HYDE 3.1,” The Holocene 20, no. 4 (2010): 565–73; data available at ftp://ftp.pbl.nl/hyde/supplementary/population/table_4.xls; 2050 projection from United Nations, World Population Prospects (New York: 2015). 13. Mumford, The City in History, 37. 14. Table 2–2 from Ian Morris, Social Development (Palo Alto, CA: Stanford University, October 2010). 15. Mumford, The City in History, 33. 16. Ibid., 34. 17. Thorkild Jacobsen and Robert M. Adams, “Salt and Silt in Ancient Mesopotamian Agriculture,” Science 128, no. 3334 (1958): 1,251–58; Haberl et al., “A Socio-Metabolic Transition Toward Sustainability?” 18. Krausmann et al., “The Global Sociometabolic Transition.” 19. Marina Fischer-Kowalski, Fridolin Krausmann, and Barbara Smetschka, “Modelling Transport as a Key Con- straint to Urbanisation in Pre-industrial Societies,” in Simron Singh et al., Long Term Socio-Ecological Research: Studies in Society-Nature Interactions Across Spatial and Temporal Scales (New York: Springer, 2014); Krausmann et al., “The Global Sociometabolic Transition.” 20. Table 2–3 from Morris, Social Development; Krausmann et al., “The Global Sociometabolic Transition.” 21. Krausmann et al., “The Global Sociometabolic Transition.” 22. Mumford, The City in History, 359. 23. Ibid., 408. 24. “Subway,” Encyclopedia Britannica, www.britannica.com/technology/subway, updated March 13, 2015; “Sky- scraper,” Encyclopedia Britannica, www.britannica.com/technology/skyscraper, updated April 22, 2015. 25. Krausmann et al., “The Global Sociometabolic Transition.” 26. Fridolin Krausmann et al., “Growth in Global Materials Use, GDP and Population During the 20th Century,” Ecological Economics 68, no. 10 (2009): 2,696–2,705. Table 2–4 from Haberl et al., “A Socio-Metabolic Transition Toward Sustainability?” 27. Krausmann et al., “The Global Sociometabolic Transition.” 28. Figure 2–3 from Tertius Chandler, Four Thousand Years of Urban Growth: An Historical Census (Lewiston, NY: Saint David’s University Press, 1987). 29. Krausmann et al., “The Global Sociometabolic Transition.” 30. Fischer-Kowalski, Krausmann, and Pailua, “A Sociometabolic Reading of the Anthropocene”; Peter Victor, “Questioning Economic Growth,” Nature 468 (November 18, 2010): 370–71. 358 Notes 31. Table 2–5 from Fischer-Kowalski, Krausmann, and Pailua, “A Sociometabolic
Recommended publications
  • PÁTEŘNÍ MĚSTSKÉ DRÁHY VE STŘEDNÍ EVROPĚ Diplomová Práce Ondřej Macík
    MASARYKOVA UNIVERZITA Přírodovědecká fakulta Geografický ústav DIPLOMOVÁ PRÁCE Brno 2017 Ondřej Macík MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA GEOGRAFICKÝ ÚSTAV PÁTEŘNÍ MĚSTSKÉ DRÁHY VE STŘEDNÍ EVROPĚ Diplomová práce Ondřej Macík Vedoucí práce: Mgr. Daniel Seidenglanz, Ph.D. Brno 2017 Bibliografický záznam Autor: Bc. Ondřej Macík Přírodovědecká fakulta, Masarykova univerzita Geografický ústav Název práce: Páteřní městské dráhy ve střední Evropě Studijní program: Geografie a kartografie Studijní obor: Sociální Geografie a Regionální Rozvoj Vedoucí práce: Mgr. Daniel Seidenglanz, Ph.D. Akademický rok: 2017/2018 Počet stran: 96+14 Klíčová slova: Městská hromadná doprava, metro, urbánní železnice, teorie grafů, konektivita, střední Evropa Bibliographic Entry Author: Bc. Ondřej Macík Faculty of Science, Masaryk University Department of Geography Title of Thesis: Spine urban railways in central Europe Degree programme: Geography and Cartography Field of Study: Social Geography and Regional Development Supervisor: Mgr. Daniel Seidenglanz, Ph.D. Academic Year: 2017/2018 Number of Pages: 96+14 Key words: Public transport, metro, underground, subway, urban railway, graph theory, connectivity, central Europe Abstrakt Diplomová práce se zabývá městskou železniční dopravou ve vybraných metropolích střední Evropy. Hlavním záměrem je určení charakteristik stavu, formy a struktury páteřních městských železničních sítí pomocí teorie grafů. Dále jsou zkoumány dopady sítí metra na sítě tramvajové. Vysoce individuální výsledky jsou konfrontovány s historickým vývojem a městským prostředím, ve kterém dané sítě operují. V teoretické části je věnován prostor množství témat, která pomáhají pochopit šíři problematiky urbánních železničních systémů. Mezi ty patří například popis výhod tohoto typu přepravy, vliv sítí na své okolí, popis trendů vývoje atd. Abstract The diploma thesis deals with urban railway transport in selected metropolises of central Europe.
    [Show full text]
  • Transport Mobility of Russian Super-Large Cities
    E3S Web of Conferences 274, 13006 (2021) https://doi.org/10.1051/e3sconf/202127413006 STCCE – 2021 Transport mobility of Russian super-large cities Ramil Zagidullin1, and Rumiya Mukhametshina1[0000-0002-1215-263x] 1Kazan State University of Architecture and Engineering, 420043 Kazan, Russia Abstract. The relevance of the issue under study stems from the lack of a method and indicators for determining the population’s level of transport mobility. The purpose of the article is to develop a method for assessing the level of transport mobility. The analysis of studies on the quality of transport services has shown lack of attention to mobility as a public transport service for the public. There are currently no science-based criteria for assessing the mobility level of convenience for passengers who use various modes of public transport for their trips. The use of a transport mobility index will improve both the quality of passenger transport and the overall level of transport services. The developed method for assessing the level of transport mobility will allow researchers to look into the dynamics of the indicators and plan improvements to transport service quality. The presence of a well- developed metro network (more than one line) in cities provides a transport mobility index above 0.5, according to the study of Russia’s largest cities’ transport mobility index. Following the example of Rostov-on-Don, which has the smallest area of the cities under study, a high transport mobility index of 0.6 can be achieved through optimal organization of public transport within the city and without a metro network.
    [Show full text]
  • Cartographies of Disappearance: Thresholds in Barcelona's Metro
    Cartographies of disappearance: Thresholds in Barcelona’s metro Enric Bou, Università Ca’ Foscari Venezia Abstract This article proposes an analysis of Barcelona’s metro system following David Pike’s threshold concept, key to the topography of the ‘vertical city’. This will be done through reading maps and literary texts that illustrate three closely related issues: an interpretation of Barcelona’s metro network and its meanings; the disappearance of some metro stations and underground spaces, such as hidden connecting corridors, which create a shallow presence of the past into the present, examples of urban spaces that are buried and forgotten; and subway life as portrayed in some literary texts with particular emphasis on the use of mythology. Keywords metro systems urban literature everyday life disappearance ghost stations maps Barcelona In June 2013, I visited – with my son – the exhibition celebrating the 150th anniversary of the Tren de Sarrià (Sarrià Train), formerly known as Els Ferrocarrils Catalans (Catalan Railways). The exhibit took place at the site of a former cinema called Avenida de la Luz (Avenue of Light). Since 1979, the railway has become a public-owned company, and it is now called, less compromisingly, FGC: Ferrocarrils de la Generalitat de Catalunya (Generalitat of Catalonia Railways) (fgc150 2013). I was unpleasantly surprised by the self-celebratory nature of the exhibition and how little attention was given to a critical reading of the past. Trying to explain the meaning of FGC to my son, immediately a variety of texts came to mind that provided a different version of Barcelona’s metro. I also thought of all those hidden underground empty spaces, or those redesigned for a new use, that populate our cities.
    [Show full text]
  • Traction Systems,General Power Supply Arrangements and Energy
    GOVERNMENT OF INDIA MINISTRY OF URBAN DEVELOPMENT REPORT OF THE SUB-COMMITTEE ON TRACTION SYSTEMS, GENERAL POWER SUPPLY ARRANGEMENTS AND ENERGY EFFICIENT SYSTEMS FOR METRO RAILWAYS NOVEMBER 2013 Sub-Committee on Traction System, Power Supply & Energy Efficiency Ministry of Urban Development Final Report Preface 1. Urban centres have been the dynamos of growth in India. This has placed severe stress on the cities and concomitant pressure on its transit systems. A meaningful and sustainable mass transit system is vital sinew of urbanisation. With success of Delhi’s Metro System, government is encouraging cities with population more than 2 milion to have Metro systems. Bangalore, Chennai, Kolkata, Hyderabad are being joined by smaller cities like Jaipur, Kochi and Gurgaon. It is expected that by end of the Twelfth Five Year Plan India will have more than 400 km of operational metro rail (up from present 223 km). The National Manufacturing Competitiveness Council (NMCC) has been set up by the Government to provide a continuing forum for policy dialogue to energise and sustain the growth of manufacturing industries in India. A meeting was organized by NMCC on May 03, 2012 and one of the agenda items in that meeting was “Promotion of Manufacturing for Metro System in India as well as formation of Standards for the same”. In view of the NMCC meeting and heavy investments planned in metro systems, thereafter, Ministry of Urban Development (MOUD) have taken the initiative to form a committee for “Standardization and Indigenization of Metro Rail Systems” in May 2012. The Committee had a series of meetings in June-August 2012 and prepared a Base Paper.
    [Show full text]
  • Operational Definitions and Measurement Scales World Development Indicators
    Van der Meulen & Möller— Urban Guided Transit: Positioning rail and its rubber-tyred competitors Operational definitions and measurement scales World Development Indicators Agricultural land (% of land area) It is measurable on a ratio scale, operationally defined as: The share of land area that is arable, under permanent crops and under permanent pastures. Arable land includes land defined by the FAO as land under temporary crops (double- cropped areas are counted once), temporary meadows for mowing or for pasture, land under market or kitchen gardens, and land temporarily fallow. Land abandoned as a result of shifting cultivation is excluded. Land under permanent crops is land cultivated with crops that occupy the land for long periods and need not be replanted after each harvest, such as cocoa, coffee, and rubber. This category includes land under flowering shrubs, fruit trees, nut trees, and vines, but excludes land under trees grown for wood or timber. Permanent pasture is land used for five or more years for forage, including natural and cultivated crops. Source: http://devdata.worldbank.org Agriculture, value added (% of GDP) It is measurable on a ratio scale, operationally defined as: Forestry, hunting, and fishing, as well as cultivation of crops and livestock production. Value added is the net output of a sector after adding up all outputs and subtracting intermediate inputs. It is calculated without making deductions for depreciation of fabricated assets or depletion and degradation of natural resources. The origin of value added is determined by the International Standard Industrial Classification (ISIC), revision 3. Note: For VAB countries, gross value added at factor cost is used as the denominator.
    [Show full text]
  • How Ready Are Countries to Adopt? Llewellyn D
    Paper to be presented at the DRUID Society Conference 2014, CBS, Copenhagen, June 16-18 Digital Money: How Ready are Countries to Adopt? Llewellyn D. W. Thomas Imperial College London Imperial College Business School [email protected] Antoine Vernet Imperial College London Imperial College Business School [email protected] David M. Gann Imperial College London Imperial College Business School [email protected] Abstract Digital money has been claimed to have the potential to provide major economic and social benefits, however there is little research into the readiness of countries to adopt digital money. Defined as 'currency exchange by electronic means', we conceptualize digital money as a socio-technical system, and propose a Digital Money Readiness Index. This composite index integrates institutional, financial, technological, economic, industrial and social attributes to measure how ready a country is to adopt digital money. We first outline the digital money system, detailing its interdependent components. We then detail our index construction methodology, listing the indicators selected, and the techniques of normalization, dealing with outliers, weighting, the ranking calculation and clustering techniques. We identify four stages of readiness, Incipient, Emerging, In-Transition and Materially Ready, as well as analyze the relationship of digital money readiness to measures of cashlessness. We conclude with a discussion and future directions. Jelcodes:E40,- DIGITAL MONEY: HOW READY ARE COUNTRIES TO ADOPT? ABSTRACT Digital money has been claimed to have the potential to provide major economic and social benefits, however there is little research into the readiness of countries to adopt digital money. Defined as “currency exchange by electronic means”, we conceptualize digital money as a socio- technical system, and propose a Digital Money Readiness Index.
    [Show full text]
  • Mobility As a Life Quality Domain
    DOI 10.22394/1726-1139-2018-9-79-93 Mobility as a Life Quality Domain Vulfovich R. M. Russian Presidential Academy of National Economy and Public Administration (North-West Institute of Management of RANEPA), Saint-Petersburg, Russian Federation; [email protected] ABSTRACT The land areas covered by cities are growing rapidly in size in the 21st century, and huge urban РЕФОРМЫ И ОБЩЕСТВО agglomerations and megalopolises are becoming highly interconnected. Their functioning is impos- sible without rapid transportation modes providing the possibility to populations to move easily in the daily rhythms of life and commuting. This mobility has become an established “way of life,” growing hand in hand with increasing urbanism in the 20th century. As a consequence, mobility is now one of the most important subjects of research in a number of scientific disciplines. This article analyzes different approaches to the theoretical research of mobility systems and assesses their practical effectiveness and efficiency. The approaches are evaluated as possible development ideas for the very unstable and underdeveloped mobility system in St. Petersburg, the second-largest city in Russia. Among other data, use is made of analytical reports and documents from Russian research centers and the municipal authorities of St. Petersburg. The main research approach employs an analysis of comparative mobility systems, and it evaluates mobility as a crucial city life domain based on a mobility model developed by the author. The research results illustrate the character of the global mobility problem and the full inclusion of Russian cities into the modern context. They also provide a detailed picture of aspects of the problem which are relevant for St.
    [Show full text]
  • Development and Planning in Seven Major Coastal Cities in Southern and Eastern China Geojournal Library
    GeoJournal Library 120 Jianfa Shen Gordon Kee Development and Planning in Seven Major Coastal Cities in Southern and Eastern China GeoJournal Library Volume 120 Managing Editor Daniel Z. Sui, College Station, USA Founding Series Editor Wolf Tietze, Helmstedt, Germany Editorial Board Paul Claval, France Yehuda Gradus, Israel Sam Ock Park, South Korea Herman van der Wusten, The Netherlands More information about this series at http://www.springer.com/series/6007 Jianfa Shen • Gordon Kee Development and Planning in Seven Major Coastal Cities in Southern and Eastern China 123 Jianfa Shen Gordon Kee Department of Geography and Resource Hong Kong Institute of Asia-Pacific Studies Management The Chinese University of Hong Kong The Chinese University of Hong Kong Shatin, NT Shatin, NT Hong Kong Hong Kong ISSN 0924-5499 ISSN 2215-0072 (electronic) GeoJournal Library ISBN 978-3-319-46420-6 ISBN 978-3-319-46421-3 (eBook) DOI 10.1007/978-3-319-46421-3 Library of Congress Control Number: 2016952881 © Springer International Publishing AG 2017 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.
    [Show full text]
  • List of Metro Systems
    From Wikipedia, the free encyclopedia AA is a rapid transit train system. In some cases, metro systems are referred to as subways ,, U-Bahns or or undergrounds . As of April 2014, 168 metro systems in 55 countries are listed. The earliest metro system, the London Underground, first opened as an "underground railway" inin" 1863;[1][1] its first electrified underground line opened in 1890,[1][1] making the London Underground the world's first metro system.[2][2] 11 Considerations The Shanghai Metro. 22 Legend 33 List 4 Metro systems under construction 5 See also 6 Notes 7 References 7.1 Footnotes 7.2 Online resourceess 7.3 Bibliographyy 8 External links The New York City Subway. The International Association of Public Transport (L’Union Internationale des Transports Publics, or UITP) defines metro systems as urban passenger transport systems, "operated on their own right of way and segregated from general road and pedestrian traffic." [3][4] The terms Heavy rail (mainly in North America) and heavy urban rail are essentially synonymous with the term "metro".[5][6][7] Heavy rail systems are also specifically defined as an "electric railway".[5][6] The dividing line between metro and other modes of public transport, such as light rail [5][6] and commuter rail,[5][6] is not always clear, and while UITP only makes distinctions between "metros" and "light rail",[3][3] the U.S.'s APTA and FTA distinguish all three modes.[5][6] A common way to distinguish metro from light rail is by their separation from other traffic. While light rail systems may share roads or have level crossings, a metro system runs, almost always, on a grade-separated exclusive right-of- way, with no access for pedestrians and other traffic.
    [Show full text]
  • Planning Rapid Transit Networks
    Planning Rapid Transit Networks G. Laportea,∗, J.A. Mesab, F.A. Ortegac, F. Peread aCanada Research Chair in Distribution Management, HEC Montr´eal, 3000, chemin de la Cˆote-Sainte-Catherine, Montr´eal, Canada H3T 2A7 bDepartamento de Matem´atica Aplicada II, Escuela T´ecnica Superior de Ingenier´ıa, Universidad de Sevilla, Camino de los Descubrimientos s/n, 41092 Sevilla, Spain cDepartamento de Matem´atica Aplicada I, Escuela T´ecnica Superior de Arquitectura, Universidad de Sevilla, Avenida Reina Mercedes s/n, 41012 Sevilla, Spain dDepartamento de Estad´ıstica e Investigaci´on Operativa Aplicadas y Calidad, Universidad Polit´ecnica de Valencia, Camino de Vera s/n, 46021 Valencia, Spain Abstract Rapid transit construction projects are major endeavours that require long-term planning by several players, including politicians, urban planners, engineers, management consultants, and citizen groups. Traditionally, operations research methods have not played a major role at the planning level but several tools developed in recent years can assist the decision process and help produce tentative network designs that can be submitted to the planners for further evaluation. This article reviews some indices for the quality of a rapid transit network, as well as mathematical models and heuristics that can be used to design networks. Keywords: planning, rapid transit network design, mathematical programming, heuristics. 1. Introduction systems, monorails, etc. For convenience we will refer to all these systems as rapid transit networks. Since bus In the area of passenger transportation, there has been routes interact with street traffic and main railway lines a tendency in recent years to increase investments in are not normally part of the urban or metropolitan set- public transit projects and to reduce them in road con- ting, we will exclude these from our discussion.
    [Show full text]
  • Urban Transportation Characteristics and Urban Mass Transit Introduction in the Cities of Developing Countries
    Journal of the Eastern Asia Society for Transportation Studies, Vol.10, 2013 Urban Transportation Characteristics and Urban Mass Transit Introduction in the Cities of Developing Countries Yukihiro KOIZUMIa, Noriaki NISHIMIYAb, Motoko KANEKOc a, Economic Infrastructure Development Department, Japan International Cooperation Agency(JICA), Nibancho Center Building 5-25,Niban-cho, Chiyoda-ku, Tokyo, 102-8012, Japan [email protected] b JICA Chugoku International Center, 3-1, Kagamiyama 3-chome, Higashi Hiroshima City, Hiroshima, 739-0046, Japan [email protected] c ALMEC Corporation, Kensei Shinjuku Building, 5-5-3, Shinjuku, Shinjuku-ku, Tokyo,160-0022, Japan [email protected] Abstract: JICA has been conducting urban transportation master plan studies in more than 50 cities in developing countries, which established comprehensive traffic database including person trip, traffic volume, and users’ stated preference. This paper analyzes the relationship between urban socio-economic indicators and traffic patterns particularly in the cities of developing countries and identifies their urban transportation characteristics based on the above traffic database. Special attention is paid on the “two-wheeler cities” in Asia which have different trend from global tendencies. The criteria to introduce urban mass transit system are also identified in conjunction with level of socio-economic development of cities. Keywords: Urban Density, Socio-economic Development Phase, Car Ownership, Modal Share, Urban Mass Transit, Developing Countries 1. INTRODUCTION Rapid urbanization have posed several problems on developing countries, especially in the transportation sector, which include traffic congestion, inconvenient mobility, deteriorated traffic safety, serious air pollution and social injustice/inequity. In order to tackle such problems, a comprehensive urban transport strategy is essential, which comprises a set of long-term policy objectives and policy measures in both physical infrastructure and institutional improvement.
    [Show full text]
  • The Research on Practical Approach for Urban Transport Planning
    Japan International Cooperation Agency The Research on Practical Approach for Urban Transport Planning Final Report December 2011 Japan International Cooperation Agency ALMEC Corporation PREFACE The Japan International Cooperation Agency has supported urban transportation planning activities in more than 60 cities mainly in Asian countries by conducting studies on master plan formulation and feasibility studies. Many of the proposals suggested in these studies have been implemented through Japanese yen loans and grant aid, as well as by the respective countries, the private sector, and other donor agencies. Now, Japan is highly expected to participate in urban planning with more strategies to develop proposals into projects for the promotion of infrastructure through international cooperation as indicated in the government’s Plan for Growth which started in 2010. For this purpose, this study was designed to review cross-sectoral information which are available from existing studies and documents, thereby contributing to the formulation of medium- and long-term development strategies in urban transportation which are in accordance with prevailing urban socio-economic conditions in subject cities. The team headed by Mr. Tetsuo Wakui of ALMEC Corporation conducted the study on cities in Japan, India, Indonesia, and Vietnam. Besides the field work, discussions were held four times with study advisors, Dr. Tetsuro Hyodo, professor at the Tokyo University of Marine Science and Technology, and Dr. Sinya Hanaoka, associate professor at the Graduate School of Science and Engineering of the Tokyo Institute of Technology. I hope that this report will contribute to the promotion of development assistance in urban transportation planning worldwide. Finally, I wish to express my sincere appreciation to the concerned agencies and their personnel for their cooperation and the support they extended to the study.
    [Show full text]